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Abstract

In this thesis, we completely characterize the unimodal category for functions f :
R → [0,∞) using a decomposition theorem obtained by generalizing the sweeping
algorithm of Baryshnikov and Ghrist. We also give a characterization of the uni-
modal category for functions f : S1 → [0,∞) and provide an algorithm to compute
the unimodal category of such a function in the case of �nitely many critical points.

We then turn to the monotonicity conjecture of Baryshnikov and Ghrist. We
show that this conjecture is true for functions on R and S1 using the above char-
acterizations and that it is false on certain graphs and on the Euclidean plane by
providing explicit counterexamples. We also show that it holds for functions on
the Euclidean plane whose Morse-Smale graph is a tree using a result of Hickok,
Villatoro and Wang. We then present several open questions indicating promising
research directions.

After this, we prove an approximate nerve theorem, which is a generalization
of the nerve theorem from classical algebraic topology to the context of persistent
homology. This is done by introducing the notion of an ε-acyclic cover of a �ltered
space. We use spectral sequences to relate the persistent homologies of the various
spaces involved. The approximation is stated in terms of the interleaving distance
between persistence modules. To obtain a tight bound, the technical notions of left
and right interleavings are introduced. Finally, examples are provided, which realize
the bound and thus prove the tightness of the result.

Math. Subj. Class. (2010): 55, 55M30, 55M99, 55T, 18
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Povzetek

V tej disertaciji popolnoma karakteriziramo unimodalno kategorijo funkcij f : R→
[0,∞) s pomo£jo izreka o dekompoziciji, ki ga dobimo kot posplo²itev algoritma s
pometanjem, ki sta ga vpeljala Baryshnikov in Ghrist. Podamo tudi karakterizacijo
unimodalne kategorije za funkcije f : S1 → [0,∞) in od tod dobimo algoritem za
izra£un unimodalne kategorije take funkcije v primeru, ko ima le kon£no mnogo
kriti£nih to£k.

Nato obravnavamo domnevo Baryshnikova in Ghrista o monotonosti. Pokaºemo,
da ta domneva drºi za funkcije na R in S1 s pomo£jo zgornjih karakterizacij, in da
ne drºi za funkcije na dolo£enih gra�h in na evklidski ravnini, tako da konstruiramo
eksplicitne protiprimere. Poleg tega pokaºemo, da drºi za funkcije na evklidski
ravnini, katerih Morse-Smaleov graf je drevo, z uporabo rezultata, ki so ga dokazali
Hickok, Villatoro in Wang. Nato predstavimo nekaj odprtih vpra²anj, ki nakazujejo
obetavne smeri raziskovanja.

Potem dokaºemo ²e aproksimativni izrek o ºivcu, ki je posplo²itev izreka o ºivcu
iz klasi£ne algebrai£ne topologije v kontekst vztrajne homologije. To storimo z
vpeljavo pojma ε-acikli£nega pokritja �ltriranega prostora. Z uporabo spektral-
nih zaporedij poveºemo vztrajne homologije raznih prostorov, na katere pri tem
naletimo. Aproksimacija je podana v jeziku prepletne razdalje med vztrajnostnimi
moduli. Da dobimo optimalne meje, vpeljemo tehni£na pojma levih in desnih pre-
pletanj. Nazadnje podamo ²e primere, kjer so meje realizirane in s tem dokaºemo
optimalnost rezultata.

Math. Subj. Class. (2010): 55, 55M30, 55M99, 55T, 18
Klju£ne besede: unimodalna kategorija, monotonost, protiprimer, omejena vari-
acija, vztrajnostni modul, aproksimacija, Mayer-Vietoris, spektralno zaporedje
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1 Introduction

For science to function successfully, it is important that we are able to statistically
analyze the data from experiments. In this process, we come across various prob-
ability distributions, among which the normal distribution is especially important
and well understood. One of its notable features is unimodality, which informally
means that its probability density function has a unique local maximum. Most other
classical probability distributions are unimodal as well. On the other hand, exper-
imentally collected data often results in distributions with more than one mode,
where the data is accumulated around more than one value. Understanding this
phenomenon is especially important because it can indicate the presence of more
than one underlying e�ect in�uencing the values of the data. As a somewhat sim-
pli�ed example, consider the density of tra�c. The tra�c is denser in the morning
and in the afternoon, and the two underlying e�ects that explain this are the facts
that people are driving to work in the morning and back home in the afternoon.
Another example would be the study of height in a population consisting of two
di�erent types of individuals. Here we expect to obtain two peaks, corresponding
to the average heights of each type of individual.

Hence, given a distribution that describes a certain phenomenon of interest, it is
especially important to be able determine the minimal number of underlying e�ects1

explaining this phenomenon. In other words, we would like to decompose a given
distribution with more than one mode as a sum of unimodal summands. In statis-
tics, this problem is especially well-studied in the special case when the underlying
e�ects are normally distributed [7, 33, 56], and to a certain extent also for more
general distributions [45, 46]. Another interesting phenomenon is the appearance
of ghost modes, described in [28]: a mixture of k isotropic normal distributions
can have more than k modes. In practice, the distributions of di�erent e�ects may
vary and we might be dealing with non-numerical data, in which case any analitical
description of the distibution would be just an artifact of our choice of coordinate
system, not the problem itself. Despite this, we usually have a natural concept of
closeness/similarity. Baryshnikov and Ghrist have addressed these issues by intro-
ducing the concept of unimodal category [4], which is a topological abstraction of
such problems. Here, instead of a probability density function Rm → [0,∞), we
study a nonnegative function f : X → [0,∞) on a topological space X. We say that
the function u : X → [0,∞) is unimodal if there is anM > 0 such that the superlevel
sets u−1[c,∞) are contractible for c ∈ (0,M ] and empty for c > M . The unimodal
category of a function f : X → [0,∞) is then de�ned as the smallest n ∈ N0 for
which there exist unimodal functions u1, . . . , un : X → [0,∞), such that f =

∑n
i=1 ui

(where the summation is pointwise). In this case, we write n = ucat(f). Therefore,
the unimodal category is a lower bound for the number of summands, regardless
of the unimodal distributions of the underlying e�ects we might be interested in.
This concept generalizes naturally if instead of decomposing functions into sums of
unimodals, we decompose them into `p-combinations of unimodals, p ∈ (0,∞]. In
this way, we obtain the concept of unimodal p-category ucatp(f). Baryshnikov and
Ghrist [4] also suggested gcat(supp(f)), the geometric category of the support of f ,

1Baryshnikov and Ghrist like to reference Ockham's razor here, which provides a philosophical

motivation for such endeavor.
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as a natural candidate for the case p = 0. In light of this, the unimodal p-category
can also be understood as a deformation of the geometric category of the support of
f . (The geometric category is a variant of the classical Lusternik-Schnirelmann cat-
egory [24]. These invariants count the minimal number of pieces of a certain type a
topological space can be decomposed into. For the geometric category the pieces are
required to be contractible, whereas for the Lusternik-Schnirelmann category they
are only required to be contractible within the ambient space.) In other words, the
unimodal category can be understood as a lift of geometric category, an invariant
of spaces, to an invariant of functions on these spaces. Recently, such lifting of in-
variants has proven to be a particularly successful idea, consider e.g. Euler calculus
[25], where the Euler characteristic is interpreted as a measure and integrating a
constructible function against this measure yields the concept of its Euler integral.
The very successful concept of persistent homology [30] can be understood as a sim-
ilar lift; in the basic variant, this is a lift of homology, an invariant of spaces (and
maps between them), to an invariant of �ltrations of these spaces.

Not much is known about the unimodal category, even in the basic case of
X = Rm, which is the most interesting case from the statistical point of view. For
the case m = 1, Baryshnikov and Ghrist provided a simple algorithm [4], which
allows us to compute the unimodal category of any function with only �nitely many
critical points. Their paper treats the case m = 2 only partially and concludes
with a monotonicity conjecture, which they suggest will play a key role in providing
precise bounds for the unimodal category in higher dimensions � the conjecture is
that for a �xed function f : X → [0,∞) and 0 < p1 < p2 ≤ ∞, we always have
ucatp1(f) ≤ ucatp2(f). Computation of ucat in the case m = 2 is treated in
some more detail by Hickok, Villatoro and Wang in [43], which is focused on those
Morse distributions on the plane whose Morse-Smale graphs are trees. For these,
the unimodal category is almost completely characterized.

The thesis consists of two conceptual parts. The �rst part is mostly centered
around the monotonicity conjecture and is the subject of the paper [40], which
is currently being prepared for publication, whereas the second part regards the
approximate nerve theorem [41], which is related to persistent homology and can
thus be regarded as a continuation of the research [39] which spawned the author's
diploma thesis.

In the �rst part, we begin by showing that the decomposition provided by the
algorithm for X = R can be generalized to arbitrary functions f : R → [0,∞)
as a variant of the Jordan decomposition [58] of functions with bounded variation
(each such function can be written as the di�erence of two monotonically increasing
functions). Then, we generalize these results to obtain a generalization to X = S1

suitable for the study of monotonicity, which also yields a simple algorithm in the
case of �nitely many critical points. The results obtained are general enough to
allow for proving the monotonicity conjecture for arbitrary functions on X = R
and X = S1. Next, we show that monotonicity does not hold for certain more
general spaces. Namely, we construct two counterexamples on graphs, leading us to
conclude that the conjecture is false for most graphs, and more importantly, we also
construct two counterexamples on X = R2. Finally, we show that, despite this, the
conjecture is true for X = R2 in the case of functions whose Morse-Smale graph is
a tree.

14



1.1 Approximate Nerve Theorem

The second part of the thesis, concentrated in Section 6, is related to more developed
areas of computational topology, such as persistent homology. For this reason it
requires more background and deserves a separate introduction.

To motivate this part of the thesis, note that every notion of category is related
to a certain type of cover of the underlying space. For instance the Lusternik-
Schnirelmann category is concerned with categorical covers, i.e. such that the cover
elements are contractible within the space, and the geometric category is concerned
with covers consisting of contractible sets. The unimodal category is related to the
concept of cover as well, however, the relation is more complicated. The simplest
case is that of the unimodal ∞-category, where the function f : X → [0,∞) is
decomposed as f = min1≤i≤n ui where each ui : X → [0,∞) is unimodal. This
means that at each level c > 0 we have f−1[c,∞) =

⋃n
i=1 u

−1
i [c,∞), which means

that at each level the superlevel sets of the unimodal functions in the decomposition
form a cover of the corresponding superlevel set of the original function and this
cover consists of contractible sets.

Inferring global properties of the space from local properties, for instance the
homology of a space from the homology of cover elements in an appropriate cover
of the space, is a common theme in algebraic topology. It is therefore reasonable
to expect that such techniques will prove to be fruitful in the context of unimodal
category as well, once the area is su�ciently developed.

From the point of view of persistent homology, a function f : X → [0,∞)
provides us with a superlevel set �ltration of the space X and the unimodal ∞-
decomposition f = min1≤i≤n ui yields a �ltered cover of this space, whose cover
elements have trivial persistent homology. So far, it is unclear what the general
connection between persistence and the unimodal category is. However, in the
case when the cover is particularly simple, namely, a good cover, there are classical
results for the un�ltered case. Using spectral sequences, we have been able to extend
these results into the setting of persistent homology. It seems likely that similar
techniques can be used to work more generally with �ltered covers whose elements
are contractible at each level, as in the case of the unimodal ∞-category.

It is also known that for functions f : R → [0,∞) the concept of persistence
is related to the concept of total variation [6]. By the �rst part of the thesis, this
means that in the one-dimensional case, ucat is intimately related to persistence.

The classical result alluded to above is the nerve theorem, which relates a su�-
ciently nice cover of a topological space with the nerve of that cover, and goes back
to Alexandro� [2].

Theorem 1.1 (Corollary 4G.3 [42]). If U is an open cover of a paracompact space
X such that every non-empty intersection of �nitely many sets in U is contractible,
then X is homotopy equivalent to the nerve N (X).

One more recent application is in the area of topological data analysis [37, 14, 63].
The goal is to obtain information about the topology of a space, often given a discrete
sample of the space. There has been a large body of work proving results in di�erent
contexts, including [21, 9, 26] just to name a few. A common point is the use of
the nerve theorem, either explicitly or implicitly, through constructions such as the
�ech complex.
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The main idea of persistent homology, a powerful tool in topological data analysis,
is to study the homology of a �ltration rather than a single space. Applying the
homology functor yields a persistence module. If we compute homology with �eld
coe�cients, then we can obtain a complete topological invariant called persistence
barcode or persistence diagram. One useful source of �ltrations are sublevel (resp.
superlevel) set �ltrations � given a space endowed with a real-valued continuous
function, f : X → R, the sublevel sets of the function form a �ltration yielding a
persistence diagram denoted by Dgm(X, f).

One important example of a function is the distance to a compact set. When the
compact set consists of sample points, this function relates to a notion of scale and is
equivalent to the �ech �ltration. Recall that the �ech complex on a point set P is the
nerve of the union of balls of radius r. The points are usually embedded in Euclidean
space, allowing the nerve theorem to be applied via convexity. By varying the radius
r, we obtain the �ech �ltration. Other �ltrations which are often considered are:
superlevel sets of probability density functions [9], sublevel set �ltration of a sampled
function [21], and the elevation function on 2-manifolds [1]. Persistence diagrams
have proven interesting because they are stable [23] � meaning a small change in the
�ltration bounds the change in the invariant. One way of measuring the magnitude
of the change is the bottleneck distance. Stability enables us to prove theorems about
approximating the persistent homology of a �ltration using an alternate �ltration
constructed from a discrete sample, i.e. that the bottleneck distance is small.

An important technique in proving such an approximation is interleaving [19],
which provides an algebraic condition for approximation (Section 2.5). A common
theme is to construct an interleaving with a good cover, providing an approximation
guarantee. In some cases, such as for distance �ltration, an interleaving with a good
cover can often be shown directly. In more general settings, it can often be more
di�cult to directly prove an interleaving. The main goal in Section 6 is to prove an
approximation bound using the stability of persistent homology to relax the need
for a good cover. Importantly, we only make assumptions on the local properties of
the space and function, which make it useful in a variety of applications.

As we deal with persistent homology, we concentrate on a homological version
of Theorem 1.1.

Theorem 1.2 (Theorem 4.4 [12]). Suppose X is the union of subcomplexes Ui such
that every non-empty intersection Ui0 ∩· · ·∩Uip for p ≥ 0 is acyclic. Then H∗(X) ∼=
H∗(N (U)) where N (U) is the nerve of the cover.

The main result of Section 6 is to provide an approximate version of the above
theorem in the context of persistent homology. Given a space and function, we
�rst de�ne the notion of an ε-acyclic cover. Note that we do not restrict ourselves
to induced functions on a �xed cover, but consider a covering by �ltrations. This
notion is less intuitive but is applicable in a wider range of settings. We follow the
formalization of covers by �ltrations by Sheehy [60]. Informally, our main result is:

Result 1.3. Given a space X endowed with a function f and a (�ltered) cover U , if
every non-empty �nite intersection of cover elements is ε-acyclic, then there exists
a function on the nerve g : N (U) → R, such that the bottleneck distance dB(·) is
bounded by

dB(Dgm(X, f),Dgm(N (U), g)) ≤ 2(Q+ 1)ε,
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where
Q = min{dim(X), dim(N (U))}.

The construction of the function on the nerve is given explicitly and agrees with
what is currently done in practice when computing persistent homology.

We do not use persistence diagrams and bottleneck distance, but �nd it more
convenient to work directly with the corresponding persistence modules and inter-
leavings. Therefore, we do not explicitly de�ne bottleneck distance or diagrams as
they are not required for the statement of our results, but do allude to them to give
intuition for readers who are familiar with persistence. In cases where the diagrams
are well de�ned, results of bottleneck distance type follow automatically.

We prove this result by using the Mayer-Vietoris spectral sequence to glue to-
gether the ε-acyclic pieces into the global persistent homology. To obtain a tight
bound, we introduce the notion of left and right interleavings (Section 6.2), which
have additional structure. This re�nement of interleavings captures similar phenom-
ena as the results of [5], but works at the level of modules rather than barcodes.
Hence, it does not require modules to be decomposable and so we believe these
notions are of independent interest.

Approximation results of this type have received signi�cant attention in the com-
munity. In addition to the applications mentioned above, the persistent nerve lemma
in [22] showed that the homotopy equivalence between the a good cover its nerve
commutes with inclusions allowing it to be applied to a persistent setting. More
recently, this was extended in [10], who approximate the persistent homology of a
�ech complex in Euclidean space using non-good covers. Also recently a compara-
ble result has been reported in [15]. Their result was more general than an earlier
version of paper [41] which did not cover the case of �ltrations of �ltrations (also
called a multicover) - which is now addressed in the paper, as well as this thesis.
Furthermore, the proofs are di�erent as the [15] requires cover elements (and �nite
intersections) to be �ε-nullhomotopic�. They show that under this assumption, it
is possible to construct an explicit chain map interleaving (with the same constant
that we report). Our approach, however, is purely algebraic and so only requires
structure at the level of homology rather than homotopy.

We prove the result in two steps: �rst we show how the approximation bound
evolves through the computation of the spectral sequence (Section 6.3), then resolve
the extension problem to relate the result of the spectral sequence with the persistent
homology of the underlying space (Section 6.4). While we have tried to make this
Section 6 contained, we do assume some familiarity with spectral sequences, but we
try and provide intuition and references whenever possible.

1.2 Structure of the Thesis

In Section 2 we introduce the relevant concepts and some useful results. In Sec-
tion 3, we generalize the sweeping algorithm of Baryshnikov and Ghrist to obtain
a general decomposition theorem for functions on X = R, thereby removing the
assumption that the function only has �nitely many critical points. This is achieved
by a systematic use of the concepts of positive and negative variation. Then we show
how to compute the unimodal category in the case X = S1. In Section 4, we treat
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the monotonicity conjecture. We prove it in the case X = R and give various coun-
terexamples to demonstrate the ways in which it may fail in general. Speci�cally,
we construct two simple counterexamples on graphs, the �rst of which shows that
the conjecture is false in the case p1 < p2 <∞, whereas the second shows that the
conjecture is also false for p1 < p2 = ∞. Then we construct two counterexamples
on the plane X = R2 that are to a certain extent analogous to the counterexamples
on graphs. We also prove that the conjecture is nevertheless true for X = R2 if the
Morse-Smale graph is a tree. In Section 5 we present some investigations regarding
higher dimensions and some ideas for future research. Section 6 gives an account of
the approximate nerve theorem, as proved in [41].

1.3 Original Contributions

All results from Section 3, Section 4 and Section 5, except where otherwise noted,
are original results of the author. The results of Section 6 are original as well and
have been obtained by the joint work [41] of the author and his co-advisor Primoº
�kraba.

1.4 Conventions Used in the Text

Unless otherwise noted, in Sections 2�5 all functions f : X → [0,∞) are assumed
to be continuous. In addition to this, all functions are assumed to be of bounded
variation in Section 3. Compact support is not assumed. When we say f : X →
[0,∞) is a Morse function we mean that f is a function that has �nitely many
critical points and is Morse on f−1(0,∞). In Section 6, the symbol H∗ is used to
denote both ordinary as well as persistent homology, depending on whether its
argument is just a space or a space equipped with a �ltration.
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2 Preliminaries and Previously Known Results

2.1 Unimodal Category

From the point of view of algebraic topology, the simplest spaces are contractible
ones. Intuitively, these are the spaces which can be contracted to a point within
themselves. A related notion is that of a space contractible within a larger space.
Such spaces can be contracted to a point within this larger space. Formally, these
are de�ned as follows.

De�nition. A space X is said to be contractible if the identity map idX : X → X is
nullhomotopic. A subspace A ⊆ X is said to be contractible within X if the inclusion
map A ↪→ X is nullhomotopic.

For instance, the space R2 is contractible, whereas the unit circle S1 is not.
However, the unit circle is contractible within R2, since we can contract it to a
point by restricting the homotopy which contracts R2 to a point within itself. These
notions are the starting point of the theory of Lusternik-Schnirelmann category,
which measures the complexity of a space X by how many sets contractible within
X are required to cover the space. There is also a related notion of geometric
category. Another related notion by the name of topological complexity has been
de�ned by Farber [35].

De�nition. The Lusternik-Schnirelmann category cat(X) of a topological
space X is the minimum number n of open sets U1, . . . , Un contractible within X
such that X =

⋃n
i=1 Ui. The geometric category gcat(X) of a topological space

X is the minimum number n of contractible open sets U1, . . . , Un in X such that
X =

⋃n
i=1 Ui.

These categories have been well-studied, see for instance [24] for a nice intro-
duction into the topic. It is known for instance that the Lusternik-Schnirelmann
category is a homotopy invariant, whereas the geometric category is not. The stan-
dard example illustrating this is due to Fox [36], namely let X1 = S2 ∨ S1 ∨ S1

and X2 = S2/{x, y, z}. Then X1 ' X2 and cat(X1) = cat(X2) = 2, whereas
gcat(X1) = 2 and gcat(X2) = 3. For a proof of this, see [24, Proposition 3.11].
This also illustrates that cat and gcat are not the same.

Following Baryshnikov and Ghrist [4], we are interested in a notion of category
applicable to the study of continuous functions f : X → [0,∞). To de�ne it, we
need a concept analogous to contractibility, applicable to functions:

De�nition. A continuous function u : X → [0,∞) is unimodal if there is an M > 0
such that the superlevel sets u−1[c,∞) are contractible for 0 < c ≤ M and empty
for c > M .

It should be noted that in probability, unimodality strictly means that the rel-
evant probability distribution has a single mode, which corresponds to a unique
global maximum, however, in practice, the word �unimodality� is also commonly
used to refer to functions with a single local maximum or maximal region. The
above de�nition is a formalization of the latter convention. We can now state the
main de�nition.
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De�nition. Let p ∈ (0,∞). The unimodal p-category ucatp(f) of a function f :
X → [0,∞) is the minimum number n of unimodal functions u1, . . . , un : X →
[0,∞) such that pointwise, f = (

∑n
i=1 u

p
i )

1
p . Similarly, the unimodal ∞-category

ucat∞(f) of a function f : X → [0,∞) is the minimum number n of unimodal
functions u1, . . . , un : X → [0,∞) such that pointwise, f = max1≤i≤n ui. In place of
ucat1(f) we usually write ucat(f).

Since the de�nition of unimodality does not say anything about u−1[0,∞), we
can safely ignore any part of the space where the function is zero. In particular, if
A = f−1(0,∞), we have

ucatp(f) = ucatp(f |A).

Baryshnikov and Ghrist [4] also give a more general notion of unimodal ν-category,
corresponding to any norm ν on an appropriate space of real-valued sequences. We
formalize this as follows.

De�nition. Let R(N) ≡
⊕

n∈N R denote the vector space of all eventually zero
sequences of real numbers, i.e. sequences with at most �nitely many nonzero terms.
Suppose ν is a norm on R(N). The unimodal ν-category ucatν(f) of a function
f : X → [0,∞) is the minimum number n of unimodal functions u1, . . . , un : X →
[0,∞) such that for each x ∈ X, f(x) = ν(u(x)), where u(x) = (ui(x))∞i=1 and
we take ui := 0 for i > n. We refer to the sequence u1, . . . , un as a unimodal
ν-decomposition of f and to n as the length of this decomposition.

Remark 2.1. It can happen that a function f : X → [0,∞) does not have a unimodal
ν-decomposition u1, . . . , un for any n ∈ N, so that technically ucatν(f) is unde�ned.
We express this fact by writing ucatν(f) =∞. We will see in Section 3, for instance,
that ucatp(f) =∞ if f is not of bounded variation.

The unimodal p-category ucatp corresponds to the p-norm, p ∈ [1,∞]. For
p < 1, we do not have a corresponding norm, as the triangle inequality fails, but the
de�nition of ucatp is still of interest. The more general concept of ucatν does not
seem as well-behaved as ucatp since changing the order of functions u1, . . . , un may
change the value of ν(u(x)). For this reason, we limit our further investigations to
the case of p-norms.

Remark 2.2. Baryshnikov and Ghrist also consider gcat(f−1(0,∞)) as a natural
candidate2 for the notion of ucat0(f) and claim that limp↓0 ucat

p(f) = ucat0(f).
We note that while this may be a natural candidate, the equation does actually not
hold as stated. For instance, if f : R → [0,∞) is a function with two peaks such
that f−1(0,∞) is connected, e.g. f(x) = max{0, 2 − ||x| − 1|}, then ucatp(f) = 2
for all p ∈ (0,∞] whereas gcat(f−1(0,∞)) = 1.

We also note that there is a typo in the statement of their Lemma 9 in [4], which
relates the various notions of ucatp for p <∞. The proof as stated there, remains
valid. For convenience, we restate the lemma in its correct form.

Lemma 2.1 ([4], Lemma 9). If f : X → [0,∞) is any continuous function, then

ucatp(f) = ucat(fp).

2Note that they seem to be using the notation supp f to denote f−1(0,∞), i.e. the set-theoretic
support of f .
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2.1.1 Discussion

Note that ucatp(f) can only be �nite if f : X → [0,∞) is continuous, since con-
tinuity is assumed in the de�nition of unimodality. This motivates the following
convention.

Convention. Unless explicitly noted otherwise, all functions f : X → [0,∞) will
hereafter be assumed to be continuous.

Baryshnikov and Ghrist further assume that the functions they study are com-
pactly supported. We do not make this assumption. Because of this, our notion of
unimodal category slightly di�ers from theirs. Note that the two notions of ucatp(f)
agree whenever f is compactly supported. However, if f is not compactly supported,
their notion is unde�ned, while ours may still give a �nite answer. Hence, the no-
tion we use is a slight generalization of theirs. (Note that all the main examples and
counterexamples considered in the thesis will be compactly supported, so they are
still valid under the original de�nition.)

While the de�nition of ucatp makes sense for general topological spaces, it seems
to be the most interesting for spaces that are not too pathological. To illustrate this
point, we make a simple observation.

Proposition 2.2. Suppose f : X → [0,∞) is a function such that ucatp(f) < ∞.
Then each point x ∈ X with f(x) 6= 0 has a contractible neighborhood.

Proof. Since ucatp(f) <∞ and f(x) 6= 0 there is a unimodal u : X → [0,∞) such
that u(x) = a > 0. Hence, u−1[a

2
,∞) is a contractible neighborhood of a.

For instance, if X is the Hawaiian earring and ucatp(f) <∞ for some f : X →
[0,∞), this f must necessarily have a zero at the point where the circles intersect.
Similarly, if X is the topologist's sine curve, de�ned as the closure of

A = {(x, y) ∈ (0, 1)× R | y = sin π
x
}

in R2, any function f : X → [0,∞) whose unimodal p-category is �nite must vanish
at the points of {0} × [−1, 1] as none of these has a contractible neighborhood.

However, even if there is a function f : X → [0,∞) with ucatp(f) < ∞ and
no zeros, the local structure of X can still be pathological. For instance, if X is
contractible, but not locally contractible, the constant function f : X → [0,∞),
f(x) = 1, is nonetheless unimodal, so ucatp(f) = 1.

Ideally, the space should be at least locally contractible to allow for the existence
of unimodal functions supported in a neighborhood of any given point. As there are
plenty of open questions already in the case when X is a manifold or a CW complex,
we will restrict our attention to those.

2.2 Total Variation and Jordan Decomposition

The concept of total variation (see e.g. [3, Chapter 6]) for functions f : R→ [0,∞)
will be useful, so we recall the basic de�nitions and results here.
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De�nition. The total variation of f : R→ R on the interval [a, b] is de�ned by the
formula

V (f ; [a, b]) = sup
n∑
i=1

|f(xi)− f(xi−1)|,

where the supremum is taken over all partitions a = x0 < x1 < . . . < xn = b of the
interval [a, b]. Similarly, we de�ne the positive variation of f on the interval [a, b] as

V +(f ; [a, b]) = sup
n∑
i=1

max{0, f(xi)− f(xi−1)},

and the negative variation of f on the interval [a, b] as

V −(f ; [a, b]) = sup
n∑
i=1

max{0, f(xi−1)− f(xi)}.

We will use the following basic facts:

Theorem 2.3. Let V ∗ stand for V, V + or V − and let f : [a, b] → R. Then the
following hold:

• If f is increasing on [a, b], then V (f ; [a, b]) = V +(f ; [a, b]) = f(b) − f(a) and
V −(f ; [a, b]) = 0.

• If f is decreasing on [a, b], then V (f ; [a, b]) = V −(f ; [a, b]) = f(a) − f(b) and
V +(f ; [a, b]) = 0.

• If f =
∑n

i=1 fi, then V
∗(f ; [a, b]) ≤

∑n
i=1 V

∗(fi; [a, b]).

• If a = x0 < x1 < . . . < xn = b, then V ∗(f ; [a, b]) =
∑n

i=1 V
∗(f ; [xi−1, xi]).

• V +(f ; [a, b]) + V −(f ; [a, b]) = V (f ; [a, b]) and V +(f ; [a, b]) − V −(f ; [a, b]) =
f(b)− f(a).

Proof. The �rst two facts are obvious. For the third and the fourth fact in the case
of V , see Theorems 6.9 and 6.11 in [3]. For V + and V −, the idea is completely
analogous. The �fth fact is a standard exercise, see [3], Exercise 6.7.

By undergraduate measure theory, every right continuous increasing function on
R determines a Borel measure [27, Section IV.8], so V, V + and V − can be extended
to de�ne measures on R. We are therefore also allowed to compute these variations
over open intervals or even Borel sets, but note that continuity of f implies that
V ∗(f ; [a, b]) = V ∗(f ; (a, b)).

These concepts also make sense for f : J → R, where J ⊆ R is an interval.
Functions of bounded variation, i.e. such that V (f ; J) < ∞, are of particular
interest to us. Note that the �rst two bullet points of Theorem 2.3 imply that
monotone functions over �nite intervals have bounded variation. More generally,
bounded monotone functions also have bounded variation. Using the fourth bullet
point, this also implies that unimodal functions u : J → R have bounded variation,
since the domain of any such function can be split into two intervals where the
function is monotone and bounded.

Any function f : J → R of bounded variation can be split as the di�erence of two
monotone functions, i.e. it satis�es the following Jordan decomposition theorem:
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Theorem 2.4. Suppose f : J → R is of bounded variation. Then f can be expressed
as the di�erence f = g − h of two increasing functions g, h : J → R.

Proof. See [3], Theorem 6.15. The result is stated there for closed intervals, but
it actually holds in general. The idea is to take g(x) = V (f ; J ∩ (−∞, x)) and
h(x) = g(x)− f(x).

In Section 3.1, we use a slightly di�erent decomposition, namely g(x) = V +(f ; J∩
(−∞, x)) and h(x) = V −(f ; J ∩ (−∞, x)), assuming limx→−∞ f(x) = 0. The limit
at −∞ can always be subtracted from f , so this is not really a restriction. To see
that this is indeed a decomposition, use the �fth property of Theorem 2.3.

2.3 Morse Functions

For convenience, we remind the reader of some basic notions of Morse theory. First,
recall that aMorse function on a manifoldM is a smooth function f : M → R which
only has nondegenerate critical points. A nondegenerate point is always isolated,
so if M is a closed manifold, there are only �nitely many such points. If M is not
closed, the situation is slightly more complicated, so to keep things simple, we adopt
the following convention.

Convention. Suppose M is a noncompact manifold and f : M → [0,∞) a contin-
uous function which is smooth on f−1(0,∞). We say that f is a Morse function if
its restriction to f−1(0,∞) is a Morse function with �nitely many critical points.

In other words, we are not interested in the case with in�nitely many critical
points and we are also not interested in what happens in the zero set.

De�nition. A Morse function all of whose critical values are distinct is called non-
resonant.

This terminology seems to be due to Nicolaescu [53], who also mentions that
Thom calls such functions excellent. One of the main points of Morse theory is that
it enables us to describe the topology of a manifoldM using a Morse function on M :

Theorem 2.5 ([51]). Suppose f : M → R is a Morse function, p ∈ M is a critical
point of index i and f(p) = a the corresponding critical value. For every x ∈ R let
Mx = f−1(−∞, x]. Then if [a − ε, a + ε] contains no other critical values of f , the
sublevel set Ma+ε is obtained (up to homotopy) from Ma−ε by attaching an i-handle.

Remark 2.3. For our purposes, the relevant fact here is that attaching an i-handle
either destroys a homology class in Hi−1 or creates a homology class in Hi.

2.4 Filtered Simplicial Complexes

To understand the part of the thesis pertaining to the approximate nerve theorem,
the reader is presumed to be familiar with persistent homology. We refer the reader
to [29] and [64] for complete introductions. The relevant preliminaries are given
below � as much as possible we have tried to avoid technical complications but we
try to point out where generalizations are possible.
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To minimize technical complications, we work primarily with Z-�ltered simpli-
cial complexes (see the de�nition below), denoted X and Z-�ltered covers U of such
complexes by subcomplexes (where each subcomplex itself has a speci�ed �ltration).
However, our proofs work directly on the algebraic level and hence should be extend-
able to much more general settings than those presented here without changing the
bounds. Note that already the results for Z-�ltered simplicial complexes are widely
applicable. It is known, for instance, that each smooth manifold or, more generally,
Whitney-strati�ed space can be triangulated. Hence, such a space Y equipped with
a sublevel set �ltration induced by some function f : Y → R can be approximated
arbitrarily well by a piecewise linear (PL) function on a simplicial complex and
therefore by an R-�ltered simplicial complex.

De�nition. Let J ⊆ R. A J-�ltered simplicial complex is a pair (X,F), where X
is an abstract simplicial complex and F = (Xj)j∈J is a family of subcomplexes such
that j1 ≤ j2 implies Xj1 ⊆ Xj2 , X−∞ :=

⋂
j∈J X

j = ∅ and X∞ :=
⋃
j∈J X

j = X.
A J-�ltered cover3 by subcomplexes of a J-�ltered simplicial complex (X,F)

is an indexed family U = (Ui,Fi)i∈Λ, where each Ui is a subcomplex of X and
Fi is a �ltration of this subcomplex, such that the �ltrations F and Fi satisfy a
compatibility requirement, namely that Xj =

⋃
i∈Λ U

j
i holds for each j ∈ J . Note

that whenever I ⊆ Λ, the intersection UI :=
⋂
i∈I Ui has a natural �ltration FI given

by U j
I :=

⋂
i∈I U

j
i .

Note that the requirements on X−∞ and X∞ are sometimes dropped. If J ⊆ R
is a discrete subset, for instance J = Z, the �ltration F may also be given as a
function f : X → Z whose sublevel sets are f−1(−∞, j] = Xj. For this reason,
a Z-�ltered simplicial complex is sometimes written as (X, f). Since the �ltration
is regarded as part of the structure, we often suppress it from notation and simply
write X.

When the �ltrations are given as functions, the compatibility requirement in the
de�nition of the �ltered cover U = (Ui, fi)i∈Λ of the �ltered simplicial complex (X, f)
can be stated4 as f = mini∈Λ fi.

Remark 2.4. This de�nition of J-�ltered cover is the one given by Sheehy [60], which
allows for the extension of Theorem 1.2 to the persistent setting via the persistent
nerve lemma of Chazal and Oudot [22].

There is also a natural way to assign a �ltered cover to an un�ltered cover of a
�ltered complex. Namely, if (X,F) is a J-�ltered simplicial complex and U = (Ui)i∈Λ

is a cover of the underlying complex X by subcomplexes, U can naturally be given
the structure of a J-�ltered cover U = (Ui,Fi)i∈Λ by de�ning U j

i = Ui ∩ Xj. We
call U the induced J-�ltered cover of (X,F) associated to U . In this case, if the
�ltrations are given by functions f : X → Z and fi : Ui → Z, the functions fi are
simply restrictions fi = f |Ui .

Our results also make sense in the setting of triangulable spaces, which we now
recall.

3All covers are assumed to be indexed.
4To make sense of the minimum, we may consider fi to be extended to the whole X by de�ning

it to be ∞ outside of Ui.
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De�nition. A topological space Y is said to be triangulable if there exists a simpli-
cial complex X and a homeomorphism h : |X| → Y , where |X| denotes the carrier
of X. The pair (X, h) is said to be a triangulation of Y .

In the persistent setting, we also consider �ltered triangulable spaces. To do
this, start with a space Y and a continuous function f : Y → R. The pair (Y, f)
is then regarded to be an R-�ltered topological space. The �ltration is de�ned by
Y j = f−1(−∞, j] and is known as the sublevel set �ltration of Y induced by f .

We sometimes need to replace the function f : Y → R by a piecewise linear
approximation.

De�nition. Suppose (X, h) is a triangulation of Y and f : Y → R a continuous
function. The piecewise linear approximation of f associated to (X, h) is the function
f̂ : |X| → R de�ned on the vertices of X by f̂(v) = f(h(v)) and extended a�nely
over the simplices.

De�nition. Suppose X is a simplicial complex and f̂ : |X| → R a piecewise linear
function (w.r.t. the triangulation). Then X can be given the structure of an R-
�ltered simplicial complex (X, f̂) by de�ning Xj to consist of all simplices contained
in f̂−1(−∞, j]. We call this �ltration the lower star �ltration of f̂ .

Note that lower star �ltrations are usually considered only for �nite simplicial
complexes and the function values on the vertices are assumed to be distinct. (See,
for instance, [29].)

It is a standard fact (for �nite simplicial complexes, this is explained in [29]) that
the sublevel set �ltration of |X| and the lower star �ltration of X induced by the
same function f̂ are related by the fact that |Xj| is a deformation retract of |X|j.
Of more interest to us, however, is comparing the persistence modules of these two
�ltrations.

Finally, we recall the standard construction for the nerve given a cover is:

De�nition. Given a cover (Ui)i∈Λ of X, the nerve N is the set of �nite subsets of
Λ de�ned as follows: a �nite set I ⊆ Λ belongs to N if and only if the intersection
of the Ui whose indices are in I, is non-empty, or equivalently

UI =
⋂
i∈I

Ui 6= ∅.

If I belongs to N , then so do all of its subsets making N an abstract simplicial
complex.

2.5 Modules and Interleavings

Let k be a �eld. Both the graded and the non-graded ring of polynomials with
coe�cients in k are commonly denoted by k[t] in the literature. We mostly work
with the former. For this reason, we reserve the notation k[t] = k[t](Gr) for the
graded version and the non-graded version is always explicitly denoted as such by
k[t](NGr).

Here k[t] is graded by degree, namely k[t] =
⊕

i∈N0
k[t]i, where k[t]i = k · ti

consists of the homogeneous polynomials of degree i, i.e. scalar multiples of ti. This
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decomposition is regarded as part of the structure of k[t] and has to be taken into
account when de�ning k[t]-modules and their morphisms, whereas k[t](NGr) is simply
a ring without any additional structure, so k[t](NGr)-modules and their morphisms
are not required to respect any such grading.

De�nition. [34, p. 42] A k[t]-module is a k[t](NGr)-module M together with a
decomposition (also called grading) into abelian subgroups M =

⊕
j∈ZM

j such
that k[t]i ·M j ⊆ M i+j holds for all i ∈ N0 and j ∈ Z. Let ε ∈ N0. An ε-morphism
of k[t]-modules M and N is a morphism f : M → N of the underlying k[t](NGr)-
modules such that for all j ∈ Z we have f(M j) ⊆ N j+ε. A 0-morphism is also called
a morphism.

Example. There is a distinguished ε-morphism idε : M → M given by idε(m) =
tεm.

Since k[t]0 = k, any such M is also a Z-graded k-module. Consequently, some
authors [34] call this a graded k[t]-module. For us, �graded k[t]-module� means
something else (see Section 2.6).

De�nition. Let ε ∈ N0. An ε-interleaving of k[t]-modules M and N is a pair (φ, ψ)
of ε-morphisms φ : M → N and ψ : N →M such that φψ = id2ε and ψφ = id2ε. A
0-interleaving is the same as an isomorphism. If there is an ε-interleaving between
M and N , we say that M and N are ε-interleaved and write M ε∼ N .

Remark 2.5. We also work with interleavings of graded modules and chain com-
plexes. These are de�ned by components, and for the latter, we additionally require
that the interleaving maps are chain maps, i.e. that they commute with the di�er-
entials.

The notion of ε-interleaving de�nes an extended5 metric between isomorphism
classes of k[t]-modules, i.e. it satis�es the following basic properties.

Proposition 2.6. Suppose M,N and P are k[t]-modules. Then the following prop-
erties hold.

1. Positive de�niteness: M 0∼ N holds if and only if M ∼= N .

2. Symmetry: M ε∼ N implies N ε∼M .

3. Triangle inequality: M ε1∼ N and N ε2∼ P imply M ε1+ε2∼ P .

Proof. The �rst two properties are immediate. To show the third, let (φ, ψ) be an
ε1-interleaving ofM and N and (η, θ) an ε2-interleaving of N and P . Then, (ηφ, θψ)
is an (ε1 + ε2)-interleaving of M and P .

De�nition. The interleaving distance between k[t]-modules M and N is de�ned by
the formula

dI(M,N) = min{ε ∈ N0 |M
ε∼ N}.

5This means that we allow it to take the value ∞.
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Therefore, the notion of interleaving provides a means to quantify how close
two modules are to each other. Modules ε-interleaved with 0 are of particular
importance, as they may be regarded as small, and are therefore useful as a model
of experimental error. Alternatively, they are characterized as follows.

Proposition 2.7. A k[t]-module M is ε-interleaved with 0 if and only if t2εM = 0.

Proof. If M ε∼ 0, let (φ, ψ) be the interleaving. This means that id2ε = ψφ = 0.
Conversely, if t2εM = 0, the interleaving is given by (φ, ψ) = (0, 0).

This immediately implies that subquotients of small modules are small.

Corollary 2.8. Let M be a k[t]-module and P its subquotient. Then M ε∼ 0 implies
P

ε∼ 0.

Proof. Let P = N/∼ for some N ≤ M . Since t2εM = 0, we have t2εN = 0 and
therefore t2εP = 0.

In the context of persistence modules, it is useful to de�ne the notions of in-
terleavings categorically. Let Vect be the category of vector spaces over k and let
I ⊆ R be closed under addition. Being a poset, I may be viewed as a category in the
usual way. For each ε ∈ I and ε ≥ 0, there is a functor Tε : (I,≤)→ (I,≤) given by
Tε(a) = a+ ε and a natural transformation ηε : id⇒ Tε given by ηε(a) : a→ a+ ε.
These observations are due to Bubenik and Scott [13]. This leads to the following
de�nition.

De�nition. A persistence module is a functor F : (I,≤) → Vect. For ε ≥ 0, an
ε-morphism φ : F

ε→ G is a natural transformation φ : F ⇒ G◦Tε. A morphism is a
0-morphism. An ε1-morphism and an ε2-morphism can be composed in the natural
way to yield a (ε1 + ε2)-morphism. An ε-interleaving is a pair (φ, ψ) of ε-morphisms
φ : F

ε→ G and ψ : F
ε→ G such that ψφ = Fη2ε and φψ = Gη2ε. We say F and G

are ε-interleaved, F ε∼ G.

We denote the corresponding functor category by Vect(I,≤). The notion of inter-
leaving distance also makes sense in the setting of persistence modules and is de�ned
by the analogous formula

dI(F,G) = inf{ε ∈ I ∩ [0,∞) | F ε∼ G}.

Note, however, that the in�mum is not necessarily attained in this case (see [18]).
A standard fact about persistence modules over I = Z is that they correspond

in a natural way to k[t]-modules. Let Modk[t] denote the category of modules over
k[t] (in a graded sense). Then, the following holds.

Theorem 2.9. The categories Vect(Z,≤) and Modk[t] are isomorphic.

Proof. Inverse functors Φ : Vect(Z,≤) → Modk[t] and Ψ : Modk[t] → Vect(Z,≤)

can be de�ned explicitly. On objects, these are de�ned as Φ(F ) =
⊕

j∈Z F (j) and
Ψ(M)(j) = M j. On morphisms, we have Φ(η) = (ηj)j∈Z and Ψ(f)j = fj, where
fj : M j → N j is the restriction of f to the j-th step of the �ltration.
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Note that this also holds for I = εZ, ε > 0. The correspondence between
persistence modules over I = Z and k[t]-modules was �rst noted in [64]. We use
this extensively in this paper. There is a similar correspondence between persistence
modules over I = R and modules over the monoid algebra over [0,∞), as noted by
Lesnick [47]. However, for our application, as we shall see, this is unnecessary.

In particular, we can show that each persistence module over R can be approxi-
mated by a persistence module over εZ up to ε. To make sense of this, �rst observe
that there is a natural inclusion functor iε : (εZ,≤) → (R,≤). This functor has a
left inverse pε : (R,≤)→ (εZ,≤) given by pε(a) = ba

ε
cε. Note that this left inverse

is not unique. In a sense, however, it is the most natural choice in our situation.
These two functors give rise to the (natural) restriction functor Iε : Vect(R,≤) →

Vect(εZ,≤) given by Iε(F ) = Fiε and an extension functor Pε : Vect(εZ,≤) →
Vect(R,≤) given by Pε(F ) = Fpε. Under our choice of pε, when de�ned, the per-
sistence diagrams of F : (εZ,≤) → Vect and Pε(F ) : (R,≤) → Vect agree as
multisets (except perhaps on the diagonal, depending on the convention used).

The functors Iε and Pε have various useful properties. Since pεiε = id, we have
IεPε = id. The composition PεIε is, in a certain sense, also not far from the identity.
Furthermore, Pε is an isometric embedding, and Iε is an almost isometry.

Proposition 2.10. Let F : (R,≤) → Vect be a persistence module. Then F and
PεIε(F ) are ε-interleaved.

Proof. An ε-interleaving (φ, ψ) is given by φx : F (x) → F (pε(x) + ε) and ψx :
F (pε(x)) → F (x + ε), given by the shifting morphisms φx = idpε(x)+ε−x and ψx =
idx+ε−pε(x).

Proposition 2.11. The functor Pε : Vect(εZ,≤) → Vect(R,≤) is an isometric em-
bedding.

Proof. Suppose F,G ∈ Vect(εZ,≤) and suppose F
η∼ G and let (φ, ψ) be the relevant

interleaving. Then, (φpε, ψpε) is an η-interleaving of Pε(F ) and Pε(G). This implies
that

dI(F,G) = min{η ∈ εN0 | F
η∼ G} ≥ inf{η ∈ [0,∞) | Pε(F )

η∼ Pε(G)}
= dI(Pε(F ), Pε(G)).

To prove the converse inequality, suppose Pε(F ) and Pε(G) are η-interleaved and let
(φ, ψ) be the interleaving. We claim that this implies F and G are pε(η)-interleaved.
To de�ne an interleaving, note that for k ∈ Z, φkε : F (kε) → G(pε(kε + η)) =
G(kε + pε(η)) and ψkε : G(kε) → F (pε(kε + η)) = F (kε + pε(η)), so the maps
φ̃kε = φkε and ψ̃kε = ψkε are components of a pε(η)-interleaving (φ̃, ψ̃), showing that
dI(F,G) ≤ dI(Pε(F ), Pε(G)).

Proposition 2.12. Given persistence modules F,G : (R,≤)→ Vect, we have

dI(F,G)− 2ε ≤ dI(Iε(F ), Iε(G)) ≤ dI(F,G) + ε.

Proof. Let A = {η ∈ εN0 | Iε(F )
η∼ Iε(G)} and B = {η ∈ [0,∞) | F η∼ G}. Note

that if two modules are η-interleaved, they are also θ-interleaved for all θ ≥ η, so
these sets are upward closed in εN0 and [0,∞), respectively. By de�nition, we have

dI(Iε(F ), Iε(G)) = minA and dI(F,G) = inf B.
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Suppose η ∈ B ∩ εN0 and let (φ, ψ) be the relevant η-interleaving. Then (φiε, ψiε)
is an η-interleaving of Iε(F ) and Iε(G). Therefore, B ∩ εN0 ⊆ A. Since B is upward
closed, this immediately implies inf B ≥ minA− ε and therefore

dI(Iε(F ), Iε(G)) ≤ dI(F,G) + ε.

The other inequality follows from Propositions 2.11 and 2.10:

dI(F,G) ≤ dI(F, Pε(Iε(F ))) + dI(Pε(Iε(F )), Pε(Iε(G))) + dI(Pε(Iε(G)), G)

≤ dI(Pε(Iε(F )), Pε(Iε(G))) + 2ε = dI(Iε(F ), Iε(G)) + 2ε.

These observations allow us to compare persistence modules over εZ and persis-
tence modules over R. Namely, since Pε is an isometric embedding, εZ-persistence
modules can be understood as a special case of R-persistence modules, namely those
satisfying the property F (a→ b) = id for any pair of points a ≤ b lying the same in-
terval [kε, (k + 1)ε). Therefore, we regard persistence modules F : (εZ,≤)→ Vect
and G : (R,≤) → Vect as ε-close if Pε(F ) and G are ε-interleaved. With this
understanding, we may state:

Corollary 2.13. For any ε > 0, any continuous-valued persistence module F : (R,≤
) → Vect can be ε-approximated by a k[t]-module Fε : (εZ,≤) → Vect, namely
Fε = Iε(F ).

We concern ourselves with strictly positive ε. The connection between discrete
and continuous parameter persistence was �rst exploited in the �rst algebraic per-
sistence stability result [16] and has been studied in [62]. The related notion of
observable structure was further introduced in [18]. In principle, this discretization
is technically unnecessary but desirable in algorithmic applications (see Discussion).

As mentioned at the end of the preceding section, we would like to compare the
persistence modules of a sublevel set �ltration and a lower star �ltration associated
to the same piecewise linear function f̂ . The functorial approach is fruitful here, as
the two �ltrations may also be regarded as functors Sf̂ : (R,≤) → (Top,⊆) and
Lf̂ : (R,≤)→ (SCx,⊆), respectively.

Let Hn denote the n-th simplicial homology functor and Hsn the n-th singular
homology functor. Note that these are related by Hn ∼= HsnG, where G : (SCx,⊆
)→ (Top,⊆) is the geometric realization functor.

Proposition 2.14. Suppose X is a simplicial complex and f̂ : |X| → R a piecewise
linear function (w.r.t. the triangulation). Then the persistence modules HsnSf̂ : (R,≤
)→ Vect and HnLf̂ : (R,≤)→ Vect are isomorphic.

Proof. There is a natural transformation η : G◦Lf̂ ⇒ Sf̂ given componentwise by the
inclusions |Xj| → |X|j. However, since |Xj| and |X|j are homotopy equivalent, the
components of the natural transformation Hsnη : HnLf̂ → HsnSf̂ are isomorphisms;
therefore, it is a natural isomorphism.

Another important fact about sublevel set �ltrations is that the persistent ho-
mologies associated to a pair of ε-close functions on the same space are ε-interleaved.
We recall a classical result.
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Proposition 2.15. Suppose Y is a topological space and f, g : Y → R are functions
satisfying ‖f − g‖∞ ≤ ε. Then the persistence modules H∗(Y, f) and H∗(Y, g) are
ε-interleaved.

Proof. For each x ∈ R, there are inclusions f−1(−∞, x] → g−1(−∞, x + ε] and
g−1(−∞, x]→ f−1(−∞, x+ ε]. Upon taking their homology, we obtain the desired
ε-interleaving.

Remark 2.6. This also holds for lower star �ltrations, with completely analogous
proof.

As we have seen, continuous persistence modules can be approximated by discrete
ones. For this reason, we mostly work with k[t]-modules in the remainder of the
paper. To avoid notational clutter, we also adopt the following convention.

Convention. Both ordinary and persistent homology are denoted by the same sym-
bol H∗. In case the �ltration is explicitly mentioned, as in H∗(X,F) or H∗(X, f), the
meaning is unambiguous. However, when suppressing the �ltration, H∗(X) could
in principle mean either the persistent homology of the �ltered simplicial complex
(X,F) or the ordinary homology of its underlying space X. Whenever X has the
structure of a �ltered simplicial complex, H∗(X) will always mean persistent homol-
ogy and H∗(X

j), with the �ltration step explicitly speci�ed (possibly j = ∞), will
always mean ordinary homology.

2.6 Spectral Sequences

In this section, we introduce the concept of a spectral sequence and examine its
various basic properties. Then, we focus our attention on the Mayer-Vietoris spectral
sequence which is the one most suitable for our needs. Many spectral sequences arise
from double complexes. A description of these spectral sequences can be found in
[57, Chapter 10] and [50]. Versions of the Mayer-Vietoris spectral sequence can also
be found in [11] and [12] among numerous others.

De�nition. A graded k[t]-module is a Z-indexed family M = M∗ = (Mp)p∈Z of
k[t]-modules.

De�nition. A (chain) complex of k[t]-modules is a pair (C, ∂) where C is a graded
k[t]-module and ∂ = (∂p)p∈Z is a family of morphisms ∂p : Cp → Cp−1 of k[t]-modules
such that ∂p−1∂p = 0 for each p ∈ Z.

It is often convenient to view a graded k[t]-module as a genuine k[t]-module by
identifying it with the direct sum of its components M ≡

⊕
p∈ZMp. The decompo-

sition is regarded as part of the structure. Similarly, we often view a chain complex
as a di�erential graded module, i.e. the k[t]-module C ≡

⊕
p∈Z Cp equipped with a

k[t]-module homomorphism ∂ such that ∂(Cp) ⊆ Cp−1 and ∂ ◦ ∂ = 0.

De�nition. A bigraded k[t]-module is a Z×Z-indexed familyM = M∗,∗ = (Mp,q)p,q∈Z
of k[t]-modules.

De�nition. A double complex (bicomplex) of k[t]-modules is a triple (M,∂0, ∂1)
where M is a bigraded k[t]-module and ∂0 = (∂0

p,q)p,q∈Z and ∂1 = (∂1
p,q)p,q∈Z are

two families of morphisms ∂0
p,q : Mp,q → Mp,q−1 and ∂1

p,q : Mp,q → Mp−1,q such that
∂0
p,q−1∂

0
p,q = 0, ∂1

p−1,q∂
1
p,q = 0 and ∂1

p,q−1∂
0
p,q + ∂0

p−1,q∂
1
p,q = 0 for p, q ∈ Z.
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Note that the notions of ε-morphisms and interleavings make sense for bigraded
modules and therefore for spectral sequences. We may de�ne them by components
and, in the case of double complexes, additionally assume that they commute with
both di�erentials.

As with graded modules and complexes, we often view bigraded k[t]-modules as
genuine k[t]-modules with additional structure, namely via the identi�cation M =⊕

p,q∈ZMp,q. We can also view M as a graded k[t]-module in (at least) two ways,
namely by summing over all p or by summing over all q. Using this view, a double
complex can be seen as a bigraded module M that is a di�erential module with
respect to ∂0 as well as with respect to ∂1, and the two structures are related by the
equation ∂0∂1 + ∂1∂0 = 0.

The relevance of this anticommutativity property is that combining the two dif-
ferentials by summing them also yields a di�erential ∂0 + ∂1. In fact, we may
equivalently work with commutative double complexes (M,∂0, ∂1) with the only dif-
ference that ∂0 and ∂1 commute instead of anticommute, i.e. ∂0∂1 = ∂1∂0. Note
that such M becomes an anticommutative double complex upon replacing ∂0 by
(−1)p∂0. The advantage of the anticommutative case is that we do not have to keep
track of signs in the combined di�erential.

E0
0,0

E0
0,1

E0
0,2

E0
0,3

E0
1,0

E0
1,1

E0
1,2

E0
1,3

E0
2,0

E0
2,1

E0
2,2

E0
2,3

E0
3,0

E0
3,1

E0
3,2

E0
3,3

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂1

∂0 ∂0 ∂0 ∂0

∂0 ∂0 ∂0 ∂0

∂0 ∂0 ∂0 ∂0

Figure 1: A double complex comes equipped with two di�erentials ∂0 and ∂1. Con-
sidering the antidiagonals, we also obtain a chain complex, called the total complex
with ∂0∂1 + ∂1∂0 = 0 by anticommutativity.

To each double complex, one may associate a total complex by summing over
the antidiagonals and combining the two boundary operators into a total boundary
operator. Note that the n-th antidiagonal is the direct sum of all entries in the
double complex such that p+ q = n. This leads to the following de�nition.

De�nition. LetM be a double complex. The total complex (Tot(M), D) associated
to M is the chain complex de�ned by Totn(M) =

⊕
p+q=nMp,q and D = ∂0 + ∂1.

Spectral sequences are a tool that allows us to compute the homology of this
total complex. This is a very common situation in practice. Suppose we are given a
chain complex (C, ∂) whose homology we would like to compute. It is often possible
to �nd a natural �ltration of such a complex. By taking successive quotients, one
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then obtains a double complexM , whose total complex is isomorphic to the original
chain complex. In particular, their homologies agree:

H∗(Tot(M), D) ∼= H∗(C, ∂).

The homology of such a complex (C, ∂) can therefore be computed systematically
using the associated spectral sequence. In fact, this is precisely what happens in
our case. The associated spectral sequence consists of pages, where each page Er,
r = 0, 1, . . ., is a di�erential bigraded module, computed successively by taking the
homology with respect to the di�erential on the previous page. On the r-th page,
the di�erential is given by

dr : Er
p,q → Er

p−r,q+r−1.

It may happen that there is a R such that for r > R all di�erentials beginning or
ending at Er

p,q are zero maps. In this case the (p, q)-th component stabilizes in the
sense that all these modules Er

p,q are isomorphic. If such a R exists for each pair
(p, q), the spectral sequence is said to converge and the stabilized modules Er

p,q are
denoted by E∞p,q. In this case, the bigraded module with components E∞p,q is called
the ∞-page of the spectral sequence. If EN = E∞ for some �nite N , the spectral
sequence is said to collapse on the N -th page.

Each successive page of the spectral sequence provides a successively better ap-
proximation of the homology of the total complex, so if the spectral sequence of a
double complex M converges, it is said to converge to H∗(Tot(M)). In practice, this
means that H∗(Tot(M)) can be reconstructed from the E∞ page. In particular, if
E∞ consists of free modules, Hn(Tot(M)) is isomorphic to

⊕
p+q=nE

∞
p,q. Generally,

however, the relation between H∗(Tot(M)) and E∞ is slightly more complicated. If
a spectral sequence converges to H∗(Tot(M)), then there exists a �ltration

Hp+q(Tot(M))0 ⊆ Hp+q(Tot(M))1 ⊆ . . . ⊆ Hp+q(Tot(M))p ⊆ . . . ⊆ H∗(Tot(M))
(1)

and the E∞ consists of successive quotients of various steps of the �ltration of
H∗(Tot(M)) arising from the structure of the double complex:

E∞p,q
∼=

Hp+q(Tot(M))p

Hp+q(Tot(M))p−1
.

Note that the p here denotes the position in the �ltration which coincides with the
column of the double complex. It is straightforward to check that in our case, the
spectral sequences are convergent.

Hence, reconstructing H∗(Tot(M)) up to isomorphism from E∞ in general re-
quires us to solve a series of extension problems over each antidiagonal p + q = n.
For our particular spectral sequence (an upper quadrant spectral sequence of a dou-
ble complex), it is known that the �ltration has two additional properties which
follow from the explicit description in the Appendix (see also [50]), namely

Hn(Tot(M))−1 = 0 and Hn(Tot(M))n = Hn(X).

The �rst three steps in a spectral sequence are shown in Figure 2. The spectral
sequence relevant to our needs is called the Mayer-Vietoris spectral sequence. It
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is a �rst quadrant spectral sequence, meaning that Er
p,q = 0 if either p < 0 or

q < 0. Note that �rst quadrant spectral sequences always converge, since eventually
all di�erentials beginning or ending at a particular (p, q) in the �rst quadrant will
point outside this quadrant. The Mayer-Vietoris spectral sequence is de�ned as the
spectral sequence of a particular double complex arising from a cover of the space
whose homology we are interested in.
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Figure 2: The di�erentials for the �rst three pages of the spectral sequence. In each
case, to compute the next page we take homology with respect to the di�erential on
the current page. We set d0 = ∂0 and d1 is the homomorphism induced by ∂1.

Now, suppose we are given a pair (X,U), where X is a �ltered simplicial complex
and U = (Ui,Fi)i∈Λ is a �ltered cover of X by subcomplexes. To any such pair,
we may associate a commutative double complex (E0, ∂0, ∂1) where the underlying
bigraded module is given by (recall that UI is given the �ltration FI)

E0
p,q =

⊕
|I|=p+1

Cq(UI)

and the boundary maps ∂0
p,q : E0

p,q → E0
p,q−1 and ∂1

p,q : E0
p,q → E0

p−1,q are de�ned on
the simplices by

∂0
p,q(σ, I) =

q∑
k=0

(−1)ktdeg(σ,I)−deg(σk,I)(σk, I)

and

∂1
p,q(σ, I) =

p∑
l=0

(−1)ltdeg(σ,I)−deg(σ,Il)(σ, Il).

These formulae require some explanation. To simplify things, we choose total order-
ings on the set V of vertices of X and the index set Λ of the cover U . Note that Λ
is the set of vertices of the nerve N of U . These total orders of V and Λ allow us to
speak unambiguously of �the k-th vertex of σ� and �l-th vertex of I.� The simplices
are denoted as pairs (σ, I) to distinguish between two copies of σ corresponding to
di�erent summands in E0

p,q. Each simplex σ = {v0, . . . , vq} ∈ UI has a birth time
deg(σ, I) in the �ltration of UI . As usual, σk := σ−{vk} are the faces of codimension
1 in σ. Since I = {i0, . . . , ip} is a p-simplex in the nerve, it also makes sense to think
of Il := I − {il} as the faces of codimension 1 in I.
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It is a standard fact that E0 is indeed a chain complex with respect to ∂0 and
∂1. Furthermore, ∂0 and ∂1 commute, since the �rst only operates on the chains of
X, whereas the second operates on the chains of the nerve N . Hence, replacing ∂0

by (−1)p∂0 yields a double complex. The spectral sequence (Er, dr) associated to
this double complex is called the Mayer-Vietoris spectral sequence of (X,U).

This double complex is designed so that its homology is precisely the homology
of (X,F), implying the following fact, which is the main reason for the importance
of the Mayer-Vietoris spectral sequence.

Theorem 2.16. The Mayer-Vietoris spectral sequence of (X,U) converges to H∗(X).

This result can be found in [48] and variations can be found in [11, 12, 38]. For
completeness, we include the idea of proof in the Appendix. The �rst page of the
Mayer-Vietoris spectral sequence can be expressed as follows. Note that d0 is simply
∂0, which acts on each summand as the simplicial boundary operator, therefore

E1
p,q =

⊕
|I|=p+1

Hq(UI). (2)

The boundary map d1 is induced by ∂1. Explicitly, representing homology classes
by cycles, we have:

d1
p,q

([
N∑
n=0

λnt
µnσn

]
, I

)
=

p∑
l=0

(−1)l

([
N∑
n=0

λnt
µn+deg(σn,I)−deg(σn,Il)σn

]
, Il

)
.

The only case we really need is q = 0. In this case, the explicit formula can be
simpli�ed and has the same form as that of ∂1

p,0, the only di�erence being that it is
de�ned on homology classes instead of simplices:

d1
p,0([v], I) =

p∑
l=0

(−1)ltdeg(v,I)−deg(v,Il)([v], Il).

In the case of induced covers (see Remark 2.4), the explicit formula of d1
p,q has the

same form as that of ∂1
p,q for all q. Computing E2 is also straightforward, simply

take the homology with respect to d1. The higher pages require us to compute the
higher di�erentials, which usually requires more work.

For illustrative purposes, we now prove the persistent nerves theorem of Sheehy
[60, Theorem 6] using spectral sequences. In [60], this is proved by using the persis-
tent nerve lemma of Chazal and Oudot [22, Lemma 3.4.]. Our proof also uses the
idea of Chazal and Oudot, namely the fact that the Mayer-Vietoris blowup complex
associated to (X,U) is homotopy equivalent to X is used to establish Theorem 2.16
(see Appendix). Our theorems are motivated by and can be thought of as a gen-
eralization of this proof (recall that H∗(·) denotes persistent homology). We begin
with a preliminary lemma.

Lemma 2.17. Suppose the chain complexes (C′, ∂′) and (C′′, ∂′′) are ε-interleaved
as chain complexes. Then their homologies H′∗ = H∗(C

′) and H′′∗ = H∗(C
′′) are

ε-interleaved as graded modules.

34



Proof. Let φ : C′ → C′′ and ψ : C′′ → C′ be the interleaving maps. Since (φ, ψ) is an
interleaving of chain complexes, φ and ψ preserve cycles and boundaries. Therefore,
the restrictions φZ : Z′ → Z′′ and ψZ : Z′′ → Z′ of the interleaving maps de�ne an
ε-interleaving (φZ, ψZ) of the cycle modules, and the restrictions φB : B′ → B′′ and
ψB : B′′ → B′ provide an ε-interleaving (φB, ψB) of the boundary modules. These
also descend to the level of quotients, i.e. we may de�ne an ε-interleaving (φH, ψH)
of H′∗ and H′′∗ by the formulae

φH([x]) = [φZ(x)] and ψH([x]) = [ψZ(x)].

It is readily veri�ed that these maps are well de�ned and provide the appropriate
interleaving.

This leads us immediately to the persistent nerves theorem. Here, the notion of
acyclicity is analogous to the usual one, i.e. each non-empty intersection has the
persistent homology of a point (see Section 6.1).

Theorem 2.18. Suppose X is a �ltered simplicial complex and U a persistently
acyclic �ltered cover of X. Then, H∗(X) ∼= H∗(N (U)).

Proof. We use the Mayer-Vietoris spectral sequence E associated to (X,U). Let
(C, ∂) be the simplicial chain complex of the nerve N of U . The boundary operator
is given by the explicit formula

∂p(I) =

p∑
l=0

(−1)ltdeg I−deg IlIl.

This has the same form as the boundary operators d1 in the bottom row of E1 and
∂1 in the bottom row of the double complex. In particular,

d1
p,0([v], I) =

p∑
l=0

(−1)ltdeg(v,I)−deg(v,Il)([v], Il).

In fact, (C, ∂) and (E1
∗,0, d

1
∗,0) are isomorphic as chain complexes, the inverse isomor-

phisms φp : E1
p,0 → Cp and ψp : Cp → E1

p,0 being given by

φp([v], I) = tdeg v−deg II and ψp(I) = ([vI ], I),

where we choose a vertex vI ∈ V with the property deg vI = deg I. Note that ψ is
well de�ned, because UI is acyclic: if v 6= vI is another vertex with deg v = deg I, it
belongs to the same homology class as vI . That φ and ψ are inverse to each other
follows by direct computation.

By Lemma 2.17, this implies that E2
∗,0
∼= H∗(N ). Using the fact that all UI are

acyclic, we have that E1
p,q = 0 for q > 0, so the higher di�erentials dr for r > 1 are

all trivial and therefore E2 ∼= E∞. As all modules above the bottom row are zero,
there are also no extension problems, so the conclusion follows.

In more detail, by Theorem 2.16, there is a �ltration (H∗(X)p)p∈Z, de�ned on
H∗(X), such that

E∞p,q
∼=

Hp+q(X)p

Hp+q(X)p−1
=

{
0; q 6= 0,

Hp+q(N ); q = 0.
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Therefore, applying the third isomorphism theorem to the modules Hn(X)p−1 ⊆
Hn(X)p ⊆ Hn(X)n for each p = 0, . . . , n−1 (see Equation (1)) and recalling the fact
that Hn(X)−1 = 0 and Hn(X)n = Hn(X), we have

Hn(X) ∼=
Hn(X)n

Hn(X)−1
∼= . . . ∼=

Hn(X)n

Hn(X)n−2
∼=

Hn(X)n

Hn(X)n−1
∼= E∞n,0

∼= Hn(N ),

as desired.

Figure 3: An example construction. On the left, we have a simplicial complex which
is covered by a cover with three elements. The corresponding nerve is shown below
it as it is a triangle. This is not an example of a good cover. The zeroth column of
the double complex consists of a direct sum of the subcomplexes which lie in each
individual element, the �rst column, the subcomplexes which lie in the pairwise in-
tersections and the �nally the second column contains the triple intersection. The
row index represents the dimension grading from the underlying complex, i.e. ver-
tices in the zeroth row, edges in the �rst row and triangles in the second. Note that
the total complex has potentially multiple copies of a simplex and is much larger
than the original complex.
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3 Computing the Unimodal Category

Given a function f : X → [0,∞), the most basic question we are interested in
is how to compute its unimodal category ucat(f). This has been answered for
functions f : R → [0,∞) with �nitely many critical points by Baryshnikov and
Ghrist [4, Theorem 11], using a simple sweeping algorithm. We show that this
sweeping algorithm can be seen as arising from the Jordan decomposition theorem
for functions of bounded variation. This gives a complete answer to the question in
the case of X = R. We can use the same idea to answer the question when X = S1.

3.1 Real Line and Intervals

We show that the method to obtain a minimal unimodal decomposition for a com-
pactly supported continuous function f : R→ [0,∞) described in [4] in the case of
�nitely many critical points actually works for an arbitrary f : R → [0,∞). First,
observe that the problem is only interesting for functions of bounded variation:

Proposition 3.1. Suppose f : R → [0,∞) has a unimodal decomposition f =∑n
i=1 ui. Then f is of bounded variation on each interval [a, b] ⊆ R.

Proof. Let [a, b] be an arbitrary interval. Then

V (f ; [a, b]) = V

(
n∑
i=1

ui; [a, b]

)
≤

n∑
i=1

V (ui; [a, b]) <∞,

since unimodal functions are of bounded variation.

Remark 3.1. This also holds if the function only has a locally �nite decomposition
into unimodal summands, even though we may have ucat(f) =∞. An example of
this kind is given by f(x) = 1 + sinx. Note, however, that the converse of the above
statement is not true even if f is compactly supported. Consider for instance

f(x) =

{
x2(1 + sin π

x
); x ∈ [−2

5
, 2

3
],

0; otherwise,

which is compactly supported, has bounded variation, but ucat(f) = ∞ as the
support of any unimodal function u ≤ f must be contained between two zeros of
f . For a complete characterization of functions f : R→ [0,∞) with �nite unimodal
category, see Theorem 3.7 below.

We may therefore restrict our attention to functions of bounded variation:

Convention. In Section 3.1, in addition to continuity, we shall also assume that all
functions f : R → [0,∞) are of bounded variation (but not necessarily compactly
supported).

Remark 3.2. The fact that unimodal functions have bounded variation is speci�c to
R. It is not di�cult to construct a unimodal function u : R2 → [0,∞) which does
not have bounded variation. Take any di�erentiable function f : (0, 1) → R whose
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total variation is unbounded and 0 ≤ f(x) ≤ 1 for all x. Further assume that the
limits limx→0 f(x) and limx→1 f(x) exist. For instance, one might take

f(x) = x(1 + sin π
x
).

De�ne u : [0, 1]× [0, 1]→ [0,∞) on (0, 1)× (0, 1) by

u(x, t) = tf(x) + (1− t)

and by its unique continuous extension elsewhere. This is a unimodal function but
does not have bounded variation. Recall that the total variation of a di�erentiable
function can be computed as the integral of the norm of its gradient:

V (u; [0, 1]× [0, 1]) =

∫ 1

0

∫ 1

0

√
u2
x + u2

tdxdt

≥
∫ 1

0

∫ 1

0

|ux|dxdt

=

∫ 1

0

tdt

∫ 1

0

|f ′(x)|dx

= 1
2
V (f ; (0, 1)) =∞.

If desired, any such function u can also be continuously extended to a compactly
supported unimodal function u : R2 → [0,∞). (This can be shown, for instance, by
using Lemma 5.2 and the fact that ucat(f) is invariant under homeomorphisms of
the domain.)

To see that the method of Ghrist and Baryshnikov generalizes, we �rst suitably
modify Proposition 10 of [4]. First, recall De�nition 7 of [4]:

De�nition. Let D = (ui)
n
i=1 be a unimodal decomposition of f : R → [0,∞). An

open interval (x, y) is D-max-free if it contains no local maxima of any of ui.

In [4], the authors only use this concept for intervals bounded by local minima
of f . However, it is more generally applicable:

Proposition 3.2. If an arbitrary open interval (x, y) is D-max-free, where D =
(ui)

n
i=1 is a unimodal decomposition of f : R→ [0,∞), then

V −(f ; (x, y)) ≤ f(x).

Proof. The idea is the same as in [4]:

V −(f ; (x, y)) ≤
n∑
i=1

V −(ui; (x, y)) =
n∑
i=1

max{0, ui(x)− ui(y)} ≤
n∑
i=1

ui(x) = f(x),

where the �rst equality uses the max-free condition.

So, the concept of forced-max interval from [4] makes sense even if the interval
is not bounded by local minima:
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De�nition. An interval (x, y) is called forced-max (with respect to f) if

V −(f ; (x, y)) > f(x).

In addition to this, we will call an interval (x, y) almost forced-max if (x, y + δ)
is forced-max for each δ > 0. If f : R → [0,∞) is compactly supported, we de�ne
M(f) to be the maximum number of pairwise disjoint open intervals that are forced-
max with respect to f , and M̃(f) to be the maximum number of pairwise disjoint
open intervals that are almost forced-max with respect to f . (It is important to use
open intervals here, as closed intervals with the same endpoints could intersect.)

More precisely, we should separate two cases here: if there is a �nite bound to
the number of such intervals, the maximum indeed exists and can be realized by a
collection of such intervals; however, if there is no upper bound, this does not by
itself imply the existence of an in�nite collection of such intervals. We resolve this
issue in Proposition 3.3, where we show that such a collection does indeed always
exist.

The observation from [4] that (almost) forced-max intervals form an ideal in the
sense that an interval containing an (almost) forced-max interval is itself (almost)
forced-max, remains valid in this context. We now show that the numbers M(f)

and M̃(f) always agree. For this reason we only speak of M(f) in the rest of the
text.

Proposition 3.3. If f : R→ [0,∞) is a compactly supported function, we have

M̃(f) = M(f).

Proof. The inequality M̃(f) ≥ M(f) trivially follows from the de�nitions. It re-
mains to show that M̃(f) ≤ M(f). We do this by an inductive construction.
Suppose (x0, y0), ..., (xn−1, yn−1) is an arbitrary family of pairwise disjoint almost
forced-max intervals. We may assume without loss of generality that x0 < x1 <
. . . < xn := yn−1 and that yi = xi+1 for i = 1, . . . , n − 1 and x0 = inf supp f ,
xn = sup supp f . We claim that it is possible to choose δ1, . . . , δn−1 > 0 such that
the intervals (x0, x1 + δ1), (x1 + δ1, x2 + δ2), . . . , (xn−1 + δn−1, xn) are forced-max and
clearly these are still disjoint.

We prove this by induction from n downwards. For the base case, we do not
actually change anything, we just note that (xn−1, xn) is already forced-max. This
is because V −(f ; [xn−1, xn]) = V −(f ; [xn−1, xn + δ]), since f is zero on [xn,∞).
Assuming that δk, . . ., δn−1 (possibly none of them in the case k = n) have already
been chosen such that (xk−1, xk+δk), . . . , (xn−1+δn−1, xn) are forced-max, we observe
that since V −(f ; [xk−1, xk+δk]) > f(xk−1) and f is continuous, a δk−1 > 0 exists such
that V −(f ; [xk−1 + δk−1, xk + δk]) > f(xk−1 + δk−1). The interval (xk−2, xk−1 + δk−1)
thus becomes genuinely forced-max.

Furthermore, Theorem 11 in [4] states that ucat(f) = M(f) for functions that
are nice enough. This can be also generalized to our context. In fact, we are going to
explicitly construct a unimodal decomposition of f . This is achieved by a recursive
construction, which generalizes the sweeping algorithm from [4]. For convenience,
we �rst construct a minimal unimodal decomposition in the compactly supported
case. The general case is then treated in Proposition 3.8 below.
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Theorem 3.4. If f : R→ [0,∞) is compactly supported, then

ucat(f) = M(f)

holds. If M(f) = n < ∞, then an explicit minimal unimodal decomposition (ui)
n
i=1

is obtained by the following procedure. First, extend f to R = [−∞,∞] and de�ne
g, h : R→ [0,∞) by

g(x) = V +(f ; (−∞, x]) and h(x) = V −(f ; (−∞, x]).

Recursively de�ne a �nite sequence6 (xi)
n
i=0:

x0 = −∞,
xi = inf{x | V −(f ; (xi−1, x)) > f(xi−1)}, i = 1, . . . , n,

xn+1 =∞.

Finally, de�ne ui : R→ [0,∞) by

ui(x) =


0; x ≤ xi−1,

g(x)− g(xi−1); x ∈ [xi−1, xi],

h(xi+1)− h(x); x ∈ [xi, xi+1],

0; x ≥ xi+1.

Proof. The inequality ucat(f) ≥ M(f) follows directly from the de�nitions. This
is because given any unimodal decomposition of f , each forced-max interval must
contain a local maximum of some unimodal summand in this decomposition, hence
there are at least as many summands as there are disjoint forced-max intervals. In
particular, if M(f) =∞, we immediately have ucat(f) =∞.

Now, assume M(f) <∞ and let M(f) = n ∈ N0. Note that f = g− h and that
g and h are increasing functions. This latter fact implies that each function ui is
increasing on (−∞, xi] and decreasing on [xi,∞) and therefore unimodal.

To see that the functions ui are well de�ned, we have to show that g(xi) −
g(xi−1) = h(xi+1)− h(xi) holds for 1 ≤ i ≤ n. In fact, we can show more, i.e. that
g(xi−1) = h(xi). First, observe that V −(f ; [xi−1, xi]) = f(xi−1). If xi < ∞, this is
true by de�nition of xi, since (xi−1, xi + δ) is forced-max if δ > 0 and is not forced-
max if δ < 0. If xi =∞, this is trivial in the case xi−1 =∞, otherwise it follows by
the de�nition of xi that (xi−1, xi) is not forced-max, so V −(f ; [xi−1, xi]) ≤ f(xi−1),
and V −(f ; [xi−1, xi]) ≥ f(xi−1) − f(xi) = f(xi−1) is true by de�nition of V −. We
therefore have:

g(xi−1) = V +(f ; (−∞, xi−1])

= f(xi−1) + V −(f ; (−∞, xi−1])

= V −(f ; [xi−1, xi]) + V −(f ; (−∞, xi−1])

= V −(f ; (−∞, xi])
= h(xi).

6We use the standard convention that inf ∅ =∞ and (a, b) = ∅ if a ≥ b.
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This establishes that the functions ui are well de�ned. Clearly, they are also uni-
modal. Finally, we also have f =

∑n
i=1 ui. To see this, observe that for x ∈ [xi−1, xi],

we have:
n∑
i=1

ui(x) = g(x)− g(xi−1) + h(xi)− h(x) = f(x).

This concludes the proof.

A corollary of this is that in the caseM(f) =∞, we can actually �nd an in�nite
set of pairwise disjoint almost forced-max intervals.

Corollary 3.5. Suppose f : R → [0,∞) is compactly supported. If M(f) = ∞,
there is an in�nite set of disjoint almost forced-max intervals with respect to f .

Proof. The fact that M(f) =∞ implies that the recursively de�ned sequence

x0 = −∞,
xi = inf{x | V −(f ; (xi−1, x)) > f(xi−1)}, i ∈ N

is strictly increasing (otherwise, using the theorem we would have a �nite unimodal
decomposition). This gives us in�nitely many almost-forced max intervals.

From the explicit construction above, it also follows that a function with �nite
unimodal category must be well-behaved near the boundary of its support:

Corollary 3.6. Suppose f : R→ [0,∞) has �nite unimodal category and supp f =
[a, b] ⊆ R. Then there is an ε > 0 such that f is increasing on [a, a+ε] and decreasing
on [b− ε, b].

This allows us to completely characterize the functions with �nite unimodal
category.

Theorem 3.7. A compactly supported function f : R→ [0,∞) has �nite unimodal
category if and only if:

• f−1(0,∞) =
⋃m
j=1(aj, bj) for some −∞ ≤ a1 < b1 ≤ a2 < b2 ≤ . . . ≤ am <

bn ≤ ∞, and

• there is an ε > 0 such that f is increasing on [aj, aj + ε] and decreasing on
[bj − ε, bj] for each j = 1, . . . ,m.

Proof. The forward implication is obvious from Theorem 3.4 and Corollary 3.5. Con-
versely, suppose the two bullet points are satis�ed. We can decompose f uniquely
as f =

∑m
j=1 fj, where fj is supported in the interval [aj, bj]. It su�ces to show

that each of these functions fj has a �nite unimodal decomposition, so without loss
of generality, we can assume that m = 1 and f1 = f . Let a = a1 and b = b1. We
can assume that ε is small enough so that the interval [a + ε, b − ε] is nonempty.
This interval is also compact, so f achieves a minimum on it, say f(x) ≥ η > 0 for
all x ∈ [a + ε, b − ε]. Since f is of bounded variation, there is a q ∈ N such that
V −(f ; [a+ε, b−ε]) < qη. This allows us to show that f has �nite unimodal category.
Suppose (x1, y1), . . . , (xk, yk) is a set of disjoint intervals. At most one of these inter-
vals can contain the point a+ ε and at most one of them can contain the point b+ ε.
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Therefore, all the other intervals are contained in one of the intervals (−∞, a + ε),
(a + ε, b − ε), (b − ε,∞). Now observe that any interval (x, y) ⊆ (−∞, a + ε) or
(x, y) ⊆ (b − ε,∞) cannot be forced-max (since f is increasing on the �rst interval
and decreasing on the second one). On the other hand, among the aforementioned
intervals, there are less than q disjoint forced-max intervals (x′l, y

′
l) ⊆ (a + ε, b− ε),

otherwise we would have:

V −(f ; (x, y)) ≥
q∑
l=1

V −(f ; (x′l, y
′
l)) >

q∑
l=1

f(x′l) ≥ qη,

which is not the case. Therefore f has at most q + 2 forced-max intervals and the
proof is complete.

Example. To illustrate the theorems on a function with an in�nite set of local
maxima, let C ⊆ [0, 1] be the usual middle-thirds Cantor set and de�ne

f(x) = max{0, 1
2
− d(x,C)}.

-1.0 -0.5 0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4
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Observe that f−1(0,∞) = (−1
2
, 3

2
) and that f is increasing on [−1

2
, 0] and decreasing

on [1, 3
2
]. This already implies that f has �nite unimodal category. In fact, using

the explicit construction of Theorem 3.4, we can show that ucat(f) = 2. To see
this, observe that (−∞, x) is forced-max if and only if x > 0, so in the construction,
we must take x1 = 0. Next, observe that

V −(f ; (0, 1)) =
1

6
+

2

3× 6
+

4

32 × 6
+ . . . =

1

2
.

Since f is strictly decreasing on [1, 3
2
], for any x > 1, we have V −(f ; (0, x)) > 1

2
.

Therefore, we must take x2 = 1. Finally, (1,∞) is not forced-max. Hence, the
decomposition obtained by sweeping has precisely two unimodal summands u1 and
u2. These can be graphed as follows:
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The construction used in the theorem has a nice geometric interpretation:

• Plot the positive variation g and the negative variation h.

• Draw a broken line, as follows. For each i ∈ {1, 2, . . . , n}, draw a horizon-
tal segment (or in�nite ray) from (xi−1, g(xi−1)) to (xi, h(xi)) and a vertical
segment from (xi, h(xi)) to (xi, g(xi)). Conclude with a horizontal ray from
(xn, h(xn)) to (xn+1, g(xn+1)).

• This divides the area between g and h into 2n pieces. For each i = 1, . . . , n,
there are two pieces between the (i− 1)-th and the i-th horizontal line (where
the line at the bottom is indexed by 0), and they are divided by a vertical line.
Flipping the second piece and translating both pieces downward so that their
bottom edge is on the x-axis yields a set bounded by two curves: the x-axis
and the graph of ui.

Note that in the second step, the horizontal segment drawn for each i is the longest
horizontal segment beginning at the endpoint of the (i− 1)-th vertical segment that
does not cross the graph of h. Similarly, each vertical segment is the longest vertical
segment beginning at the given point that does not cross the graph of g. In the
given example, the �rst two steps are pictured as follows:

-1.0 -0.5 0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

The third step consists of assembling the �rst two pieces to obtain u1 and the second
two pieces to obtain u2, whose graphs are pictured above. (The orange pieces are
�ipped in the process.)

Now we turn to functions f : J → [0,∞), where J ⊆ R is an interval. In this
case, we de�ne M(f) as the maximum number of forced-max intervals contained in
J . Note that again, this agrees with the maximum number of almost forced-max
intervals M̃(f). The proof is the same as for Proposition 3.3, but note that the
notion of �almost forced-max� depends on the ambient, as the enlarged intervals
must be contained in J . The construction of Theorem 3.4 can be used to construct
a minimal unimodal decomposition7 of f . Using an appropriate homeomorphism h,
�rst map this interval to an interval with endpoints 0 and 1 (note that this does
not a�ect unimodality and hence does not change ucat). Now, since f ◦ h−1 is

7This actually allows us to compute ucat(f) of f : X → [0,∞) for any set X ⊆ R: if f−1(0,∞)
has in�nitely many components, ucat(f) is in�nite, otherwise f−1(0,∞) is a �nite union of inter-

vals, each of which can be treated separately.
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of bounded variation, it has limits at 0 and 1, so we may extend it uniquely to a
function f̄ : [0, 1]→ R. Finally, we can extend this function to f̂ : R→ [0,∞) by

f̂(x) =


(x+ 1)f̄(0); x ∈ [−1, 0],

f̄(x); x ∈ [0, 1],

(2− x)f̄(1); x ∈ [1, 2],

0; x /∈ [−1, 2].

(3)

We claim that using the construction of Theorem 3.4 on f̂ gives us a minimal
unimodal decomposition of f :

Proposition 3.8. Let J ⊆ R be an interval and f : J → [0,∞) a function. Then

ucat(f) = ucat(f̂),

where f̂ is as de�ned in Equation (3). A minimal unimodal decomposition of f is
obtained by using the construction of Theorem 3.4 on f̂ , restricting the obtained
unimodal summands to h(J) and composing with h.

Furthermore, we either have M(f̂ |(−∞,1]) = M(f̂) − 1 or M(f̂ |(−∞,1]) = M(f̂).
The last summand (i.e. the one whose maximum appears at the largest x) in this
minimal unimodal decomposition of f is increasing if and only if M(f̂ |(−∞,1]) =

M(f̂)− 1.

Proof. Restriction of a unimodal function to an interval is still unimodal, therefore
ucat(f) ≤ ucat(f̂). Conversely, suppose u1, . . . , un is a unimodal decomposition of
f . Then construct ûi from ui using the same procedure used to construct f̂ from
f . This yields a unimodal decomposition of f̂ , so ucat(f) ≥ ucat(f̂). Note that
the output of the �sweeping algorithm� for f on [0, 1] does not depend on left-most
interval where the input function f̂ increases, so we can sweep directly over [0, 1].
(The reader is warned that M(f) = ucat(f) may no longer be true in this case.)

Next we establish the bounds for M(f̂ |(−∞,1]). It is clear that M(f̂ |(−∞,1]) ≤
M(f̂).

In the other direction, let (x1, y1), . . . , (xn, yn) be a sequence of forced-max inter-
vals that realizes M(f̂), ordered by the size of the endpoints. Observe that xn < 1,
otherwise (1, 2) would be a forced-max interval, which cannot be the case, since f̂
is decreasing there. Therefore (x1, y1), . . . , (xn−1, yn−1) are forced-max intervals for
f̂ |(−∞,1]. This proves that M(f̂ |(−∞,1]) ≥M(f̂)− 1.

Now, let u1, u2, . . . , un be the decomposition of f̂ obtained by sweeping, where
the summands are ordered as in the construction, and suppose un|(−∞,1] is increasing.
Then ucat(f̂) = M(f̂) = n. We claim that M(f̂ |(−∞,1]) = n − 1. Suppose that
this does not hold. Then there are forced-max intervals (x1, y1), . . . , (xn, yn) for
f̂ |(−∞,1]. By Proposition 3.2 this means that for each unimodal decomposition of
f̂ |(−∞,1] and for each i, there is a summand that achieves its maximum in (xi, yi).
This contradicts the fact that un|(−∞,1] is increasing.

Conversely, suppose that M(f̂ |(−∞,1]) = n − 1. De�ne x0, x1, . . . , xn+1 as in
Theorem 3.4. The intervals (x0, x1), . . . , (xn−1, xn) are then almost forced-max with
respect to f̂ . Since there are n of them, at least one is not almost-forced max with
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respect to f̂ |(−∞,1]. In fact, this is true for any interval whose closure intersects
[1,∞). Therefore, (xn−1, xn) is not almost-forced max with respect to f̂ |(−∞,1].
Furthermore, there is at most one such interval, since ucat(f) = n. We can conclude
that xn−1 < 1 ≤ xn. Now, simply recall that un is increasing on (xn−1, xn) by
construction, and the proof is complete.

The following property of unimodal decompositions is sometimes useful.

Proposition 3.9. Suppose f : [0, 1] → [0,∞), ucat(f) ≥ 2 and u1, . . . , un is the
unimodal decomposition obtained by sweeping. Then u1(1) = . . . = un−2(1) = 0
and there exist unimodal functions u′n−1 and u′n such that u1, . . . , un−2, u

′
n−1, u

′
n is a

unimodal decomposition of f and u′n−1(1) = 0. Let

a = max{x | un−1|[0,x] is increasing}.

It is possible to choose u′n−1 so that it only di�ers from un−1 in the interval (a, 1]
and if un was increasing, u′n is again increasing.8

Proof. The fact that u1(1) = . . . = un−2(1) = 0 follows directly from the construc-
tion in the proof of Theorem 3.4. Let c := un−1(1) and let m = un−1(a). If c = 0,
there is nothing to do, so we shall assume that c > 0. The sweeping construction
then implies that un is increasing. It also implies that c < m, so for x ∈ [a, 1] we
may de�ne

u′n−1(x) = m
un−1(x)− c
m− c

and

u′n(x) = un(x) + c
m− un−1(x)

m− c
.

Note that u′n−1(1) = 0, u′n−1(a) = m and since un−1 ≤ m, we also have u′n−1 ≤ un−1

and u′n−1 is decreasing in [a, 1]. Therefore, u′n−1 is unimodal. The function u′n is
de�ned as the sum of two increasing functions, so it is also unimodal. This completes
the proof.

3.2 Circle

As in the previous section, we are only interested in functions f : S1 → [0,∞) that
are continuous and of bounded variation, in the sense that the function [0, 1] →
[0,∞) de�ned by t 7→ f(exp(2πit)) has bounded variation. Note that this is again a
necessary condition for �niteness of ucat. If f has a zero, the problem immediately
reduces to the case ofX = R, so we only deal with functions without zeros. Note that
this already implies ucat(f) ≥ gcat(S1) = 2. We now introduce some notations.

Notation. Suppose a ∈ S1. In the rest of this section, φ+
a : [0, 1]→ S1 is de�ned by

φ+
a (t) = a exp(2πit) and φ−a : [0, 1] → S1 by φ−a (t) = a exp(−2πit). We also de�ne
f+
a = f ◦ φ+

a and f−a = f ◦ φ−a . If g : [0, 1] → [0,∞) is any function, its extension
ĝ : R → [0,∞) is de�ned as in Equation (3). For easier readability we sometimes
omit the + sign and e.g. write fa instead of f+

a .

8Note that un is automatically increasing if un−1(1) 6= 0.
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We are also going to make use of the following numbers associated to f :

M+
a (f) = M(f̂+

a |(−∞,1]), M+(f) = min
a∈S1

M+
a (f),

M−
a (f) = M(f̂−a |(−∞,1]), M−(f) = min

a∈S1
M−

a (f).

We proceed to prove a lemma.

Lemma 3.10. Suppose f : S1 → [0,∞) has no zeros and ucat(f) = n. Then it is
possible to choose a ∈ S1 so that ucat(fa) ≤ ucat(f)+1. Furthermore, fa admits a
unimodal decomposition u1, . . . , un+1 where u1 is decreasing and un+1 is increasing.

Proof. Let v1, . . . , vn be a minimal unimodal decomposition of f and choose a ∈ S1

such that v1(x) ≤ v1(a) holds for all x ∈ S1. De�ne functions ṽi : [0, 1] → [0,∞)
by ṽi = vi ◦ φa. By unimodality, each �open support� ṽ−1

i (0,∞) has either one or
two components. Reorder the indices i > 1 and choose k so that the open supports
of ṽ1, . . . , ṽk have two components and the open supports of ṽk+1, . . . , ṽn have one
component.

Each ṽi for 1 ≤ i ≤ k can uniquely be split as a sum of two unimodal functions
ṽi = ṽ

(1)
i + ṽ

(2)
i so that 0 ∈ supp ṽ

(1)
i and 1 ∈ supp ṽ

(2)
i . By unimodality, for each

i either ṽ(1)
i is decreasing or ṽ(2)

i is increasing and by our choice of a both of these
hold for i = 1. After possibly reordering the indices i ∈ {2, . . . , k} again, we can
choose an l such that ṽ(1)

i is decreasing for i = 2, ..., l and ṽ
(2)
i is increasing for

i = l + 1, . . . , k. (For i = 1, both of these hold.)
For i = 1, . . . , n+ 1, we may therefore de�ne ui : [0, 1]→ [0,∞) as follows:

ui =



∑l
i=1 ṽ

(1)
i ; for i = 1,

ṽ
(2)
i ; for i = 2, . . . , l,

ṽ
(1)
i ; for i = l + 1, . . . , k,

ṽi; for i = k + 1, . . . , n,

ṽ
(2)
1 +

∑k
i=l+1 ṽ

(2)
i ; for i = n+ 1.

The function u1 is decreasing since it is the sum of a sequence of decreasing functions
and un+1 is increasing since it is the sum of a sequence of increasing functions. The
unimodality of the other functions is clear.

Proposition 3.11. Suppose f : S1 → [0,∞) has no zeros and ucat(fa) = 2 for
some a ∈ S1. Then ucat(f) = 2.

Proof. Suppose fa = u1 + u2 is the unimodal decomposition obtained by sweeping.
Using Proposition 3.9, we can modify it so that u1(1) = 0. If u1 is increasing on
some small interval [0, ε], let

v(x) = max{0, (1− x
ε
)fa(0)}

and de�ne functions ũ1, ũ2 : S1 → [0,∞) by ũ1 ◦ φa = u1 − v and ũ1 + ũ2 = f . It
can be directly veri�ed that these are unimodal. An entirely analogous construction
works if u2 is decreasing on some interval [1− ε, 1].
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Finally, if u1 is decreasing everywhere and u2 is increasing, choose a point x0

such that u1(x0) = u2(x0) and de�ne

u(x) =

{
2u2(x); x ≤ x0,

2u1(x); x ≥ x0.

De�ne functions ũ1, ũ2 : S1 → [0,∞) by ũ1 ◦ φa = u and ũ1 + ũ2 = f . A direct
veri�cation shows that these are unimodal.

This allows us to characterize ucat(f) in the following way.

Theorem 3.12. The unimodal category of f : S1 → [0,∞) without zeros is charac-
terized as follows:

ucat(f) = max{2,M+(f)} = max{2,M−(f)}.

Proof. Clearly, ucat(f) ≥ gcat(S1) = 2, since f has no zeros. Notice that is su�ces
to prove the �rst equality. The second equality then follows by a simple observation
that composing f with a re�ection of the circle does not a�ect the unimodal category,
since a re�ection is a homeomorphism.

Next, we show that M+(f) ≤ ucat(f) =: n. By Lemma 3.10, there is a point
a ∈ S1 and a unimodal decomposition fa =

∑n+1
i=1 ui such that un+1 is increasing.

By Proposition 3.8 this means that M+
a (f) ≤ n, which proves M+(f) ≤ ucat(f).

Note that this already completes the proof in the case ucat(f) = 2. We may
therefore assume that n = ucat(f) ≥ 3, in which case it remains to establish that
ucat(f) ≤ M+(f). By the de�nition of M+(f), it su�ces to show that ucat(f) ≤
M+

a (f) holds for all a ∈ S1. So let a ∈ S1. By Proposition 3.8, M+
a (f) is either

ucat(fa) or ucat(fa)− 1.
Case 1: M+

a (f) = ucat(fa). In this case, it is su�cient to see that ucat(fa) ≥ n.
Suppose that this does not hold. Then the sweeping algorithm returns a unimodal
decomposition of fa with k < n summands and by Proposition 3.9 we may modify
the last two so that ui(1) = 0 for i < k, which also implies uk(1) = u1(0). If k = 2,
Proposition 3.11 yields a contradiction. Otherwise note that for i = 2, . . . , k− 1, we
have u−1

i (0,∞) ⊆ (0, 1), so these summands may be transported to S1 by de�ning
ũi ◦ φa = ui. Since k > 2, the sets u−1

1 (0,∞) and u−1
k (0,∞) are disjoint. The

summands u1 and uk may be glued together, i.e. we may de�ne g : S1 → [0,∞)
by g ◦ φa = u1 + uk. If g is unimodal, we have ucat(f) ≤ k − 1, a contradiction.
If not, there exist B > A > 0 such that for x > B, g−1[x,∞) is empty, for x ∈
(A,B] it has two contractible components and for x ∈ (0, A] it has one contractible
component. This implies that ucat(g) = 2 and therefore ucat(f) ≤ k, which is
again a contradiction.

Case 2: M+
a (f) = ucat(fa) − 1. By Proposition 3.8, this means that fa has

a unimodal decomposition into k = ucat(fa) summands u1, . . . , uk such that uk is
increasing. It is su�cient to prove that k ≥ n+ 1. Suppose not: then k < n+ 1. If
k = 2, we have ucat(f) = 2 by Proposition 3.11, so we may assume that k ≥ 3. By
Proposition 3.9, we may again modify the last two summands so that uk−1(1) = 0.
This allows us to use the same construction as in Case 1: de�ne ũi by ũi ◦ φa = ui
for i = 2, . . . , k − 1 and ũ1 ◦ φa = u1 + uk. Since uk is increasing, ũ1 is unimodal by
de�nition. But this implies that ucat(f) ≤ k−1 < n, yet another contradiction.
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Remark 3.3. As a consequence of this proof we can see thatM+
a (f) can be computed

in a greedy manner as in Theorem 3.4, i.e. by recursively de�ning

x0 = −∞,
xi = inf{x | V −(f̂a; (xi−1, x)) > f̂a(xi−1)}, i ∈ N,

however, in this case, we must stop once xi exceeds 1.

3.2.1 Algorithm in the Case of Finitely Many Critical Points

One possible interpretation of these results is that ucat(f) of f : S1 → [0,∞) can be
computed by sweeping if we know where to start. In general, it is not entirely clear
how to �nd the starting point. However, if the function only has �nitely many critical
points, it su�ces to check these critical points. Therefore the unimodal category
of any such function can be computed in a completely algorithmic manner. This is
justi�ed by the following result which shows that M+

a (f) achieves its minimum at a
critical point. An explicit description of the algorithm is available in Appendix B.

For convenience we introduce some further notation. If a, a′ ∈ S1 let [a, a′] denote
the closed arc between a and a′, i.e. the set of points obtained by starting at a and
traversing the circle in the positive direction until reaching a′. Let (a, a′), (a, a′] and
[a, a′) denote the corresponding open and half-open arcs.

Proposition 3.13. Suppose f : S1 → [0,∞) is a function and a1, a2 ∈ S1 are points
such that (a1, a2) does not contain a critical point of f . Then

M+
a1

(f) ≤M+
a (f)

for all a ∈ (a1, a2).

Proof. Let 0 ≤ t1 < t < t2 ≤ 1, a1 = exp(2πit1), a2 = exp(2πit2) and a = exp(2πit).
Also let t′ = t− t1. SupposeM+

a1
(f) = n and let (−∞, x1), (x1, x2), . . . , (xn−1, xn) be

a collection of forced-max intervals for f̂a1|(−∞,1]. There are now two cases to treat.
Case 1: f̂a1 is increasing on [0, t′]. In this case, we have x1 ≥ t′ and the intervals

(−∞, x1 − t′), (x1 − t′, x2 − t′), . . . , (xn−1 − t′, xn − t′) is obviously a collection of
forced-max intervals for f̂a|(−∞,1], so M+

a (f) ≥ n.
Case 2: f̂a1 is decreasing on [0, t′]. Without loss of generality, we can assume

f̂a1 is non-constant on [0, t′], otherwise the �rst case applies. We also have t′ ≤ x2.
Without loss of generality we can further assume that x1 ≤ t′. (If this is not the case,
we can replace x1 by x := min{x1, t

′}. Upon doing this, (−∞, x) is still forced-max,
because f̂a1 is decreasing on [0, t′], and (x, x2) is forced-max because forced-max
intervals form an ideal.) There is an ε > 0 such that f̂a1 is still decreasing on
[0, t′ + ε]. The intervals (−∞, ε), (ε, x2 − t′), (x2 − t′, x3 − t′), . . . , (xn−1 − t′, xn − t′)
are a collection of forced-max intervals for f̂a|(−∞,1], so M+

a (f) ≥ n. For (ε, x2 − t′),
this is true because the interval (t′ + ε, x2) is still forced-max for f̂a1|(−∞,1] since it
is decreasing on [x1, t

′ + ε] and therefore

V −(f̂a; (ε, x2 − t′)) = V −(f̂a1 ; (t′ + ε, x2)) > f̂a1(t
′ + ε) = f̂a(ε).

For all the other intervals, this is obvious.
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Example. Consider the function f : S1 → [0,∞) obtained by choosing eight points
on the circle, for instance aj = exp(2πitj) ∈ S1, j = 0, 1, . . . , 7, where 0 = t0 <
t1 < . . . < t7 < 1, taking the values there to be 4, 3, 7

2
, 3, 4, 1, 3, 1 respectively, and

interpolating linearly in between. Slicing the circle at a = 0, we obtain the following
graph:

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

By the above proposition, the calculation of M+
ai

(f) for i = 0, 1, . . . , 7 su�ces to
determine ucat(f). However, it is illustrative to calculate M+

a (f) for all a ∈ S1. By
a direct calculation, we obtain:

M+
a (f) =

{
2; a ∈ [a1, a2] ∪ [a5, a6],

3; a ∈ (a6, a1) ∪ (a2, a5).

We conclude that ucat(f) = 2. An explicit unimodal decomposition can also be
described. The �rst summand is obtained by mapping the points aj, j = 0, 1, . . . , 7,
to the sequence 3, 3, 7

2
, 3, 3, 0, 0, 0, and interpolating linearly. The second summand is

obtained by mapping the points aj, j = 0, 1, . . . , 7, to the sequence 1, 0, 0, 0, 1, 1, 3, 1
and interpolating linearly.
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4 The Monotonicity Conjecture

Baryshnikov and Ghrist conclude their paper with the following conjecture [4, Con-
jecture 18], which they believe could play an important role in obtaining various
bounds for ucatp.

Conjecture. Suppose f : X → [0,∞) and 0 < p1 < p2 ≤ ∞. Then ucatp1(f) ≤
ucatp2(f).

In other words, they conjecture that ucatp is monotone in p. The aim of this sec-
tion is to investigate this conjecture for various spaces and functions. We show that
the conjecture is true for X = R and X = S1. However, there are counterexamples
if X is a certain type of graph and if X = R2 is the Euclidean plane.

4.1 Proof for the Real Line and the Circle

In the case ofX = R, the conjecture is true. As in Section 3.1, we assume throughout
Section 4.1 that f : R→ [0,∞) is of bounded variation.

De�nition. Let k ∈ N0. We call a sequence a = (a0, a1, . . . , a2k) such that a0 ≤
a1 ≥ a2 ≤ . . . ≥ a2k an up-down sequence of length 2k. For such a sequence, de�ne
its negative variation as follows:

V −(a) =
k∑
i=1

(a2i−1 − a2i).

Note that this is a sum of non-negative numbers. We also de�ne its p-th power for
p > 0 as ap = (ap0, a

p
1, . . . , a

p
2k). Note that this is again an up-down sequence.

Now, recall the following inequality of Karamata:

Theorem 4.1 ([44]). Suppose we are given two �nite sequences a = (a1, . . . , an)
and b = (b1, . . . , bn) with terms in (α, β) satisfying the following conditions9:

• a1 ≥ a2 ≥ . . . ≥ an and b1 ≥ b2 ≥ . . . ≥ bn,

• a1 + a2 + . . .+ ak ≥ b1 + b2 + . . .+ bk for 1 ≤ k ≤ n− 1,

• a1 + a2 + . . .+ an = b1 + b2 + . . .+ bn.

Further suppose φ : (α, β)→ R is a convex function. Then we have

φ(a1) + φ(a2) + . . .+ φ(an) ≥ φ(b1) + φ(b2) + . . .+ φ(bn).

Note that the inequality is reversed if φ is concave, because in that case −φ is
convex. We only need the following special case:

Lemma 4.2. Suppose 0 < q < 1 and let x, y, z ≥ 0 such that max{x, z} ≤ y ≤ x+z.
Then

(x− y + z)q ≤ xq − yq + zq.

9If these conditions are satis�ed, we say that a majorizes b.
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Proof. By continuity, it is su�cient to treat the case when x, y, z > 0 and y < x+z.
The inequality is equivalent to

(x− y + z)q + yq ≤ xq + zq,

which is just a special case of Theorem 4.1 in the case of n = 2, a1 = y, a2 = x−y+z,
b1 = max{x, z}, b2 = min{x, z} and φ(t) = tq, which is concave.

Lemma 4.3. Suppose 0 < q < 1, a is an up-down sequence of length 2k and
V −(a) ≤ a0. Then V −(aq) ≤ aq0.

Proof. We prove this by induction on k. For k = 0, this is trivial, as both negative
variations are zero. Suppose the lemma holds for all sequences of length at most
2k−2 and a is a sequence of length 2k. Then ã = (a0−a1 +a2, a3, a4, . . . , a2k−1, a2k)
is an up-down sequence of length 2k − 2. Observe that

V −(ã) = V −(a)− (a1 − a2) ≤ a0 − a1 + a2.

By the inductive hypothesis and the previous lemma, we have

V −(ãq) ≤ (a0 − a1 + a2)q ≤ aq0 − a
q
1 + aq2.

But
V −(ãq) + aq1 − a

q
2 = V −(aq),

so this is precisely the conclusion we wanted.

We can now prove

Theorem 4.4. Suppose f : R → [0,∞) and 0 < p1 < p2 ≤ ∞. Then ucatp1(f) ≤
ucatp2(f).

Proof. In the case of p2 = ∞ this follows trivially from Lemma 6, Lemma 9 (our
Lemma 2.1) and Lemma 16 of [4], so it su�ces to treat the case where p1, p2 <∞.
In this case, observe that ucatp1(f) ≤ ucatp2(f) is equivalent to ucat(fp1) ≤
ucat

p2
p1 (fp1) by Lemma 2.1. Therefore, we may assume without loss of generality

that p1 = 1 and p2 = p > 1. Under this reduction, we want to prove that ucat(f) ≤
ucat(fp).

To prove this, observe that it is su�cient to prove the following statement:

if V −(f ; [x, y]) > f(x), then V −(fp; [x, y]) > f(x)p.

This means precisely that each forced-max interval of f is also a forced interval of
fp, which then establishes the claim by Theorem 3.4. We are going to prove the
contrapositive. Assume therefore that V −(fp; [x, y]) ≤ f(x)p. By the de�nition of
negative variation, this means precisely that

sup

[
n∑
i=1

max{0, f(ai−1)p − f(ai)
p}

]
≤ f(x)p,

where the supremum is taken over all partitions P of the form x = a0 ≤ a1 ≤ a2 ≤
. . . ≤ an = y of the interval [x, y]. Fix an arbitrary partition P of this kind. Note
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that this time, we allow duplications ai = ai+1 in P . This does not change the
relevant supremum and allows us to assume that n = 2k for some k ∈ N and that

f(a0) ≤ f(a1) ≥ f(a2) ≤ . . . ≥ f(a2k).

Let c be the up-down sequence of length 2k de�ned by ci = f(ai)
q. We have

V −(c) =
n∑
i=1

max{0, f(ai−1)p − f(ai)
p} ≤ f(x)p = c0.

By Lemma 4.3 with q = 1
p
, we have

V −
(
c

1
p

)
≤ c

1
p

0 .

This means precisely that

n∑
i=1

max{0, f(ai−1)− f(ai)} ≤ f(x).

Since the partition P was arbitrary, the same holds for the supremum over all
partitions:

V −(f ; [x, y]) ≤ f(x).

This concludes the proof.

This immediately proves the monotonocity conjecture for the circle S1.

Corollary 4.5. Suppose f : S1 → [0,∞) and 0 < p1 < p2 ≤ ∞. Then ucatp1(f) ≤
ucatp2(f).

Proof. In the case of p2 =∞ this follows from Lemma 6, Lemma 9 (our Lemma 2.1)
and Lemma 16 of [4] (note that Lemma 16 still holds for S1), so it su�ces to treat
the case p1 < p2 <∞. In this case, we use Lemma 2.1 and Theorem 3.12:

ucatp1(f) = min{2,M+(fp1)} ≤ min{2,M+(fp2)} = ucatp2(f).

The inequality follows from Theorem 4.4.

4.2 Graphs: First Counterexample

For general spaces, the monotonicity conjecture is false. The simplest counterex-
amples can be constructed on graphs. Similar ideas can then be exploited to yield
counterexamples on Euclidean spaces.

Let G be the graph (abstract simplicial complex of dimension 1) whose vertices
and edges are given by10

V = {a1, a2, b1, b2, c, d1, d2, d3, e1, e2, e3, q},
E = {a1a2, a2c, b1b2, b2c, cd1, ce1, d1d2, d2d3, d3f, e1e2, e2e3, e3q},

10Here, xy is considered as shorthand for {x, y}.
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and let X be the polytope of its geometric realization, for instance as in the picture
below, where the vertices c and q are realized as (0, 0) and (−2,−2), a1, a2, d1, d2, d3

are realized as (2, 0), (1, 0), (−1, 0), (−2, 0) and (−2,−1) and b1, b2, e1, e2, e3 as their
re�ections across y = x. For simplicity, we identify the vertices of G with their
corresponding points in X.

q

d2 c

e2

b1

a2

b2

d1

e1d3

e3

a1

We de�ne three piecewise linear (with respect to the graph structure above)
functions f, u1, u2 : X → [0,∞). The functions u1 and u2 are de�ned by specifying
their values on the vertices (i = 1, 2, 3):

u1(a1) = 5, u1(a2) = u1(c) = u1(di) = u1(q) = 1, u1(b1) = u1(b2) = u1(ei) = 0,

u2(b1) = 5, u2(b2) = u2(c) = u2(ei) = u2(q) = 1, u2(a1) = u2(a2) = u2(di) = 0.

See picture (where u2 is u1 re�ected across the axis of symmetry):

1

1 1

0

0

1

0

1

01

0

5

1

0 1

1

5

0

1

0

10

1

0

Finally, we de�ne f = u1 + u2. Note that f may also be given by its values at
the vertices (i = 1, 2, 3):

f(a1) = f(b1) = 5, f(c) = f(q) = 2, f(a2) = f(b2) = f(di) = f(ei) = 1.
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The following follows directly from the de�nitions.

Observation 4.6. The functions u1 and u2 are unimodal, f is not. So ucat(f) = 2.

This f yields a simple counterexample to the monotonicity conjecture.

Proposition 4.7. The unimodal 1
2
-category of f is ucat(

√
f) = ucat

1
2 (f) = 3.

Proof. A unimodal decomposition of length 3 can easily be constructed explicitly.
Note that

√
f is not piecewise linear, but can be turned into such by using an

appropriate homeomorphism on the domain X, all the while retaining the function
values at the vertices. The resulting piecewise linear function can be decomposed
into three piecewise linear unimodal summands v1, v2 and v3, which we de�ne by
their values at the vertices. The nonzero values are given by (i = 1, 2, 3):

v1(a1) =
√

5, v1(a2) = 1, v1(c) =
√

2
2
,

v2(a1) =
√

5, v2(a2) = 1, v2(c) =
√

2
2
,

v3(q) =
√

2, v3(di) = 1, v3(ei) = 1.

The function values at the remaining vertices are zero.
To complete the proof, it therefore remains to show that

√
f cannot be de-

composed into two unimodal summands. We argue by contradiction. Suppose√
f = va + vb, where va and vb are unimodal. If r > 0, de�ne superlevel sets

Qa(r) = v−1
a [r,∞) and Qb(r) = v−1

b [r,∞).

By unimodality, these are all contractible. Note that, since va(a1)+vb(a1) =
√
f(a1),

we either have va(a1) ≥
√

5
2

or vb(a1) ≥
√

5
2
. Without loss of generality, assume that

the �rst possibility holds. (This is also the reason behind the choice of notation
for va and vb.) Since

√
f(a2) = 1, we have va(a2) ≤ 1. This immediately implies

that va(b1) ≤ 1, since otherwise we would have va(b1) = r > 1 and Qa(min{r,
√

5
2
})

would not be connected (since it is a subspace of X containing a1 and b1 but not
a2). This means that vb(b1) ≥

√
5 − 1. By a symmetric argument, we also have

va(a1) ≥
√

5− 1, but we do not use this fact.
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Now, let K be the subspace of X consisting of the vertices c, di, ei, q (i = 1, 2, 3)
and all the edges between these vertices. Note that K is homeomorphic to a circle.
By unimodality, there are points x, y ∈ K such that va(y) = 0 and vb(x) = 0.
Otherwise we would have K ⊆ Qa(r) or K ⊆ Qb(r) for some r > 0. Therefore
va(x) = vb(y) = 1. Since Qa(1) and Qb(1) are contractible, there is a path from a1

to x in Qa(1), implying that c ∈ Qa(1), and a path from b1 to y in Qb(1), implying
that c ∈ Qb(1). This implies that va(c) + vb(c) ≥ 2, contradicting the fact that
va(c) + vb(c) =

√
f(c) =

√
2 and concluding the proof.

To sum up, we have found a space X, a function f : X → [0,∞) and values
0 < p1 < p2 < ∞ such that ucatp1(f) > ucatp2(f). Hence, the monotonicity
conjecture is not generally true.

Remark 4.1. In fact, by changing the function values of u1 and u2 appropriately,
the same example can be modi�ed to show that the monotonicity conjecture is not
generally true for any pair of exponents 0 < p1 < p2 <∞.

Further note that this example implies the failure of monotonicity for a very
general class of graphs: namely, whenever the graph contains a cycle which contains
a point of valence 4, monotonicity cannot hold in general. In fact, monotonicity
fails for an even larger class of graphs: the point of valence 4 can be replaced by
two points of valence 3 as in the picture below, yielding another counterexample.
The proof is very similar to the one above, so we omit it. So, if a connected graph
contains a cycle and a point of valence 3 or more somewhere outside this cycle,
monotonicity cannot hold in general. Note that this severely limits the collection of
CW complexes for which monotonicity can possibly hold.
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1

2

2

1

5

1

1

1

11

1

5

4.3 Graphs: Second Counterexample

The previous example does not preclude the possibility that the monotonicity con-
jecture holds in the case 0 < p1 < p2 =∞. We must therefore construct a di�erent
example to show that it also fails here. Let G be the graph whose vertices and edges
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are given by

V = {a, b, c, d, e},
E = {ab, ac, ad, ae, bc, bd, be, cd, ce}.

We can realize G geometrically in R3 as the 1-skeleton of a triangular bipyramid. Let
X be the polytope of its geometric realization. At the cost of losing some symmetry,
but simplifying the illustrations, we prefer to picture X as embedded into the plane
R2:

b

a

c

ed

We de�ne a piecewise linear function f : X → [0,∞) by specifying its values at
the vertices:

f(d) = f(e) = 3 and f(a) = f(b) = f(c) = 1.

We now calculate ucat and ucat∞ for this function.

1

1

1

33

Proposition 4.8. The unimodal ∞-category of f is ucat∞(f) = 2.

Proof. Clearly, f is not unimodal. However, it has a unimodal ∞-decomposition
of length 2. To construct it, we �rst subdivide the edges ab, ac and bc, by adding
three points on each of them. Let i, j, k be the vertices added on ab, so that it
is now replaced by four edges ai, ij, jk, kb. Similarly, add vertices p, q, r on bc to
subdivide it into bp, pq, qr, rc. Finally, add x, y, z on the edge ac to subdivide it into
cx, xy, yz, za.

Now the decomposition u1, u2 can be de�ned by piecewise linear functions de�ned
by the values on the vertices of this subdivision. Namely, take

u1(d) = 3, u1|{a,b,c,j,k,q,r,y,z} ≡ 1 and u1|{e,i,p,x} ≡ 0,

u2(e) = 3, u2|{a,b,c,i,j,p,q,x,y} ≡ 1 and u2|{d,k,r,z} ≡ 0.

These have the desired properties: they are unimodal and f = max{u1, u2}.
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Proposition 4.9. The unimodal category of f is ucat(f) = 3.

Proof. A unimodal decomposition of length 3 can easily be constructed explicitly so
this is left to the reader.

It remains to show that there is no unimodal decomposition of length 2. Again,
we argue by contradiction. Suppose f = u1 + u2 is such a decomposition. If r > 0,
de�ne superlevel sets

Q1(r) = u−1
1 [r,∞) and Q2(r) = u−1

2 [r,∞).

Without loss of generality, we may assume that u1(d) ≥ u2(d), in other words,
u1(d) ≥ 3

2
. By unimodality, it follows that u1(e) ≤ 1 (otherwise u1(e) = r > 1

and the points d and e would have to lie in separate components of Q1(min{3
2
, r})).

It follows that u2(e) ≥ 2. Using unimodality again, we have u2(d) ≤ 1 (otherwise
u2(d) = r > 1 and the points d and e would have to lie in separate components of
Q2(min{2, r})). It follows that u1(d) ≥ 2. Let K be the subspace of X consisting
of the edges ab, ac and bc.

Since u1(a)+u2(a) = u1(b)+u2(b) = u1(c)+u2(c) = 1, at least three of the values
u1(a), u2(a), u1(b), u2(b), u1(c), u2(c) are ≥ 1

2
. Two of these three values necessarily

correspond to the same function ui, i = 1, 2. Therefore, without loss of generality
(renaming the vertices and functions if necessary), we may assume that u1(b) ≥ 1

2

and u1(c) ≥ 1
2
. Observe that this implies that u1(x) ≥ 1

2
for any point x on the edge

bc (otherwise, we would have u2(b) ≤ 1
2
, u2(c) ≤ 1

2
, u2(x) = r > 1

2
and u2(e) ≥ 2,

contradicting unimodality as points x and e would lie in di�erent components of
Q2(r)). But then, u1 has at least one zero z somewhere in the interior of the union
of segments bd and cd. (Otherwise Q1(r) would contain the whole cycle bc, bd, cd
for some r > 0, contradicting unimodality.) This implies that u2(z) = r > 1,
contradicting unimodality, as this means that z and e lie in di�erent components of
Q2(min{r, 2}). This concludes the proof.

Therefore, the monotonicity conjecture fails for 0 < p1 < p2 =∞ as well.

Remark 4.2. Note that the basic idea underlying the proof is the fact that a cycle
of odd length has chromatic number 3. It remains an open question what exactly
the connection between chromatic numbers and ucat is for general graphs.

4.4 Euclidean Plane: First Counterexample

In our construction of the counterexamples to the monotonicity conjecture on the
two graphs above, we have exploited the fact that these graphs contain cycles. As
we have also seen, the unimodal p-category is indeed monotone in p for X = R. The
question then arises whether it is essential that the spaceX has non-trivial homology
for such counterexamples to exist. We show that the answer to this question is also
negative by constructing two counterexamples to the monotonicity conjecture in the
Euclidean plane X = R2.

4.4.1 Concise Description

The �rst counterexample we give is motivated by the �rst counterexample in the
case when X is a graph, so it bears some resemblance to it. For simplicity, whenever
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p = (x, y) ∈ R2, we write p∗ = (y, x). We also adopt the convention that × binds
more strongly than ∪. Let a = (3, 1) and de�ne the following compact subset of R2:

K = [−1, 1]× [−1, 1]∪ [−3, 3]×{1} ∪ [1, 3]×{−1} ∪ {−3}× [1, 3]∪ {3}× [−3,−1].

Our �rst counterexample can be concisely described using the∞-distance to the
set K. We de�ne the following functions u1, u2, F, f : R2 → [0,∞):

u1(p) = max
{

0, 1− d∞
(
p,K

)
, 5− 5d∞

(
p, a
)}
,

u2(p) = u1(p∗),

F (p) = u1(p) + u2(p),

f(p) =
√
u1(p) + u2(p).

For convenience, the following are the graphs of u1, u2, F and f :
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Note that each of these is continuous and compactly supported. Our main claim
is the following:

Proposition 4.10. The function f is a counterexample to the conjecture. Con-
cretely, ucat2(f) = ucat(F ) = 2 and ucat(f) ≥ 3.

The rest of this section is devoted to proving this proposition.

4.4.2 Direct Description

We can make a straightforward observation regarding the nature of the functions
we have de�ned.

Observation 4.11. The functions u1, u2 : R2 → [0,∞) are piecewise linear and
unimodal. The function F : R2 → [0,∞) is piecewise linear. It is not unimodal, but
is by de�nition the sum of two unimodal functions.

Piecewise linearity follows from the properties of the ∞-distance. For concrete-
ness, we describe the decomposition of the plane, with respect to which the functions
are piecewise linear, explicitly. The main advantage of u and F being piecewise linear
is that other facts about these functions can be veri�ed completely computationally.

Before we begin, we need some notation. Two points p1, p2 ∈ R2 determine a
segment

p1p2 = {p ∈ R2 | ∃t ∈ [0, 1] : p = (1− t)p1 + tp2}.

We write p1p2 . . . pn for the union of segments p1p2, p2p3, . . . , pn−1pn. If p1p2 . . . pnp1

is a topological circle in R2, it is the boundary of a uniquely determined compact
set in R2, which we denote by p1p2 . . . pn.

We can describe u1, u2 and F as piecewise linear functions de�ned by their values
on the vertices of a polygonal decomposition of S = supp f consisting of 44 vertices,
95 edges and 52 faces, namely triangles, trapezoids and two non-convex quadrilater-
als. Note that we do not count the �face at in�nity� and we consider parallelograms
to be a special case of trapezoids. Some care must be taken as not every choice of
values at the vertices of a quadrilateral can be extended to a linear function. First,
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we list the vertices (indexed lexicographically):

x1 = (−4, 0),

x2 = (−4, 2),

x3 = (−4, 4),

x4 = (−3, 1),

x5 = (−3, 2),

x6 = (−3, 3),

x7 = (−2,−2),

x8 = (−2, 0),

x9 = (−2, 1),

x10 = (−2, 2),

x11 = (−2, 3),

x12 = (−2, 4),

x13 = (−1,−1),

x14 = (−1, 1),

x15 = (−1, 2),

x16 = (−1, 3),

x17 = (0,−4),

x18 = (0,−2),

x19 = (0, 2),

x20 = (0, 4),

x21 = (1,−3),

x22 = (1,−2),

x23 = (1,−1),

x24 = (1, 1),

x25 = (1, 2),

x26 = (1, 11
5

),

x27 = (1, 3),

x28 = (2,−4),

x29 = (2,−3),

x30 = (2,−2),

x31 = (2,−1),

x32 = (2, 0),

x33 = (2, 1),

x34 = (2, 2),

x35 = (2, 4),

x36 = (11
5
, 3),

x37 = (3,−3),

x38 = (3,−2),

x39 = (3,−1),

x40 = (3, 1),

x41 = (4,−4),

x42 = (4,−2),

x43 = (4, 0),

x44 = (4, 2).

We omit listing the edges h1, h2, . . . , h95 (ordered lexicographically by the indices of
the vertices) as they are simply the edges of the 52 polygons in the decomposition.
Finally, we list the faces, using the notation de�ned above (ordered lexicographically
by the corresponding sets of vertices):

f1 = x1x4x5x2,

f2 = x1x8x9x4,

f3 = x2x6x3,

f4 = x2x5x6,

f5 = x3x6x12,

f6 = x4x10x5,

f7 = x4x9x10,

f8 = x5x10x11x6,

f9 = x6x11x12,

f10 = x7x13x14x8,

f11 = x7x18x23x13,

f12 = x8x14x9,

f13 = x9x14x15x10,

f14 = x10x16x11,

f15 = x10x15x16,

f16 = x11x16x20x12,

f17 = x13x23x24x14,

f18 = x14x19x15,

f19 = x14x24x19,

f20 = x15x19x20x16,

f21 = x17x21x22x18,

f22 = x17x28x29x21,

f23 = x18x22x23,

f24 = x19x27x20,

f25 = x19x24x25,

f26 = x19x25x26,

f27 = x19x26x34x27,

f28 = x20x27x35,

f29 = x21x30x22,

f30 = x21x29x30,

f31 = x22x30x31x23,

f32 = x23x32x24,

f33 = x23x31x32,

f34 = x24x33x34x25,

f35 = x24x32x33,

f36 = x25x34x26,

f37 = x27x34x35,

f38 = x28x37x29,

f39 = x28x41x37,

f40 = x29x37x38x30,

f41 = x30x39x31,

f42 = x30x38x39,

f43 = x31x39x43x32,

f44 = x32x36x33,

f45 = x32x40x34x36,

f46 = x32x43x40,

f47 = x33x36x34,

f48 = x34x40x44,

f49 = x37x42x38,

f50 = x37x41x42,

f51 = x38x42x43x39,

f52 = x40x43x44.

We can now state the alternative descriptions of u1, u2 and F . The function u1 can
be de�ned on the vertices of the above decomposition:

u1(xi) =


5; i = 40,

1; i = 4, 5, 6, 9, 13, 14, 23, 24, 31, 33, 36, 37, 38, 39,

0; elsewhere.

Similarly, we have

u2(xi) =


5; i = 27,

1; i = 6, 11, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 29, 37,

0; elsewhere.
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Summing these, we obtain

F (xi) =


5; i = 27, 40,

2; i = 6, 13, 14, 23, 24, 37,

1; i = 4, 5, 9, 11, 15, 16, 21, 22, 25, 26, 29, 31, 33, 36, 38, 39,

0; elsewhere.

The decomposition (and the function F ) can be pictured as follows:

5

5
2

2

2

2

2

2

1 1

1

1

1
1

11

1

1

1
1

1

1

1

1

In the proofs we will also make use of the following points (see the picture below):

a = (3, 1)

a1 = a+ (−4
5
,−4

5
)

a2 = a+ (4
5
,−4

5
)

a3 = a+ (4
5
, 4

5
)

a4 = a+ (−4
5
, 4

5
)

a5 = a+ (−4
5
, 0)

b = a∗

b1 = a∗1
b2 = a∗2
b3 = a∗3
b4 = a∗4
b5 = a∗5

c1 = (2, 1)

c2 = (3
2
, 1

2
)

c3 = (3
2
,−1

2
)

c4 = (2,−1)

c5 = (1,−2)

c6 = (1
2
,−3

2
)

c7 = (−3
2
,−3

2
)

c8 = c∗6
c9 = c∗5
c10 = c∗4
c11 = c∗3
c12 = c∗2
c13 = c∗1

d = (3,−3)

d1 = (2,−3)

d2 = (5
2
,−7

2
)

d3 = (7
2
,−7

2
)

d4 = (7
2
,−5

2
)

d5 = (3,−2)

e = (−3, 3)

e1 = d∗1
e2 = d∗2
e3 = d∗3
e4 = d∗4
e5 = d∗5

z0 = (2,−2)

z1 = (3,−1)

z2 = (1,−3)

w0 = z∗0
w1 = z∗1
w2 = z∗2
q1 = (−1,−1)

q2 = (1,−1)

q3 = (1, 1)

q4 = (−1, 1)
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Finally, we also need the following sets:

A = a1a2a3a4,

B = b1b2b3b4,

C = c1c2c3c4c5c6c7c8c9c10c11c12c13,

D = d1d2d3d4d5,

E = e1e2e3e4e5,

K = aw2e ∪ q1z1d ∪ q1q2q3q4,

Pa = a5c1,

Pb = b5c13,

Z1 = c5z1d1,

Z2 = c4z2d5,

W1 = c9w1e1,

W2 = c10w2e5.

The following two observations are straightforward, so we omit their proofs.

Observation 4.12. The superlevel set Q = f−1[1,∞) = F−1[1,∞) can be expressed
as follows:

Q = A ∪B ∪ C ∪D ∪ E ∪ Pa ∪ Pb ∪ Z1 ∪ Z2 ∪W1 ∪W2.

w0

w0
e2

e3

w2

e1

e4

c9

e5

c7

c8

c10

w1

c11

b1

b2

c6

c12

z2

c5

c13

b

c3

c2

b4

b3

d1

c4

c1

a1

a4

d2

d5

z1

a

d3

d4

a2

a3

a5

b5

d

e

Observation 4.13. The function f has the following properties:

• f(z0) = f(w0) = 0,

• f(a) = f(b) =
√

5,

• f(p) = 1 for all p ∈ ∂Q,11

• f(p) ≤
√

2 for all p /∈ A ∪B.
11Here ∂Q means the topological boundary of Q.
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4.4.3 Proof

Before proceeding to the main proof, we require the following lemma.

Lemma 4.14. Let I = [0, 1]. Suppose γ1, γ2 : I → I× I are paths such that γ1(0) =
(0, 0), γ1(1) = (1, 1), γ2(0) = (0, 1) and γ2(1) = (1, 0). Then γ1(I) ∩ γ2(I) 6= ∅.

Proof. This follows directly from [49, Lemma 2] by taking a = c = 0, b = d = 1,
h = γ1 and v = γ2.

We can now prove our proposition.

Proof of Proposition 4.10. The �rst part of the claim, that ucat2(f) = 2, follows
directly from Observation 4.11.

To prove the second part, suppose for the sake of contradiction that there exists
a decomposition f = va + vb, where va and vb are unimodal.12 If r > 0, de�ne
superlevel sets

Qa(r) = v−1
a [r,∞), and Qb(r) = v−1

b [r,∞).

We are especially interested in

Qa = Qa(1) and Qb = Qb(1).

Since va and vb are unimodal, the sets Qa(r) and Qb(r) (where r > 0) are all
contractible. In particular, they are path-connected. If r1 ≤ r2, the inclusions

Qa(r1) ⊇ Qa(r2), and Qb(r1) ⊇ Qb(r2)

hold. Since va, vb ≤ f , we also have

Qa, Qb ⊆ Q.

By Observation 4.13, f(p) ≤
√

2 for p /∈ A ∪ B. If va(p) ≥ 1 and vb(p) ≥ 1, we
have f(p) ≥ 2, so p ∈ A ∪B. This shows that Qa ∩Qb ⊆ A ∪B.

Observe that va(a) + vb(a) =
√

5 holds. By interchanging va and vb, if necessary,
we may assume without loss of generality that va(a) ≥

√
5

2
. (Which is in fact the

reason why we chose this notation for va and vb.)

Step 1. The following inequalities are satis�ed:

• va(p) ≤ 1 for all p ∈ Q \ A,

• vb(p) ≤ 1 for all p ∈ Q \B,

• va(a) ≥
√

5− 1 and

• vb(b) ≥
√

5− 1.
12The notation is not meant to imply any relation with a and b at this point.

64



Proof. To prove the �rst of these, it su�ces to show that Qa(r) ⊆ A for all r > 1.
We know that Qa(r) ⊆ Qa ⊆ Q holds. Note that Q \ {a5} is not path connected.
The path component of a in Q\{a5} is a subset of A. Since va(a5) ≤ f(a5) = 1, the
point a5 is not contained in Qa(r). Therefore, the path component of a in Qa(r) is
also a subset of A and we are done.

Since va(b)+vb(b) =
√

5, this means that vb(b) ≥
√

5−1. The fact that vb(p) ≤ 1
holds for all p ∈ Q \B is obtained by a symmetric argument. This also implies that
v(a) ≥

√
5− 1 holds.

Step 2. Let S = {c9, c10} or S = {c4, c5}. Then there exist points p, q ∈ S such that
va(p) = 1 and vb(q) = 1.

Proof. We show this for S = {c4, c5}, the other proof is symmetric. Note that
f(z0) = 0, so va(z0) = vb(z0) = 0. For each t ∈ (0, 1) de�ne c4(t) = (1 − t)c4 + tc3

and c5(t) = (1− t)c5 + tc6. De�ne

L(t) = D ∪ Z1 ∪ Z2 ∪ c4c4(t) ∪ c4(t)c5(t) ∪ c5(t)c5.

Note that L(t) is compact, so vb attains its minimum in L(t), say vb(pt) = mt. But
mt cannot be positive: if mt > 0, we would have L(t) ⊆ Qb(mt) and z0 /∈ Qb(mt),
implying the existence of a retraction Qb(mt) → L(t), which is impossible, since
Qb(mt) is contractible.

Therefore, vb(pt) = 0, or since f is at least 1 on L(t), va(pt) ≥ 1. But we know
that va(p) ≤ 1 holds for p /∈ A, so we must have va(pt) = 1. This also implies that
p ∈ ∂Q.

There are now two possibilities: if for some t we obtain pt ∈ D ∪ Z1 ∪ Z2, we
also have a path in Qa from pt to a, which must necessarily pass either through
c4 or c5, since pt and a lie in di�erent path components of Q \ {c4, c5}. The only
remaining possibility is that pt ∈ c4c4(t)∪ c4(t)c5(t)∪ c5(t)c5 for all t ∈ (0, 1). Since
pt ∈ ∂Q, this means that pt ∈ c4c4(t) ∪ c5c5(t) holds for all t. Therefore we may
choose a convergent subsequence (ptn)n of (p 1

k
)k such that va(ptn) = 1 for all n. This

sequence converges either to c4 or c5, so one of va(c4) = 1, va(c5) = 1 must hold.
The proof that one of vb(c4) = 1, vb(c5) = 1 holds is symmetric.

Step 3. The equalities va(c1) = 1 and vb(c13) = 1 hold.

Proof. This follows from the previous step. Let S be any of the two sets from the
previous step. Let p, q ∈ S be points such that va(p) = 1 and vb(q) = 1. There are
paths in Qa and Qb from a to p and from b to q, respectively. The �rst path must
cross c1, since a and p lie in di�erent path components of Q \ {c1} and the second
one must cross c13, since b and q lie in di�erent path components of Q \ {c13}.

Step 4. The results of the previous steps contradict each other.

Proof. Let p ∈ {c9, c10} have the property that va(p) = 1 and let q be the unique
element of {c9, c10} \ {p}. Let q′ ∈ {c4, c5} have the property that vb(q′) = 1 and let
p′ ∈ {c4, c5} \ {q′}. These points exist by step 2. There is a path γa : I → Qa from
p to c1 and a path γb : I → Qb from q′ to c13.

Observe that γa(I)∩(B∪Pb) = ∅ and γb(I)∩(A∪Pa) = ∅, since c1 /∈ Qb and c13 /∈
Qa. We can also ensure that γa(I)∩(E∪W1∪W2) = {p} and γa(I)∩(A∪Pa) = {c1}
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by cropping the path at both ends (formally, take t1 = sup{t ∈ [0, 1] | γa(t) = p}
and t2 = inf{t ∈ [t1, 1] | γa(t) = c1} and reparametrize the restriction of γa to
[t1, t2]). In the same way we can ensure that γb(I) ∩ (D ∪ Z1 ∪ Z2) = {q′} and
γb(I) ∩ (B ∪ Pb) = {c13}. Assume, therefore, without loss of generality that γa and
γb have these properties.

Now, let Ra : Qa → Qa \
(
(D ∪ Z1 ∪ Z2) \ {p′}

)
be the retraction that takes the

points of (D ∪Z1 ∪Z2) \ {p′} to p′ and let Rb : Qb → Qb \
(
(E ∪W1 ∪W2) \ {q}

)
be

the retraction that takes the points of (E ∪W1 ∪W2) \ {q} to q. These retractions
are well de�ned, since q′ /∈ Qa and p /∈ Qb. Note that Ra ◦ γa is a path in Qa ∩ C
and Rb ◦ γb is a path in Qb ∩ C and these two paths have the same endpoints as γa
and γb, respectively.

Note that ∂C is a Jordan curve and that ∂C \ {c1, p} has two path components,
each of which contains exactly one of the points c13, q

′. Using the Jordan-Schön�ies
theorem [8, Chapter III], we obtain the situation in which Lemma 4.14 applies and
we can conclude that the paths Ra ◦ γa and Rb ◦ γb intersect somewhere in C. But
this is a contradiction, as we have already established that Qa ∩Qb ⊆ A ∪B.

This contradiction shows that ucat(f) ≥ 3, which concludes the proof of our
proposition.

Remark 4.3. The homology of the space is trivial, but the �rst homology of the su-
perlevel sets is not. This seems to be an essential feature of the counterexample, as it
enables us to force certain values upon the functions in an unimodal decomposition.
An explicit unimodal decomposition of length 3 can be constructed for f , but we
do not describe it here, as it has no bearing on the validity of the counterexample.
Furthermore, by modifying the function values at the vertices, we can obtain such
counterexamples for any pair 0 < p1 < p2 < ∞. We expect such counterexamples
to exist on Rm for any m ≥ 2.

4.5 Euclidean Plane: Second Counterexample

We need a di�erent idea to show that the monotonicity conjecture fails for X = R2

also in the case of 0 < p1 < p2 =∞. The example we give is completely analogous
to the second example in the case of graphs. As with the �rst example on R2, we
also describe it in two ways: using the∞-distance and as a piecewise linear function.

4.5.1 Concise Description

Let d0 = (−4, 0) and e0 = (4, 0). De�ne the following compact subset of R2:

K = [−4, 4]×{0}∪{−6, 0}×[−6, 6]∪[−6, 0]×{−6, 6}∪{−2, 2}×[−4, 4]∪[−2, 2]×{−4, 4}.

This can be pictured as follows:
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De�ne f : R2 → [0,∞):

f(p) = max
{

0, 1− d∞
(
p,K

)
, 3− 3d∞

(
p, d0

)
, 3− 3d∞

(
p, e0

)}
.

Note that f is continuous and compactly supported. Here is the graph of f :

Our main claim is the following:

Proposition 4.15. The function f is a counterexample to the conjecture. Con-
cretely, ucat∞(f) = 2 and ucat(f) = 3.

The rest of this section is devoted to proving this proposition.

4.5.2 Direct Description

For the same reason as our �rst example, f : R2 → [0,∞) is actually a piecewise
linear function, so it can be described by its function values at the vertices of a
polygonal decomposition of its support S = supp f . This decomposition consists
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of 47 vertices, 94 edges and 46 faces, namely triangles, trapezoids and two non-
convex quadrilaterals. Again note that not every choice of values at the vertices of
a trapezoid can be extended to a linear function, but in our case such issues do not
arise as the two function values on each of two parallel sides agree. We �rst list the
vertices (indexed lexicographically):

x1 = (−7,−7),

x2 = (−7, 7),

x3 = (−6,−6),

x4 = (−6, 6),

x5 = (−5,−5),

x6 = (−5,−1),

x7 = (−5, 1),

x8 = (−5, 5),

x9 = (−4, 0),

x10 = (−10
3
, 0),

x11 = (−3,−5),

x12 = (−3,−1),

x13 = (−3, 1),

x14 = (−3, 5),

x15 = (−2,−4),

x16 = (−2, 0),

x17 = (−2, 4),

x18 = (−1,−5),

x19 = (−1,−3),

x20 = (−1,−1),

x21 = (−1, 1),

x22 = (−1, 3),

x23 = (−1, 5),

x24 = (0,−6),

x25 = (0,−4),

x26 = (0, 0),

x27 = (0, 4),

x28 = (0, 6),

x29 = (1,−7),

x30 = (1,−5),

x31 = (1,−3),

x32 = (1,−1),

x33 = (1, 1),

x34 = (1, 3),

x35 = (1, 5),

x36 = (1, 7),

x37 = (2,−4),

x38 = (2, 0),

x39 = (2, 4),

x40 = (3,−5),

x41 = (3,−1),

x42 = (3, 1),

x43 = (3, 5),

x44 = (10
3
, 0),

x45 = (4, 0),

x46 = (5,−1),

x47 = (5, 1).

We again omit listing the edges h1, h2, . . . , h94 and proceed to the faces:

f1 = x1x3x4x2,

f2 = x1x29x24x3,

f3 = x2x4x28x36,

f4 = x3x5x8x4,

f5 = x3x24x18x5,

f6 = x4x8x23x28,

f7 = x6x9x7,

f8 = x6x12x9,

f9 = x7x9x13,

f10 = x9x12x10x13,

f11 = x10x12x16,

f12 = x10x16x13,

f13 = x11x15x16x12,

f14 = x11x18x25x15,

f15 = x13x16x17x14,

f16 = x14x17x27x23,

f17 = x15x19x20x16,

f18 = x15x25x19,

f19 = x16x21x22x17,

f20 = x16x20x26,

f21 = x16x26x21,

f22 = x17x22x27,

f23 = x18x24x25,

f24 = x19x25x26x20,

f25 = x21x26x27x22,

f26 = x23x27x28,

f27 = x24x29x30x25,

f28 = x25x31x32x26,

f29 = x25x30x40x37,

f30 = x25x37x31,

f31 = x26x33x34x27,

f32 = x26x32x38,

f33 = x26x38x33,

f34 = x27x35x36x28,

f35 = x27x34x39,

f36 = x27x39x43x35,

f37 = x31x37x38x32,

f38 = x33x38x39x34,

f39 = x37x40x41x38,

f40 = x38x41x44,

f41 = x38x42x43x39,

f42 = x38x44x42,

f43 = x41x45x42x44,

f44 = x41x46x45,

f45 = x42x45x47,

f46 = x45x46x47.

An alternative de�nition of the piecewise linear function f : R2 → [0,∞) is then
given by specifying it on the vertices as follows:

f(xi) =


3; i = 9, 45,

1; i = 3, 4, 10, 15, 16, 17, 24, 25, 26, 27, 28, 37, 38, 39, 44,

0; otherwise.

The decomposition (and the function) can be pictured as follows:
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4.5.3 Proof

The idea of computing ucat∞(f) is completely the same as for the second coun-
terexample in the case of graphs.

Proposition 4.16. The unimodal ∞-category of f is ucat∞(f) = 2.

Proof. Clearly, f is not unimodal, so it su�ces to �nd an∞-decomposition of length
2. We de�ne two piecewise linear functions v1, v2 : R2 → [0,∞) on a polygo-
nal decomposition of S by specifying their values at the vertices. Start with the
decomposition of S de�ned above. Further subdivide it13 by adding the edges
x15x18, x17x23, x30x37, x35x39. The function v1 assumes the value 1 at the vertices
x3, x4, x10, x15, x16, x17, x24, x25, x26, x27, x28; the value 3 at the vertex x9; and the
value 0 at all the other vertices. The function v2 assumes the value 1 at the vertices
x3, x4, x24, x25, x26, x27, x28, x37, x38, x39, x44; the value 3 at the vertex x45; and the
value 0 at all the other vertices. It is clear that max{v1, v2} = f , however, these
functions are not unimodal, as x3x24x28x4x3 yields a non-trivial cycle in some of the
superlevel sets. However, we can modify v1 and v2 to obtain unimodal functions
u1, u2 : R2 → [0,∞). To retain the property max{u1, u2} = f , we modify them on
sets with disjoint interiors, namely, u1 is modi�ed on the sets R1 = [−1, 1] × [2, 3],
R2 = [−1, 1] × [−2,−1] and R3 = [−7,−5] × [−2,−1], whereas u2 is modi�ed on
the sets R4 = [−1, 1]× [1, 2], R5 = [−1, 1]× [−3,−2] and R6 = [−7,−5]× [1, 2]. In
fact, they are modi�ed in the same way on each of these. Namely, if R is of one of
these rectangles, subdivide it into four triangles using the center point of R. Then
de�ne a piecewise linear function on R that takes the value 1 at the center point
of R and value 0 at the vertices of the rectangle, and extend it by 0 to the whole
plane to obtain a function ϕR : R2 → [0,∞). Now, u1 and u2 are de�ned by putting

13This is necessary as the functions we de�ne are not linear when restricted to some of the

trapezoids of the original decomposition.
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u1 = v1 − ϕR1 − ϕR2 − ϕR3 and u2 = v2 − ϕR4 − ϕR5 − ϕR6 . (These functions are
piecewise linear w.r.t. a further subdivision of S that takes into account the six
rectangles.) A straightforward veri�cation shows that u1 and u2 are unimodal14, so
the proof is complete.

Proving that ucat(f) = 3 is also very similar as in the graph case. Most of the
action takes place in the sublevel set Q = f−1[1,∞), so before beginning the proof,
we describe it explicitly. The notation we use is similar as in the �rst counterexample
in R2. In addition to d0 = (−4, 0) and e0 = (4, 0), we de�ne the following points:

d1 = (−14
3
,−2

3
),

d2 = (−10
3
,−2

3
),

d3 = (−10
3
, 2

3
),

d4 = (−14
3
, 2

3
),

d5 = (−2,−4),

d6 = (−2, 0),

d7 = (−2, 4),

e1 = (14
3
,−2

3
),

e2 = (10
3
,−2

3
),

e3 = (10
3
, 2

3
),

e4 = (14
3
, 2

3
),

e5 = (2,−4),

e6 = (2, 0),

e7 = (2, 4),

a = (0, 4),

b = (0, 0),

c = (0,−4),

k1 = (0,−6),

k2 = (−6,−6),

k3 = (−6, 6),

k4 = (0, 6).

Next, we de�ne the following sets:

D = d1d2d3d4, E = e1e2e3e4, P = d5e5e7d7d5, R = d0e0, K = k1k2k3k4k1.

We can now give a simple description of Q.

Observation 4.17. The superlevel set Q = f−1[1,∞) can be expressed as follows:

Q = D ∪ E ∪ P ∪R ∪K.

k2

k3

k1

c

b

a

k4

d5

d6

d7

e5

e6

e7

d0 e0

d1 d2

d3d4

e1e2

e3 e4

14We omit the unenlightening formal proof of this fact. Instead, the graphs of these unimodal

functions are included in Appendix A.
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We are now ready to compute the unimodal category of f . The proof in the
graph case relied on the fact that a, b, c are local cut points of the graph and the
various superlevel sets they appear in. In the case of R2, which has no local cut
points, a more careful case by case analysis is required.

Proposition 4.18. The unimodal category of f is ucat(f) = 3.

Proof. A unimodal decomposition of length 3 can easily be constructed explicitly:
take the polygonal decomposition of S as de�ned in the beginning. Further subdivide
it15 by adding the edges x1x4, x4x5, x15x18, x20x25, x21x27, x25x32, x27x33, x35x39. Now,
de�ne piecewise linear functions u1, u2, u3 : R2 → [0,∞) by specifying their values
at the vertices of this decomposition. For the sake of brevity, we only specify the
nonzero values. The function u1 is de�ned by taking the value 3 at the vertex
x9 and the value 1 at the vertices x4, x10, x15, x16, x17, x27, x28. The function u2 is
de�ned by taking the value 3 at the vertex x45 and the value 1 at the vertices
x3, x24, x25, x37, x38, x39, x44. Finally, u3 takes the value 1 at the vertex x26. It is
straightforward to verify that these are all unimodal16 and that f = u1 + u2 + u3.

To show that there is no unimodal decomposition of length 2, we argue by
contradiction. Suppose f = u1 + u2 is such a decomposition. If r > 0, de�ne
superlevel sets

Q1(r) = u−1
1 [r,∞) and Q2(r) = u−1

2 [r,∞).

Without loss of generality, we may assume that u1(d0) ≥ u2(d0), in other words,
u1(d0) ≥ 3

2
. By unimodality, it follows that u1(e0) ≤ 1 (otherwise u1(e0) = r > 1

and the points d0 and e0 would have to lie in separate components of Q1(min{3
2
, r}),

separated by K). It follows that u2(e0) ≥ 2. Using unimodality again, we have
u2(d0) ≤ 1 (otherwise u2(d0) = r > 1 and the points d0 and e0 would have to lie in
separate components of Q2(min{2, r}), separated by K). It follows that u1(d0) ≥ 2.

Observe that for i = 1, 2, ui must have a zero somewhere in K (if ui(x) ≥ r > 0
for all x ∈ K, the inclusion K ↪→ Q1(r) is non-trivial on H1), say ui(zi) = 0. It
follows that ui(z3−i) = 1, so Qi(1) ∩K 6= ∅. Since Q1(1) is contractible, there is a
path in Q ⊇ Q1(1) from d0 to z2. Therefore, there is a point q1 ∈ {a, b, c} such that
u1(q1) = 1 (there is no path from d0 to K \ {a, b, c} in Q \ {a, b, c}). Similarly, there
is a point q2 ∈ {a, b, c} such that u2(q2) = 1. Since there are paths in Q1(1) from d6

to q1 and in Q2(1) from e6 to q2, we also have u1(d6) = 1 and u2(e6) = 1. Note that
q1 and q2 are distinct and let q3 be the third point in {a, b, c}.

There are now six cases, each of which leads to a contradiction. To avoid treating
these cases separately, we proceed as follows. Let Z1 be the unique subspace of Q
which is homeomorphic to the circle, contains d6 and q1, but does not contain e6

and q2. Similarly, let Z2 be the unique subspace of Q which is homeomorphic to the
circle, contains e6 and q2, but does not contain d6 and q1. For instance, if q2 = c,
we have Z1 = abd6d7a and if q2 = b we have Z1 = ad7d6d5ck1k2k3k4a.

Now note that u1 must have a zero z1 somewhere in Z1 (otherwise Z1 ↪→ Q1(r)
would be non-trivial onH1 for some r > 0). Therefore u2(z1) = 1 and by unimodality

15This is necessary for the same reason as in Proposition 4.16.
16The graphs of these unimodal functions can also be found in Appendix A.
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there is a path in Q2(1) from q2 to z1. This path must contain the point q3 (there is
no path from q2 to Z1\{q1, q3, d6} in Q\{q1, q3, d6}), therefore u2(q3) = 1. Similarly,
u2 must have a zero z2 somewhere in Z2. Therefore u1(z2) = 1 and by unimodality,
there is a path in Q1(1) from q1 to z2 which must contain the point q3. We conclude
that u1(q3) = 1. As u1(q3)+u2(q3) = 2 6= 1 = f(q3), we have reached a contradiction,
thus concluding the proof.

Remark 4.4. Note that this counterexample can be modi�ed to work in any Rm,
m ≥ 2.

4.6 Proof in R2 if the Morse-Smale Graph is a Tree

Hickok, Villatoro and Wang describe in [43] how to compute the unimodal category
of a nonresonant function f : R2 → [0,∞) whose Morse-Smale graph is a tree. We
show that their results in fact also imply that the monotonicity conjecture is true
for such functions, which appears to have gone unnoticed, even though it follows
from their result almost immediately. So at least in the case of Morse functions,
the presence of cycles is an essential feature of counterexamples to the monotonicity
conjecture.

The concept of Morse-Smale graph used in [43] seems somewhat nonstandard,
and seems to be something akin to �the upper half of a splittable quasi-Morse-
Smale complex� in the language of [32], which is a nice exposition of Morse-Smale
complexes. This means that their structure only takes into account local maxima
(as vertices of the graph) and saddles (as the edges). Local minima seem to be
disregarded completely. Their de�nition can be phrased as follows.

De�nition. A Morse-Smale graph associated to a Morse function f : R2 → [0,∞)
is a weighted graph, embedded in R2, whose vertices are the local maxima of f and
whose edges are associated to the saddles of f in the following way: corresponding to
each saddle, the graph has precisely one edge, which is realized as a path connecting
two local maxima and passing through the saddle, so that the function values are
decreasing on the portion of the path between each maximum and the saddle. The
weight corresponding to a maximum m ∈ R2 is given by f(m) and the weight
corresponding to the edge associated to the saddle s ∈ R2 is given by f(s).

Note that a Morse-Smale graph is not uniquely determined by the function.

4.6.1 Path values

Following [43], we are going to use the concept of the path value, however, we phrase it
in a slightly di�erent way, which we feel should be more amenable to generalization.
In [43], this concept is de�ned using the concept of the Morse-Smale graph. We
prefer to bypass this using a somewhat more general de�nition, that applies to
general topological spaces. The bene�t of this approach is that we obtain new lower
bounds for general topological spaces.

De�nition. Let f : X → [0,∞) and x1, x ∈ X. Then the path value from x1 to x
is the number

PV(x1, x) = sup
γ∈Γ(x1,x)

min
t∈[0,1]

f(γ(t)),
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where Γ(x1, x) is the set of all paths γ : (I, 0, 1)→ (X, x1, x). If x1, x2, . . . , xn, x ∈ X,
we also de�ne the total path value from x1, x2, . . . , xn to x:

PV(x1, . . . , xn;x) =
n∑
i=1

PV(xi, x).

The concept of path value can be used to obtain lower bounds for ucat:

Proposition 4.19. Suppose f : X → [0,∞) is such that ucat(f) ≤ n ∈ N. Then
there exist points x1, x2, . . . , xn such that

PV(x1, . . . , xn;x) ≥ f(x)

holds for each x ∈ X.

Proof. Let f =
∑n

i=1 ui be a unimodal decomposition and choose points x1, . . . , xn
so that for each i, xi is a maximum of ui. Now, observe that for each x ∈ X we have
ui(x) ≤ PV(xi, x). This is because u−1

i [ui(x),∞) is path connected, so there exists
a path γ from xi to x such that ui(γ(t)) ≥ ui(x) holds for all t. Therefore

ui(x) = min
t∈[0,1]

ui(γ(t)) ≤ min
t∈[0,1]

f(γ(t)) ≤ PV(xi, x).

This implies

f(x) =
n∑
i=1

ui(x) ≤
n∑
i=1

PV(xi, x) = PV(x1, . . . , xn;x).

The converse of this proposition is not generally true, however, as the authors
of [43] observe, it is almost true in the case X = R2 under their de�nition of path
value. Namely, they prove the following result:

Theorem 4.20 ([43], Proposition 4.3). Suppose f : R2 → [0,∞) is a nonresonant
function whose Morse-Smale graph is a tree and there are local maxima x1, . . . , xn
(not necessarily distinct) such that

PV(x1, . . . , xn;x) > f(x)

holds for each local maximum x 6= xi (i = 1, 2, . . . , n). Then ucat(f) ≤ n.

This result relies on the fact that a nonresonant function whose Morse-Smale
graph is a tree always has a Morse-Smale graph which is a path. This allows the
authors to describe a general function of this kind in terms simple enough to allow for
the construction of an explicit unimodal decomposition, which is what they proceed
to do.

Remark 4.5. We note that the assumption of nonresonance which seems to have been
overlooked by the authors of [43] is crucial here, otherwise it could happen that the
Morse-Smale graph cannot be converted into a path. For instance, a function whose
critical sublevel sets are as depicted in the following picture, has a Morse-Smale
graph which is a tree, but which cannot be converted into a path by the procedure
described in [43].
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4.6.2 Monotonicity

Using the results of [43], we can now prove that the monotonicity conjecture holds
for any nonresonant function f : R2 → [0,∞) whose Morse-Smale graph is a tree.
This follows almost immediately from the characterization using path values.

Theorem 4.21. Suppose f : R2 → [0,∞) is a nonresonant function whose Morse-
Smale graph is a tree and 0 < p1 < p2 ≤ ∞. Then

ucatp1(f) ≤ ucatp2(f).

Proof. Let g = fp1 and p = p2
p1
. Note that g is again nonresonant and its Morse-

Smale graph is still a tree. By Lemma 2.1, the statement we wish to prove is
equivalent to

ucat(g) ≤ ucat(gp).

Suppose ucat(g) ≤ n. Then by Theorem 4.19, there exist points x1, . . . , xn such
that

n∑
i=1

PV(xi, x) ≥ g(x).

Now, if x is a local maximum of g distinct from all xi, i = 1, 2, . . . , n, at least two
path values PV(xi, x) must be nonzero, since otherwise they cannot sum to ≥ g(x).
By the usual norm inequalities, this immediately implies

n∑
i=1

PV(xi, x)p > g(x)p,

which, using Theorem 4.20, yields

ucat(gp) ≤ n,

as desired.
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5 Miscellanea

5.1 Higher Dimensions

5.1.1 Multimodal Functions

Given the successful application of the concept of Morse-Smale graphs which are
trees in the case of R2, it would be desirable to have a similar concept in Rm for
m > 2. In fact, such a graph can be de�ned if the function f : Rm → [0,∞) only
has critical points of indices m and m− 1.

However, we may be able to generalize this a bit. The main problem which we
are trying to avoid using the requirement that the Morse-Smale graph is a tree,
is the presence of cycles in the superlevel sets. As a more general notion, akin to
unimodality, that captures this, we propose the following:

De�nition. A function f : X → [0,∞) is multimodal if there is a M > 0 such
that each superlevel set f−1[c,∞) is homotopy equivalent to a �nite set of points
for 0 < c ≤M and empty for c > M .

Such a function cannot have any cycles that would allow us to force certain values
upon the unimodal summand in the decomposition as we did with the counterex-
amples in the plane, so it seems more likely that the following question could admit
a positive answer:

Question 1. Suppose X is a su�ciently nice space (for instance a manifold) and
f : X → [0,∞) is a multimodal function. Does this imply that ucatp(f) is monotone
in p?

To demonstrate that this is indeed a generalization of the case studied in [43],
we now prove the following result.

Proposition 5.1. Suppose f : Rm → [0,∞) is a multimodal nonresonant function
with compact support. Then f (restricted to f−1(0,∞), as per Convention in Section
2.3) has only critical points of index m and m− 1.

Proof. Consider instead the function −f and let Mx = (−f)−1(−∞, x] for each
x < 0. By Morse theory, it su�ces to prove that this function only has critical
points of index 0 and 1. Suppose −f has a critical point p of index i > 1 and
choose it so that the corresponding critical value a = −f(p) is minimal. Suppose
[a − ε, a + ε] contains no other critical values. By Theorem 2.5, up to homotopy,
passing a critical point of index i corresponds to attaching an i-handle, so Ma+ε

is homotopy equivalent to Ma−ε with an i-handle attached. However, attaching an
i-handle must either kill a homology class in Hi−1 or create a homology class in Hi.
In both cases, this is a contradiction: by multimodality, Ma−ε and Ma+ε are both
�nite unions of contractible sets, so such homology classes cannot exist.

5.1.2 Extension Lemma

In Section 3 we have proved Proposition 3.8 which shows that computing the uni-
modal category of functions on X = [0, 1] and on X = R is basically the same thing.
This fact has a straightforward generalization to the closed unit ball Bm in Rm.
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Lemma 5.2. Suppose f : Bm → [0,∞) is unimodal. Then we can extend it to a
compactly supported unimodal function f̃ : Rm → [0,∞) by de�ning

f̃(x) =


f(x); ‖x‖ ≤ 1,

(2− ‖x‖)f( x
‖x‖); ‖x‖ ∈ [1, 2],

0; ‖x‖ ≥ 2.

Proof. Suppose c > 0. Observe that Bm ∩ f̃−1[c,∞) = f−1[c,∞). This is con-
tractible because f is unimodal. Therefore we only need to construct a deformation
retraction H : f̃−1[c,∞)× I → f̃−1[c,∞) from f̃−1[c,∞) to Bm ∩ f̃−1[c,∞). De�ne
it as follows:

H(x, t) =

{
x; ‖x‖ ≤ 1,

(1− t)x+ t x
‖x‖ ‖x‖ ≥ 1.

If well de�ned, this is clearly a deformation retraction. We only have to verify that
it is indeed well de�ned. This is obvious for ‖x‖ ≤ 1. For ‖x‖ ≥ 1, we have to show
that x ∈ f̃−1[c,∞) implies v := (1− t)x+ t x

‖x‖ ∈ f̃
−1[c,∞). It is enough to establish

that
f̃(v) ≥ f̃(x).

Observe that ‖v‖ = (1− t)‖x‖+ t, so by de�nition of f̃ this reduces to proving that

2− ((1− t)‖x‖+ t) ≥ 2− ‖x‖,

which is equivalent to 1 ≤ ‖x‖ and therefore true.

This has the following straightforward corollary.

Corollary 5.3. Suppose f : Bm → [0,∞) is a continuous function. Associate to it
a function f̃ : Rm → [0,∞) as in the above lemma. Then

ucat(f) = ucat(f̃).

5.2 Open Questions

In this section we list several questions that we have not been able to resolve, to
outline some directions for future research that seem to be promising.

5.2.1 Other Notions of Category for Functions

We propose an alternative notions of category suitable for the study of distributions.
In the case of X = R it coincides with the unimodal category. In higher dimensions,
however, we can expect the behavior to be quite di�erent. We believe that the
notion is closely related to the notion of unimodal category and may prove useful in
establishing various bounds.

If in the condition of unimodality, we use path-connectedness instead of con-
tractibility, we obtain the following de�nition:

De�nition. A continuous function u : X → [0,∞) is π0-unimodal if there is a
M > 0 such that the superlevel sets u−1[c,∞) are path-connected for 0 < c ≤ M
and empty for c > M .
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This yields the following notion:

De�nition. Let p ∈ (0,∞). The π0-unimodal p-category ucatpπ0(f) of a function
f : X → [0,∞) is the minimum number n of π0-unimodal functions u1, . . . , un :

X → [0,∞) such that pointwise, f = (
∑n

i=1 u
p
i )

1
p . The π0-unimodal ∞-category is

de�ned analogously, using the ∞-norm instead.

Similarly, a notion of π̃0-unimodal p-category may be de�ned by using connect-
edness instead of path-connectedness. (Here π̃0(X) denotes the set of connected
components of X.) This notion is coarser than the notion of ucatp, so we expect
that it will turn out to be easier to compute. In that case, one particular use for
these concepts is that they provide lower bounds for ucatp(f). A possible approach
to computation of ucatpπ0(f) might be via Reeb graphs.

Question 2. Can ucatpπ0(f) be reconstructed from the Reeb graph of f?

Given that in our approach to constructing counterexamples to monotonicity,
cycles have been of fundamental importance, whereas the concept of ucatpπ0 allows
cycles of all kinds, it seems more plausible to expect that such a concept could be
monotone in p.

Question 3. Is ucatpπ0(f) monotone in p? What about ucatpπ̃0(f)?

Note that many other variations of the concept are possible.

Question 4. Are there other notions with interesting properties that can be ob-
tained by replacing contractibility by some other property in the de�nition of uni-
modality? Such properties might be for instance: convex, homeomorphic to a ball,
etc.

5.2.2 Continuity

Question 5. Suppose we do not assume continuity in the de�nition of unimodality.
Does this change the minimum number of summands a continuous function f : X →
[0,∞) can be decomposed into?

If X is pathological enough, the answer to this question is positive. For instance,
if X is the topologist's sine curve as in Section 2 and f : X → [0,∞) is a constant
function, for instance f ≡ 1, then ucat(f) =∞. However, f can be decomposed as
the sum of the two characteristic functions of the path components of X, which are
discontinuous unimodal functions. It is unclear, however, whether this phenomenon
can occur for nice spaces such as manifolds or CW complexes.

5.2.3 Morse-Smale Graphs

As mentioned in Section 4.6, the concept of Morse-Smale graph used by Hickok,
Villatoro and Wang disregards the local minima of the function completely. One
might speculate that this could be the reason why their approach is insu�cient
to treat the case where the graph contains cycles. This leads us to the following
open-ended question:
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Question 6. Can a more general and systematic treatment of the unimodal category
of Morse functions f : R2 → [0,∞) be given by taking into account the complete
structure of the Morse-Smale complex (in the sense of [32]) of the function f? Morse-
Smale complexes also make sense in R3, see [31]. What can be said in that case?

5.2.4 Graphs

Computation of ucat as well as its monotonicity for R and S1 follows by using
appropriate notions of sweeping. We have also seen that monotonicity fails for most
graphs.

Question 7. Which kinds of graphs admit sweeping algorithms? Can these algo-
rithms be used to establish mononicity in the case of trees? What about S1 ∨ I?

5.2.5 Cohomological Approach

In the study of Lusternik-Schnirelmann category [24], cohomological methods have
been very successful. For instance, one of the basic bounds that is used is

cupR(X) < cat(X).

A natural question is whether such cohomological methods can be developed for the
study of unimodal category. Of course, �rst an appropriate cohomology theory is
needed. If we expect such a theory to be functorial, it must be de�ned on a suitable
category of functions. One natural candidate seems to be the category whose objects
are functions X → [0,∞) and a morphism between two such functions X1 → [0,∞)
and X2 → [0,∞) is an appropriate commutative triangle. To be useful, one property
such a cohomology theory should have is that the cohomology ring of a unimodal
function is trivial. Furthermore, it should be additive with respect to functions
with disjoint supports. The other properties are not immediately clear. One issue
that arises is that the notion of unimodal category does not seem to be homotopy
invariant in any sense. This is analogous to the notion of gcat, which is also not a
homotopy invariant.

Question 8. Can such a cohomology theory be constructed?

In both counterexamples on the plane, we studied various paths in the superlevel
sets of the functions to establish that the unimodal category cannot be less than
three.

Question 9. Is it possible to establish some kind of �path calculus� to automatize
this process?

Note that �path calculus� in this case might turn out to be just another term
for �cohomology theory�. Speculating further, the fact that certain paths intersect
might be amenable to a description using cup products. Next, we note that paths
also play a crucial role in the approach used by [43]. Namely, their notion of path
value is basically the largest value such that the corresponding superlevel set still
contains a path between the two points we are interested in.

Question 10. Should the cohomology theory in question be based on the concept
of path value?



6 Approximate Nerve Theorem

6.1 ε-Acyclic Covers

Here we introduce the notion of an ε-acyclic cover. For convenience, we �nd it
easier to work with the notion of interleaving and modules rather than persistence
diagrams. However, we also include the diagrams for the de�nitions, for complete-
ness and to help with intuition.

In the classical setting of Theorem 1.2, we assume that each non-empty �nite
intersection UI has the homology of a point. In our case, we wish to assume that the
homology of each non-empty intersection UI is ε-close to the homology of a point;
speci�cally, we require that the two homologies are ε-interleaved.

To be more precise, for each a ∈ Z, we de�ne pta to be the Z-�ltered simplicial
complex consisting of a single point, with the �ltration de�ned by the requirement
that ptja = ∅ for j < a and ptja = {∗} for j ≥ a.

De�nition. A non-empty Z-�ltered simplicial complex X is (persistently) acyclic if
it has the persistent homology of a point, i.e. H∗(X) ∼= H∗(pta) for some a ∈ Z. It
is ε-acyclic if its persistent homology is ε-interleaved with the persistent homology
of a point, i.e. H∗(X)

ε∼ H∗(pta) for some a ∈ Z.

In other words, ε-acyclicity means that Hq(X)
ε∼ 0 for q 6= 0 and H0(X)

ε∼ tak[t]
for some a ∈ Z. A persistence module M that is ε-close to the trivial module 0,
i.e. M ε∼ 0 is said to be ε-trivial. The same understanding applies to persistence
diagrams.

The persistence diagram of an acyclic complex consists of only the diagonal in
degrees other than 0, and a single point of the form (a,∞) in degree 0 representing
the essential class (corresponding to the �rst component that appears), while the
persistence diagram of an ε-acyclic complex consists of points which are at most
ε-away from the diagonal (see Figure 4) and a single point (a,∞) in degree 0.

Figure 4: On the left, we have a trivial persistence diagram and on the right an
ε-trivial persistence diagram, where points can occur with any multiplicity within
the shaded region.

We can now de�ne an ε-acyclic cover.

De�nition. Let ε ∈ N0. We say that the �ltered cover U of X is an ε-acyclic cover
if for each I ∈ N (U) there is an a ∈ Z such that H∗(UI)

ε∼ H∗(pta).
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Assuming U is an ε-acyclic cover of X, our aim is to prove that H∗(X) and H∗(N )
are η-interleaved, where η is bounded above in terms of ε and possibly some other
parameter. To help with intuition, we now relate the double complex we use in the
spectral sequence with the notion of an ε-acyclic cover. This is best expressed in
terms of the E1 pages. The E1 page of an acyclic cover and an ε-acyclic cover are
shown in Figure 5. For q > 0, the elements are 0 or ε-interleaved with 0 respectively.
For q = 0, each element or non-empty intersection yields one essential class. Since

E1
p,0 =

⊕
|I|=p+1

H0(UI),

the meaning of ε-acyclicity is that each element of the E1-page is either an essential
class corresponding to some I ∈ N (U) or ε-trivial.

0

0

0

0

0

0

E1
0,0 E1

1,0 E1
2,0

E1
0,1

ε∼ 0

E1
0,2

ε∼ 0

E1
1,1

ε∼ 0

E1
1,2

ε∼ 0

E1
2,1

ε∼ 0

E1
2,2

ε∼ 0

E1
0,0 E1

1,0 E1
2,0

Figure 5: The E1 page of an acyclic cover (left) and an ε-acyclic cover (right). In the
case of an acyclic cover, the spectral sequence degenerates on the E2 page because
the non-trivial terms are concentrated in the �rst row. For the ε-acyclic cover, the
terms above the �rst row are only required to be ε-trivial.

The notion of ε-acyclicity need only hold at the level of homology, or equiva-
lently, the interleaving is de�ned on the E1-page of the spectral sequence. Consider
the corresponding condition at the chain level, i.e. the cover is interleaved with an
acyclic cover at the chain level. This implies that the terms on the E0-page are
ε-interleaved. It is straightforward to check that an interleaving on the E0-page
induces an interleaving on the total complex and hence on the persistent homology.
This observation combined with the lower bounds presented in Section 6.7 illus-
trates that ε-acyclicity is a strictly weaker requirement than requiring chain level
interleaving as well as that in certain natural cases, chain level interleavings do not
exist.

6.1.1 Construction

Here we describe an explicit construction of the �ltration for the nerve. Recall the
standard construction for the nerve, as given in Section 2.4. In our case, however,
the cover elements Ui are �ltered by functions fi, and the space X has a �ltration
as well, given by f = mini∈Λ fi. Therefore, we must also describe a function g on
the nerve. One natural construction is the following. For I ∈ N , de�ne

g(I) = min{j | U j
I 6= ∅}. (4)
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That is, we place a simplex in the �ltration, the �rst time the intersection is not
empty. Note there are numerous other constructions, such as taking the average or
maximum value which may make more sense in certain cases. It is clear that the
sublevel sets of g de�ne a �ltration on the nerve.

6.2 Left and Right Interleavings

We extend the usual notion of interleaving to left and right interleaving. This is a
re�nement of interleaving and certain structural properties will be useful for proving
our main result. Readers may skip this section and replace the notions of left and
right interleaving in Section 6.5 simply by interleaving, since this is all that is needed
for the easy result (Theorem 6.23). The main result in this section is Proposition
6.11. We note that a similar result could be obtained using the techniques in [5] by
considering matchings between barcodes. One drawback of using matchings is that
it requires the persistence module to be pointwise �nite dimensional [5] or at least
have an interval decomposition. Our alternative approach has no such requirement,
as it applies to modules where no such decomposition exists.

This represents a new viewpoint on interleavings since left and right interleavings
are asymmetric leading to several di�erent types of composition (addressed in Propo-
sition 6.11). Though we only use one type of composition in Section 6.5, the others
are included for completeness as well as to highlight an interesting phenomenon. We
show that for most types of composition of right and left interleavings, the factors
are not additive but rather take the maximum of the two component interleavings.
Except for one speci�c case, this holds for more general persistence theories such
as persistence over Z [55] and with appropriate modi�cation, to multidimensional
persistence [47]. The exception is the fourth case in Proposition 6.11, which has the
additional requirement of having projective dimension 1. Unfortunately, this is pre-
cisely the case used in Section 6.5. We conjecture that this is not an artifact of the
proof technique but that the statement does not hold for this type of composition
in the case of more general persistence modules. If so, we believe this asymmetry
is of independent interest. Finally, we show an equivalence between a general inter-
leaving and a sequence of right and left interleavings. This decomposition can be
interpreted as �shortening� and �lengthening� bars, but holds even when a barcode
does not exist.

In order to prove our result, we must work with approximations of persistence
modules e�ciently. In particular, we must be able to estimate kernels and cokernels
of maps. Intuitively, given a map whose codomain is approximately zero, the kernel
should be approximately equal to the domain. The following proposition justi�es
this intuition. We remind the reader that �morphism� always means 0-morphism,
i.e. it is assumed that degrees are preserved.

Proposition 6.1. Let g : N → P be a morphism of k[t]-modules and P ε∼ 0. Then,
N

2ε∼ ker g. In fact, φ : N → ker g and ψ : ker g → N de�ned by φ(n) = t2εn and
ψ(m) = m satisfy φψ = id2ε and ψφ = id2ε.

Proof. The equalities follow directly from the de�nitions of φ and ψ. Therefore,
(φ, id2ε ψ) is a 2ε-interleaving. We only have to verify that φ is well de�ned. To see
this, note that P ε∼ 0, so multiplication by t2ε is the zero map on P . This means
that for any n ∈ N , we have t2εn ∈ ker g, because g(t2εn) = t2εg(n) = 0.
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The analogous statement for cokernels is also true by the dual argument.

Proposition 6.2. Let f : M → N be a morphism of k[t]-modules and M
ε∼ 0.

Then, N 2ε∼ coker f . In fact, η : N → coker f and θ : coker f → N de�ned by
η(n) = [n] and θ([n]) = t2εn satisfy ηθ = id2ε and θη = id2ε.

Proof. Again, the two equalities follow directly from the de�nitions and (id2ε η, θ)
is a 2ε-interleaving. We only have to verify that θ is well de�ned. To see this, note
that M ε∼ 0, so t2εM = 0 and thus t2ε im f = 0. Now suppose [n1] = [n2]. It follows
that n1 − n2 ∈ im f , so t2ε(n1 − n2) = 0, concluding the proof.

As described in Section 2.5, interleavings de�ne a metric between modules. It
turns out, however, that the interleavings arising in these two situations have some-
what special properties, so they deserve separate de�nitions to distinguish them
from ordinary interleavings. We will exploit the properties of such interleavings to
obtain tight bounds in the approximate nerve theorem.

De�nition. Suppose M and N are k[t]-modules. We say that M and N are 2ε-left
interleaved and write M 2ε∼L N if there is a k[t]-module P ε∼ 0 and a short exact
sequence of the form 0→M → N → P → 0.

De�nition. Suppose N and P are k[t]-modules. We say that N and P are 2ε-right
interleaved and write N 2ε∼R P if there is a k[t]-module M ε∼ 0 and a short exact
sequence of the form 0→M → N → P → 0.

Remark 6.1. Note that these de�nitions are not symmetric, i.e. M 2ε∼L N does not
imply N 2ε∼L M and N 2ε∼R P does not imply P 2ε∼R N . To see the asymmetry, let M
consist of one generator born at j = 0 with one relation at j = a+ 2ε, and N have
one generator born at j = 0 with one relation at j = a. The kernel of the obvious
map is ε-interleaved with 0; hence M and N are ε-left interleaved. In fact, there
exists no 0-morphism from N → M , hence their right or left interleaving distance
is in�nite.

We now prove some properties of left and right interleavings. As mentioned
above, left and right interleavings are not symmetric, but they do still satisfy the
triangle inequality. Positive de�niteness also holds, but this is easy to see by de�ni-
tion � simply take the 0 morphism.

Before continuing, we establish a basic proposition, similar in spirit to Proposi-
tions 6.1 and 6.2.

Proposition 6.3. Suppose we are given an exact sequence

0→M
i−→ N

f−→ P → 0

where M ε1∼ 0 and P ε2∼ 0. Then N ε1+ε2∼ 0.

Proof. We need to show that t2(ε1+ε2)N = 0. Let n ∈ N . Note that f(t2ε2n) =
t2ε2f(n) = 0, since t2ε2P = 0, so m = t2ε2n ∈ ker f = M . Therefore t2(ε1+ε2)n =
t2ε1m = 0, since t2ε1M = 0.

Our main motivation for introducing left and right interleavings is to study how
the metrics between modules act with respect to composition. We show that
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• the approximation factors are additive under composition of the same types
of interleaving (i.e. left with left or right with right),

• only the maximum of the approximation factors is relevant when composing
di�erent types of interleaving (i.e. left with right or right with left).

We �rst require some basic structural propositions.

Proposition 6.4. Suppose f : M → N and g : N → P are morphisms of modules.
Then there is exact sequence of the form

0→ ker f → ker gf → ker g → coker f → coker gf → coker g → 0

Proof. Note that the diagrams

0 M M 0

0 ker g N P

id

g

f gf

M N coker f 0

0 P P 0

f

id

gf g

have exact rows. Applying the snake lemma to each of these diagrams, we obtain
exact sequences

0→ ker f → ker gf → ker g → coker f → coker gf

and
ker gf → ker g → coker f → coker gf → coker g → 0

By construction, the two maps ker g → coker f are actually the same, so splicing
the two sequences yields

0→ ker f → ker gf → ker g → coker f → coker gf → coker g → 0

as desired.

This immediately yields two useful corollaries, dual to each other.

Corollary 6.5. Suppose f : M → N and g : N → P are morphisms of modules
with g injective. Then the sequence

0→ coker f → coker gf → coker g → 0

is exact.

Corollary 6.6. Suppose f : M → N and g : N → P are morphisms of modules
with f surjective. Then the sequence

0→ ker f → ker gf → ker g → 0

is exact.

Using these, we may now prove the triangle inequality for left interleavings.
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Proposition 6.7. Suppose M 2ε1∼L N and N 2ε2∼L P . Then M
2(ε1+ε2)∼L P .

Proof. The assumptions mean that we have exact sequences

0→M
i−→ N

f−→ coker i→ 0 and 0→ N
j−→ P

g−→ coker j → 0

with coker i
ε1∼ 0 and coker j

ε2∼ 0. Since j is injective, we have

0→ coker i→ coker ji→ coker j → 0

by Corollary 6.5, so coker ji
ε1+ε2∼ 0 by Proposition 6.3. Observing that the sequence

0→M
ji−→ P → coker ji→ 0

is exact completes the proof.

The same result holds for right interleavings.

Proposition 6.8. Suppose M 2ε1∼R N and N 2ε2∼R P . Then M
2(ε1+ε2)∼R P .

Proof. By the assumptions, there are exact sequences

0→ ker f
i−→M

f−→ N → 0 and 0→ ker g
j−→ N

g−→ P → 0

with ker f
ε1∼ 0 and ker g

ε2∼ 0. Since f is surjective, we have

0→ ker f → ker gf → ker g → 0

by Corollary 6.6, so ker gf
ε1+ε2∼ 0 by Proposition 6.3. Observing that the sequence

0→ ker gf →M
gf−→ P → 0

is exact completes the proof.

The previous results are required to show that the interleavings are in a sense
closed under composition, e.g. composing two left interleavings (with a suitable
ordering of terms), yields a left interleaving (with an additive approximation factor).
Now, we show the more interesting property: most combinations of the di�erent
notions of interleavings do not interact, i.e. composition yields the maximum of the
two rather than an additive factor. First, we show that if composition is not in
the natural order as in Propositions 6.8 and 6.7, the interleavings do not yield an
additive factor.

Proposition 6.9. Suppose one of the following two possibilities holds,

M
2ε∼L N and P

2ε∼L N, or M
2ε∼R N and P

2ε∼R N,

then M 2ε∼ P .
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Proof. In the �rst case, we have the following two exact sequences:

0→M
i−→ N

f−→ X → 0 and 0→ P
g−→ N

j−→ Y → 0

Similarly in the second case, we have:

0→ X
f−→M

i−→ N → 0 and 0→ Y
j−→ P

g−→ N → 0

In both cases, by assumption X ε∼ 0 and Y ε∼ 0. By Propositions 6.1 and 6.2, for
both cases there are 2ε-interleavings (φ, ψ) of M and N and (η, θ) of P and N .
These �t into the following commutative diagram, where the horizontal arrows are
ordinary morphisms and all other arrows are 2ε-morphisms.

M N P

M N P

M N P

i g

i g

i g

t2ε t2ε t2ε
ψ θ

t2ε t2ε t2ε
ψ θ

By inspection of this diagram, we see that (θi, ψg) is a 2ε-interleaving of M and
P .

Proposition 6.10. Suppose one of the following two possibilities holds,

N
2ε∼L M and N

2ε∼L P, or N
2ε∼R M and N

2ε∼R P,

then M 2ε∼ P .

Proof. The proof is similar as above. For each case, we get two pairs of exact
sequences

0→ N
i−→M

f−→ X → 0 and 0→ N
g−→ P

j−→ Y → 0

and
0→ X

f−→ N
i−→M → 0 and 0→ Y

j−→ N
g−→ P → 0

with X ε∼ 0 and Y ε∼ 0. Again, by Propositions 6.1 and 6.2, we have 2ε-interleavings
(φ, ψ) of N and M and (η, θ) of N and P , which �t into the following commutative
diagram, where the horizontal arrows are ordinary morphisms and all other arrows
are 2ε-morphisms.
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M N P

M N P

M N P

i g

i g

i g

t2ε t2ε t2ε
ψ θ

t2ε t2ε t2ε
ψ θ

By inspection of this diagram, we see that (gψ, iθ) is a 2ε-interleaving of M and
P .

Finally, we show that all other combinations of left and right interleavings do
not interact, i.e. composing a 2ε-left interleaving followed by a 2ε-right interleaving
still yields a 2ε-interleaving. As the two notions are not symmetric, there are four
such possible cases to treat. It turns out that three of the four cases can be handled
directly, while the fourth is more involved.

Proposition 6.11. Suppose one of the following four possibilities holds:

• M 2ε∼L N and N 2ε∼R P ,

• N 2ε∼L M and N 2ε∼R P ,

• M 2ε∼L N and P 2ε∼R N or

• N 2ε∼L M and P 2ε∼R N .

Then M 2ε∼ P .

Proof. We treat each possibility separately.
First case. We give a direct argument. There are exact sequences

0→M
i−→ N

f−→ X → 0 and 0→ Y
j−→ N

g−→ P → 0

that is M = ker f and P = coker j with X
ε∼ 0 and Y

ε∼ 0. The interleaving
maps φ : M → P and ψ : P → M may be de�ned explicitly by the formulae
φ(m) = t2εg(i(m)) and ψ([n]) = t2εn. Here, [n] = g(n) is the class in coker j
represented by n ∈ N . Note that t2εn ∈ M , since X ε∼ 0. It is clear that φ is well
de�ned. To show that ψ is well de�ned, observe that Y ε∼ 0 implies t2εY = 0 and
therefore, t2ε im j = 0, so if [n1] = [n2], we have t2εn1 = t2εn2.

We remark that shifting by 2ε is not necessary for the �rst map to be well de�ned
and is only done to adhere to the de�nition of interleaving. In fact, without this
shifting we already have that (gi) ◦ψ = id2ε and ψ ◦ (gi) = id2ε, which is important,
as it is used in the proof of Proposition 6.12.

Second case. There are exact sequences

0→ N
i−→M

f−→ X → 0 and 0→ Y
j−→ N

g−→ P → 0
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with X ε∼ 0 and Y ε∼ 0. There are 2ε-interleavings (φ, ψ) of N and M and (η, θ) of
N and P , which �t into the same commutative diagram as in the proof of Proposi-
tion 6.10. Similarly, we conclude that (gψ, iθ) is a 2ε-interleaving of M and P .

Third case. There are exact sequences

0→M
i−→ N

f−→ X → 0 and 0→ Y
j−→ P

g−→ N → 0

with X ε∼ 0 and Y ε∼ 0. There are 2ε-interleavings (φ, ψ) of N and M and (η, θ) of
N and P , which �t into the same commutative diagram as in the proof of Proposi-
tion 6.9. Similarly, we conclude that (θi, ψg) is a 2ε-interleaving of M and P .

Fourth case. There are exact sequences

0→ N
i−→M

f−→ X → 0 and 0→ Y
j−→ P

g−→ N → 0

with X ε∼ 0 and Y ε∼ 0. To the latter, we associate the following long exact sequence
of Ext-modules17:

0 // Hom(X, Y ) // Hom(X,P ) // Hom(X,N) //

// Ext(X, Y ) // Ext(X,P ) // Ext(X,N) // 0

Note that all higher Ext-modules are 0. To see this, recall that the projective dimen-
sion projdim(X) of a k[t]-module X is the smallest n ∈ N0 such that Extn+1(X,M)
vanishes for all k[t]-modules M (see [57, Proposition 8.6]). It is known that any
module over a principal ideal domain has projective dimension at most 1, so in par-
ticular Ext2(X, Y ) = 0, as desired. (There is a slight subtlety here that the number
projdim(X) could in principle depend on whether X is regarded as a k[t]-module or
a k[t](NGr)-module. That this is not the case follows from [52, Corollary 3.3.7].)

In particular, Ext(X,P ) → Ext(X,N) is an epimorphism. Using the classical
interpretation of elements of Ext-modules as (equivalence classes of) extensions of
modules and maps between them as morphisms of such extensions implies that there
is a map of extensions

0 P Q X 0

0 N M X 0

g h id

Now, using the snake lemma on this diagram, we see that the sequence

0→ ker g → kerh→ ker id→ coker g → cokerh→ coker id→ 0

is exact. Since ker g = Y and coker g = ker id = coker id = 0, the sequence

0→ Y → Q→M → 0

is exact. Therefore Q 2ε∼R M and P 2ε∼L Q, so the fourth case reduces to the �rst
case.

17Note that Hom-modules consist of morphisms of k[t]-modules. These are degree-preserving.

The appropriate notion of Ext-module needs to re�ect this. In particular, the maps used in the

relevant projective resolutions must also be degree-preserving.
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Intuitively, the notion of left and right interleavings corresponds to the notion
of shortening (respectively lengthening) bars by changing birth and death times.
This was described in [5] using matchings. The main advantage of using short
exact sequences is that the independence between modifying birth and death times
can be captured without a decomposition existing. It also gives an alternative
algebraic characterization of when this holds, namely that the projective dimension
is one. To make this connection concrete, we prove that every interleaving admits
a decomposition into left and right interleavings. We also show the converse, giving
a characterization of an interleaving given a decomposition. We �rst require one
additional de�nition.

De�nition. If S is a persistence module, there is an ε-shifted module S(ε) which is
a reparameterization of S by

Sα(ε) = Sα+ε.

Proposition 6.12. There exists an interleaving M 2ε∼ S if and only if ∃N,P,Q such
that

M
2ε∼R N,

Q
2ε∼L P,

N
2ε∼L P,

S
2ε∼R Q.

Proof. We �rst show if M is 2ε-interleaved with S then N,P, and Q exist. First,
we construct an interpolation. Let Z be such that M ε∼ Z with the interleaving
maps (ξ, η) and S ε∼ Z with the interleaving maps (ζ, ν). For the construction of
the interpolated module, see [16]. Now we set

P = Z(ε)

the shifted version of Z. Then let

f : M → Z(ε) and g : S → Z(ε)

where f and g are the interleaving maps ξ and ζ respectively. Note that as mor-
phisms into Z(ε), f and g are 0-morphisms, that is, they are ungraded morphisms.
Setting

N = im f and Q = im g

we have the following set of short exact sequences:

0 ker f M im f 0

0 im f Z(ε) coker f 0

0 im g Z(ε) coker g 0

0 ker g S im g 0

We can directly verify that ker f , coker f , coker g and ker g are ε-interleaved with
0, hence completing the proof. In the other direction, assume N,P, and Q exist.
This gives rise to the following short exact sequences, where the ε denote (possibly
distinct) modules ε-interleaved with 0.
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0 ε M N 0

0 N P ε 0

0 Q P ε 0

0 ε S Q 0

i

j◦i

j

∼=

k

`

k◦`

If we consider the composition of the �rst two exact sequences and the last two,
we are in the fourth case of Proposition 6.11. This implies that there exists a
2ε-morphism ϕ : P → M and ψ : P → S, each of which is the component of
an appropriate interleaving. Hence, we can consider the following commutative
diagram:

M P S

M P S

M P S

j ◦ i k ◦ `

j ◦ i k ◦ `

j ◦ i k ◦ `

t2ε t2ε t2εϕ ψ

t2ε t2ε t2εϕ ψ

This diagram commutes, since t2ε = ϕ ◦ j ◦ i and t2ε = ψ ◦ k ◦ ` by the remark
in the proof of the �rst case of Proposition 6.11. Hence, we have the required
2ε-interleaving given by (ψ ◦ j ◦ i, ϕ ◦ k ◦ `).

This decomposition helps give an interpretation to right and left interleaving
in the case where the barcode exists. The �rst short exact sequence is a right
interleaving which shortens bars by changing the death time of a bar; the second
sequence is a left interleaving, which lengthens the bars by changing the birth time
of a bar; the third sequence is again a left interleaving which now shortens the bars
by changing the birth time; �nally the last sequence is a right interleaving which
lengths bars by changing the death time. This interpretation of shortening and
lengthening bars leads us to the following conjecture.

Conjecture. For each i = 1, 2, 3, 4, let X 2ε∼i Y denote one of the following four
types of interleavings, so that each of these interleaving types occurs precisely once:

X
2ε∼R Y, Y

2ε∼R X, X
2ε∼L Y or Y

2ε∼L X.

Then, there exists an interleaving M 2ε∼ S if and only if ∃N,P,Q such that

M
2ε∼1 N

2ε∼2 P
2ε∼3 Q

2ε∼4 S.
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Essentially, we should be able to shorten and lengthen bars (when these notions
are well de�ned) in any order, rather than just the order we list in Proposition 6.12.
Note since we use the fourth case of Proposition 6.11, the results do not hold for
general persistence modules, but rather require projective dimension one. We believe
this approach may help highlight what results hold for more general modules.

Remark 6.2. We note that it is likely that Example 6.8 in [5] may be modi�ed to
provide a counter-example to Proposition 6.12 for multi-parameter (or multidimen-
sional) persistence modules. This alternate characterization of the decomposition of
interleavings may provide a di�erent perspective on how interleavings can interact
in the case of more general modules.

We conclude this section with the analysis of a special case: when a module
is ε-interleaved with the trivial module. This was studied extensively in [59] for
more complicated modules. Unfortunately, the results were not applicable directly;
however, the connection of left and right interleavings with [59] remains open. We
conclude with a lemma that further illustrates that interleaving with the trivial
module has special structure.

Lemma 6.13. If a module is ε-interleaved with 0, then it is both right and left
2ε-interleaved with 0.

Proof. To prove the result, we consider the following short exact sequences illustrat-
ing left and right interleaving respectively:

0→ 0
t2ε−→ A

∼=−→ coker(t2ε)→ 0

0→ ker(t2ε)
∼=−→ A

t2ε−→ 0→ 0

It follows directly that ker(t2ε) and coker(t2ε) are ε-interleaved with 0, fu�lling the
de�nitions of right and left interleaving and hence A is both 2ε-left and right inter-
leaved with 0.

6.3 Approximating Higher Pages

The main work in the proof is to track the approximation factors through the spectral
sequence. Let E be the Mayer-Vietoris spectral sequence associated to (X,U). In the
acyclic case, as in the case for many spectral sequences, the sequence collapses on the
second page. Furthermore, the special structure of the second page, i.e. E2

p,q = 0 for
q > 0, eliminates the possibility of extension problems. This allows for the homology
of the space to be read o� from the bottom row, and hence corresponding with the
homology of the nerve (Theorem 1.2). The extension problems which arise in our
setting are further discussed in Section 6.4.

Therefore, a natural �rst step is to compare the bottom row of the E2 page with
the homology of the nerve.

Proposition 6.14. If U is an ε-acyclic cover of X, (E1
∗,0, d

1
∗,0) and (C∗(N ), ∂) are

2ε-interleaved as chain complexes.
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Proof. The interleaving maps φp : E1
p,0 → Cp(N ) and ψp : Cp(N )→ E1

p,0 are de�ned
by the formulae

φp([v], I) = tdeg(v)−deg(I)+2εI and ψp(I) = t2ε([vI ], I),

where vI ∈ V is any vertex such that deg vI = deg I. Note that the de�nition of
ψ requires a choice of vI , but since U is an ε-acyclic cover, t2ε[vI ] is independent of
this choice, so ψ is well de�ned.

A straightforward calculation now shows that (φ, ψ) is a 2ε-interleaving and
that φ and ψ commute with the di�erentials ∂ and d1. (For the latter note that the
di�erentials only really act on the information coming from the nerve, i.e. I, while
the interleaving maps preserve this information.)

Using Lemma 2.17, this immediately yields:

Corollary 6.15. If U is an ε-acyclic cover of X, then E2
∗,0 and H∗(N ) are 2ε-

interleaved as graded modules.

Note that setting ε = 0 recovers Theorem 1.2. We now observe that in the nerve
construction, the dimension of the nerve is D = dimN , all (D+ 1)-intersections are
empty and hence 0. In this case, Corollary 6.15 can be sharpened:

Remark 6.3. For d ≥ D+ 1, E2
d,0 and Hd(N ) are both trivial and hence isomorphic.

The next step is to establish a relation between E2 and E∞.

Proposition 6.16. If U is an ε-acyclic cover of X, then Er
p,q

ε∼ 0 holds for all p ∈ Z
and q 6= 0 and all r ≥ 1.

Proof. Using
E1
p,q =

⊕
|I|=p+1

Hq(UI)

(see Equation (2)) and the de�nition of ε-acyclic cover, we obtain the claim for E1
p,q

with q > 0. Since all the Er
p,q with r > 1 are subquotients of E1

p,q, the claim is now
a direct consequence of Corollary 2.8.

We can now prove the following proposition:

Proposition 6.17. If U is an ε-acyclic cover of X, then Er+1
∗,0

2ε∼L Er
∗,0 as graded

modules for all r ≥ 2.

Proof. Notice that Er+1
p,0 = ker drp,0, since the domain of drp+r,−r+1 is 0. We conclude

that ker drp,0
2ε∼L Er

p,0 is true by the de�nition of left interleaving, since Er
p−r,r−1

ε∼ 0
by Proposition 6.16.

If the spectral sequence collapses after �nitely many steps, E2 may already give a
good approximation to E∞. This happens, for instance, if dimension of the nerve or
underlying space are �nite. We de�ne D := dimN , the maximum dimension of any
simplex in N . Since simplices in N correspond to non-empty intersections of cover
elements, D is also the smallest number such that any intersection of more thanD+1
distinct cover elements is empty. Note that in the following the number of pages
required until the spectral sequence collapses may be bounded by the dimension of
the underlying space.
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Theorem 6.18. If U is an ε-acyclic cover of X and 0 < D <∞, then E∞∗,0
2(D−1)ε∼L

E2
∗,0 as graded modules. For D = 0, 1 we have E∞∗,0 ∼= E2

∗,0.

Proof. Since the intersections of more than D + 1 cover elements are necessarily
empty, Er

p,q = 0 holds for all p > D. Therefore, for r > D, we have dr = 0, since
either the domain or codomain of each drp,q is zero. This immediately implies that
the spectral sequence has collapsed by the (D+1)-th page, i.e. ED+1 = ED+2 = . . ..
This concludes the proof for D = 0. For D > 0, using Proposition 6.17, this shows
that

E∞∗,0 = ED+1
∗,0

2ε∼L ED
∗,0

2ε∼L . . .
2ε∼L E3

∗,0
2ε∼L E2

∗,0

and therefore E∞∗,0
2(D−1)ε∼L E2

∗,0 by the triangle inequality for left interleavings.

Remark 6.4. For dimension d > D, since all the modules are trivial, it follows that
E∞d,0
∼= Hd(N ).

A similar argument shows a weaker property without any assumptions on the
dimension of the nerve.

Theorem 6.19. If U is an ε-acyclic cover of X and n > 0, we have E∞n,0
2(n−1)ε∼L E2

n,0.
For n = 0 we have E∞n,0 ∼= E2

n,0.

Proof. Observe that for r > n > 0, we have drn,0 = 0 and drn+r,−r+1 = 0, since
Er
n−r,r−1 and Er

n+r,−r+1 are zero. Therefore, En+1
n,0 = En+2

n,0 = . . .. Combined with
Proposition 6.17, this shows that

E∞n,0 = En+1
n,0

2ε∼L En
n,0

2ε∼L . . .
2ε∼L E3

n,0
2ε∼L E2

n,0

and therefore E∞n,0
2(n−1)ε∼L E2

n,0 by the triangle inequality for left interleavings.
The case n = 0 holds since for r > 1 all di�erentials to and from Er

0,0 are zero.

6.4 From E∞ to Homology

If there were no extension problems, the direct sum of the antidiagonals on the E∞

page of the spectral sequence would be isomorphic to the homology of the space,
and completing the proof would be straightforward. However, when dealing with
persistence modules, we do have to worry about extensions. As noted before, in the
acyclic case, E2

p,q = 0 for all q > 0, so the only possible extension is the trivial one. If
we replace the ε-modules below by 0, we see that each step becomes an isomorphism.
We now show how to infer an approximate nerve theorem from these results. For
technical reasons, we have to distinguish between several cases depending on the
dimension of the nerve and beyond that dimension.

Proposition 6.20. If U is an ε-acyclic cover of X and D < ∞, Hd(X)
2dε∼R E∞d,0

holds for 0 ≤ d ≤ D.

Proof. By Theorem 2.16, we already know that E converges to H∗(X). Explicitly,
this means that a �ltration (H∗(X)p)p∈Z is de�ned on H∗(X) such that

E∞p,q
∼=

Hp+q(X)p

Hp+q(X)p−1
.
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In the process of reconstructing Hn(X) = Hn(X)n from E∞p,q with p+q = n, we there-
fore encounter a series of extension problems. The e�ect of each of these extension
problems in our case, however, is simply to add an error of 2ε to our approximation
of Hn(X). Speci�cally, we have

Hn(X)n

Hn(X)p−1

2ε∼R
Hn(X)n

Hn(X)p
(5)

for each p 6= n (equivalently q 6= 0). To see this, observe that the sequence

0→ Hn(X)p

Hn(X)p−1
→ Hn(X)n

Hn(X)p−1
→ Hn(X)n

Hn(X)p
→ 0 (6)

is exact and

Hn(X)p

Hn(X)p−1
= E∞p,q

ε∼ 0 (7)

holds by Proposition 6.16 if q 6= 0. Since the left most term is ε-interleaved with
0, (5) then follows by the de�nition of right interleaving. The claim now follows
inductively. For 0 ≤ n ≤ D, we have

Hn(X) ∼=
Hn(X)n

Hn(X)−1

2ε∼R . . .
2ε∼R

Hn(X)n

Hn(X)n−2

2ε∼R
Hn(X)n

Hn(X)n−1
∼= E∞n,0,

Since n ≤ D, there are at most D 2ε-right interleavings, proving the result by
Proposition 6.8.

Note that in the case where ε = 0, the extensions become trivial as the maps
in the �ltration are isomorphisms by exactness. The second case is for Hd(X) when
d > D.

Proposition 6.21. If U is an ε-acyclic cover of X and D <∞, Hd(X)
2(D+1)ε∼R E∞d,0

holds for d > D.

Proof. For n > D, we use the fact that E∞p,q ∼= 0 holds for all p > D (equivalently
q < n−D). The short exact sequence (6) for these p implies that

Hn(X)n

Hn(X)D
∼=

Hn(X)n

Hn(X)D+1
∼= . . . ∼=

Hn(X)n

Hn(X)n−1
.

Using (6) and (7) we obtain the following sequence of right interleavings

Hn(X) ∼=
Hn(X)n

Hn(X)−1

2ε∼R . . .
2ε∼R

Hn(X)n

Hn(X)D−1

2ε∼R
Hn(X)n

Hn(X)D
∼=

Hn(X)n

Hn(X)n−1
∼= E∞n,0.

By counting that there are (D + 1) 2ε-right interleavings, we obtain the result.

For completeness, we add one further case: where the dimension of the space is
lower than the dimension of the nerve. For example, the nerve of a cubical cover
of k-dimensional Euclidean space has D = 2k. We could redo much of our work
for cubical complexes; however, the following result shows this is unnecessary. Let
∆ := dimX. For the case, D > ∆ we show the approximation constant depends on
∆ instead of D.
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Proposition 6.22. If U is an ε-acyclic cover of X and ∆ < ∞, Hd(X)
2∆ε∼R E∞d,0

holds for all d.

Proof. The proof follows as in the above propositions. However, since ∆ is the
dimension of the space

Hn(X)p

Hn(X)p−1
= 0, p ≤ n−∆− 1,

Therefore using (6) and (7) we obtain the sequence

Hn(X) ∼=
Hn(X)n

Hn(X)−1
∼=

Hn(X)n

Hn(X)n−∆−1

2ε∼R . . .
2ε∼R

Hn(X)n

Hn(X)n−2

2ε∼R
Hn(X)n

Hn(X)n−1
∼= E∞n,0.

There are ∆ 2ε-right interleavings, proving the result.

6.5 Main Theorems

Here we connect the results of the previous two sections to obtain our main result.
The idea is to consider the chain of approximations. Unfortunately there are several
cases we have to consider depending on the dimension of the nerve and the space.
The basic idea, however, is to consider the relationships in the sequence

H∗(N ) ∼ E2
∗,0 ∼ E∞∗,0 ∼ H∗(X).

where we recall that X is a �ltered simplicial complexes and N is another �ltered
complex given by the nerve of a cover on X. Before stating the result with the
tight constant, we consider an easy case of the result which does not use the speci�c
properties of left and right interleavings. Recall that a 2ε-left or right interleaving
implies a 2ε-interleaving.

Theorem 6.23. If U is an ε-acyclic cover of X and D <∞, we have H∗(X)
(4D+2)ε∼

H∗(N ).

Proof. Assuming D > 0 and composing interleavings with constants, we obtain

H∗(N )
2ε∼ E2

∗,0
2(D−1)ε∼ E∞∗,0

2(D+1)ε∼ H∗(X).

The �rst interleaving is from Corollary 6.15 and the second follows from Theorem
6.18. Finally the last interleaving follows from Proposition 6.20 for 0 ≤ d ≤ D and
Proposition 6.21 for d > D. Adding the terms, we obtain the result. The case D = 0
is straightforward.

Theorem 6.24. Let Q = min(D,∆). If U is an ε-acyclic cover of X and Q <∞,

we have H∗(X)
2(Q+1)ε∼ H∗(N ).

Proof. Observe that in the proof of the previous theorem, for 0 ≤ d ≤ D and ∆ ≥ D,
the precise relationship is

Hd(X)
2Dε∼R E∞d,0

2Dε∼L E2
d,0

2ε∼ Hd(N ).
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The �rst interleaving follows from Proposition 6.20, the second from Theorem 6.18
and the last one from Corollary 6.15. However, the interleaving obtained from
Theorem 6.18 is a left interleaving, whereas the one from Proposition 6.20 is a right
interleaving. By Proposition 6.11, together these imply

Hd(N )
2ε∼ E2

d,0
2Dε∼ Hd(X).

For d > D and ∆ ≥ D,

Hd(X)
2(D+1)ε∼R E∞d,0

∼= Hd(N ),

where the isomorphism follows from Remark 6.4 and the interleaving follows from
Proposition 6.21. As a right interleaving implies interleaving, this proves this case.
Finally, for ∆ < D, we note the spectral sequence stabilizes after ∆ + 1 steps;
therefore, the relationship is

H∗(X)
2∆ε∼R E∞∗,0

2(∆−1)ε∼L E2
∗,0

2ε∼ H∗(N ),

where the right interleaving is due to Proposition 6.22. Again noting that right and
left interleavings do not interact, we obtain

H∗(N )
2ε∼ E2

∗,0
2∆ε∼ H∗(X).

We can now directly verify that the approximation is bounded by 2(min(D,∆)+1)ε,
concluding the proof.

Using an analogous argument without any assumptions on D or ∆, we obtain

Theorem 6.25. If U is an ε-acyclic cover of X, Hn(X)
2(n+1)ε∼ Hn(N ).

Proof. The key observation is that since we have a �rst quadrant spectral sequence,
En+1
p,q
∼= E∞p,q for 0 ≤ p+ q ≤ n. Applying Propositions 6.20 and 6.21, yields

Hn(X)
2nε∼R E∞n,0 ∼= En+2

n,0
2nε∼L E2

n,0
2ε∼ Hn(N ).

As in Theorem 6.24, combining the interleavings yields the result.

6.6 Applications

We prove a simple result of a possible application of our main result. While the
result is not new, the proof is an immediate consequence of our result. There are
many related approximation results in the literature (e.g., [9, 20, 54, 17, 22, 60]). We
do not provide a comprehensive account of these approximation results but provide
two example applications to illustrate the approximate nerve theorem.

Throughout this section, we use the function g on the nerve which was de�ned
in Section 6.1, which inserts a simplex into nerve as soon as the corresponding
intersection is non-empty.
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Theorem 6.26. Given a c-Lipschitz function f on a D-dimensional manifold X
embedded in Euclidean space with positive reach ρ, given an ε-sample of the space
with ε < ρ, consider the cover of balls of radius ε centered at the sample points. Let
h : N → R be the function de�ned by the formula

h(I) = max
i∈I

f(xi)

where xi is the corresponding sample point. Then,

dI(H∗(X, f),H∗(N , h)) ≤ (4D + 3)cε.

Proof. Ignoring the function for the time being, since we have an ε-sample, balls of
radius ε centered at the sample points form a cover of the manifold X. Since the
reach is larger than ε, it follows that these balls form a good cover of X. Now, we
show that for a c-Lipschitz function, this is a 2cε-acyclic cover. Using the construc-
tion in Section 6.1, we note that the maximum value attained in any cover element
is

f(UI) ≤ g(I) + 2cε.

where g is de�ned in Equation 4. Hence, after 2cε, the sublevel set �lls the entire
cover element, so it is a 2cε-good cover. In this construction, we also note that
if the elements are 2cε-interleaved with the trivial diagram so are all intersections.
This gives an approximation of (2D + 1)2cε. Finally, we note that since the cover
elements are bounded in size by ε and the de�nition of g, |h−g| ≤ cε. Adding these
constants together yields an interleaving which implies the result.

The bound above is not meant to be tight as a slightly longer argument would
remove a cε, and many similar results have been proven. Importantly it illustrates
that we can approximate the sublevel set persistence with a single �ltration rather
than an image between two cover elements as in [9] without requiring any one
sublevel set to have a good cover. We do note that in this instance, it is possible but
cumbersome to construct an explicit functional interleaving. An almost identical
result can also be stated replacing reach with other measures such as convexity
radius, homotopy feature size, etc.

We also wish to derive an approximate nerve theorem for ε-acyclic covers of tri-
angulable spaces directly from the one for simplicial complexes. However, covers of
triangulable spaces by triangulable subsets are too general for this, as their triangu-
lations may not interact well. To circumvent this issue, we introduce the following
technical notion.

De�nition. Suppose V = (Vi)i∈Λ is a cover of a locally compact triangulable space
Y . We say V is a triangulable cover if there exists some triangulation (X̃, h) of Y
such that each cover element Vi is the image of a subcomplex of X̃ under h.

Such covers are very common in practical applications. The notion of ε-acyclic
cover is analogous to the one for simplicial complexes; however, continuous persis-
tence modules must be used. A triangulable cover by itself is not �ltered, but we
will impose a �ltration on it by specifying a function on each cover element. We do
not require that the triangulable cover condition holds at the intermediate stages of
the �ltration.
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First we prove a preliminary lemma to establish that a �ltered cover of a trian-
gulable space can be approximated arbitrarily well by one whose �ltration is given
by piecewise linear functions.

Lemma 6.27. Let Y be a locally compact triangulable space and V = (Vi)i∈Λ a
locally �nite cover of Y . Suppose V is triangulable, with triangulation (X̃, h). Let
ε > 0. Given continuous functions f : Y → R and fi : Vi → R, i ∈ Λ, there exists a
subdivision X of X̃ such that for each simplex σ of X we have

max
x∈|σ|

f(h(x))− min
x∈|σ|

f(h(x)) < ε

and
max
x∈|σ|

fi(h(x))− min
x∈|σ|

fi(h(x)) < ε for all i ∈ Λ.

Proof. Let (X̃, h) be a triangulation of Y . By local compactness, X̃ is locally �nite,
so |X̃| is metrizable. Choose a metric d on |X̃|. Since fh is uniformly continuous
on each simplex σ̃, there exists a δ(σ̃) > 0 such that d(x1, x2) < δ(σ̃) implies
|f(h(x1))−f(h(x2))| < ε for all x1, x2 ∈ |σ̃|. Since fih, i ∈ Λ, is uniformly continuous
on each simplex σ̃, there exists a δi(σ̃) > 0 such that d(x1, x2) < δi(σ̃) implies
|fi(h(x1)) − fi(h(x2))| < ε for all x1, x2 ∈ |σ̃|. Since the cover V is locally �nite,
each simplex σ̃ ∈ X̃ is only contained in �nitely many cover elements Vi1 , . . . , Vik .
Let δ′(σ̃) = min{δ(σ̃), δi1(σ̃), . . . , δik(σ̃)}. Using iterated barycentric subdivision on
each simplex σ̃, we can now construct a subdivision X of X̃ such that the diameter
of each simplex in |σ̃| is less than δ′(σ̃) and so X has the desired property.

Corollary 6.28. Under the assumptions of Lemma 6.27, the piecewise linear func-
tions f̂ : |X| → R and f̂i : |Ui| → R de�ned on the vertices by f̂(v) = f(h(v)) and
f̂i(v) = fi(h(v)) and extended a�nely over the simplices satisfy ‖f̂ − fh‖∞ ≤ ε and
‖f̂i − fih‖∞ ≤ ε, respectively. Consequently, ‖mini∈Λ f̂i − f̂‖ ≤ 2ε.

The �nal inequality means that upon replacing the functions f and fi by piece-
wise linear approximations, the compatibility condition f = mini∈Λ fi remains ap-
proximately true. This is important, because the compatibility condition is needed
to invoke the approximate nerve theorem for �ltered simplicial complexes. We now
have the necessary tools to prove an approximate nerve theorem for triangulable
spaces.

Proposition 6.29. Let Y be a locally compact triangulable space and V = (Vi)i∈Λ

a locally �nite triangulable cover of Y . Let f : Y → R and fi : Vi → R, i ∈ Λ,
be continuous functions such that f = mini∈Λ fi. Let N (V) = (N , g) be the nerve
of the �ltered cover V = (Vi, fi)i∈Λ of (Y, f). Let D = dimN , ∆ = dimY and

Q = min(D,∆) < ∞. If V is ε-acyclic, H∗(Y, f)
2(Q+1)ε+η∼ H∗(N , g) holds for any

η > 0. In particular,

dI(H∗(Y, f),H∗(N , g)) ≤ 2(Q+ 1)ε.

Proof. Let (X̃, h) be the triangulation from the de�nition of triangulable cover. By
Lemma 6.27 and its corollary, there is a subdivision X of X̃ and a corresponding
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cover U = (Ui)i∈Λ of X, satisfying h(|Ui|) = Vi, such that the piecewise linear
functions f̂ : |X| → R associated to fh and f̂i : |X| → R associated to fih satisfy
‖f̂ − fh‖∞ < δ and ‖f̂i − fih‖∞ < δ, where δ > 0 is to be chosen later.

Recall from Section 2.5 that there are two functors: the (natural) restriction
functor Iδ : Vect(R,≤) → Vect(δZ,≤) given by Iδ(F ) = Fiδ and an extension functor
Pδ : Vect(δZ,≤) → Vect(R,≤) given by Pδ(F ) = Fpδ. Next, observe that de�ning
uδ(x) := du(x)

δ
eδ, whenever u is a real-valued function, we have

Pδ(Iδ(H∗(UI , f̂I))) = H∗(UI , f̂
δ
I ) and Pδ(Iδ(H∗(X, f̂))) = H∗(X, f̂

δ). (8)

Using the interleavings/isomorphisms provided by Propositions 2.15, 2.14, 2.10 and
Equation (8), we obtain in turn

H∗(VI , fI)
δ∼ H∗(VI , f̂Ih

−1) ∼= H∗(UI , f̂I)
δ∼ Pδ(Iδ(H∗(UI , f̂I))) = H∗(UI , f̂

δ
I ).

By the same logic and using Corollary 6.28 to obtain the additional 2δ-interleaving
in the middle, we have18

H∗(Y, f)
δ∼ H∗(Y, f̂h

−1) ∼= H∗(X, f̂)

2δ∼ H∗(X,min
i∈Λ

f̂i)
δ∼ Pδ(Iδ(H∗(X,min

i∈Λ
f̂i))) = H∗(X,min

i∈Λ
f̂ δi ).

Since V is ε-acyclic and H∗(VI , fI)
2δ∼ H∗(UI , f̂

δ
I ) for all I, U is a (ε+2δ)-acyclic cover

of (X,mini∈Λ f̂
δ
i ). In fact, it is (pδ(ε) + 2δ)-acyclic. To see this, note that the R-

persistence modules H∗(UI , f̂ δI ) and H∗(X, f̂
δ) may be represented as δZ-persistence

modules, since their �ltrations only change at δZ (see discussion following Proposi-
tion 2.12). This means that they lie in the image of the isometry Pδ. In particular,
interleaving distances between such modules must be multiples of δ. Therefore, The-
orem 6.24 applies to the pair (X,U), where U = (Ui, f̂

δ
i )i∈Λ. Taking into account

that N (U) = N (V) = N , this means that

H∗(X,min
i∈Λ

f̂ δi )
2(Q+1)(pδ(ε)+2δ)∼ H∗(N , gδ),

where gδ is the function on the nerve corresponding to the family of �ltrations
(f̂ δi )i∈Λ. Using Proposition 2.11 we may now once again regard these as R-persistence
modules. It remains to compare gδ with the function g corresponding to the family
(fi)i∈Λ. Note that replacing each fih by f̂ δi changes the function values by at most 2δ,
therefore we have ‖g− gδ‖∞ ≤ 2δ. Using Remark 2.6 we conclude that H∗(N , gδ)

2δ∼
H∗(N , g). Combining all these observations, we have

H∗(Y, f)
4δ∼ H∗(X,min

i∈Λ
f̂ δi )

2(Q+1)(pδ(ε)+2δ)∼ H∗(N , gδ)
2δ∼ H∗(N , g),

so H∗(Y, f) and H∗(N , g) are (2(Q+ 1)ε+ (4Q+ 10)δ)-interleaved, using pδ(ε) ≤ ε.
Choosing δ := η

4Q+10
completes the proof.

18Note that (mini∈Λ f̂i)
δ = mini∈Λ(f̂

δ
i ), so we can drop the parentheses in the �nal expression.
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6.7 Lower Bounds

Here we construct simple examples to show that the bounds in Corollary 6.15,
Theorem 6.18 and Proposition 6.20 are sharp. For each example, we compute the
homology of the nerve, the homology of the �ltered simplicial complex and the
E1, E2 and E∞ pages of the spectral sequence (up to isomorphism). For better
readability, we use the notations

[a, b] = {k ∈ Z | a ≤ k ≤ b} and [a, b) = [a, b] \ {b}.

Without loss of generality, we work with ε = 1, otherwise simply multiply each time
in the �ltration by ε. To simplify the exposition, the pages of the spectral sequence
are not computed directly, but rather inferred from the homology of the space and
various intersections of its cover elements.

In each of the two examples provided, the �ltration is de�ned on the total space
X. The cover elements Ui are assumed to be equipped with the induced �ltrations
(see Remark 2.4). Each example illustrates the tightness of each step of our approx-
imation proof. To construct a topological example which achieves all three, we can
simply take the direct sum of the three examples.

6.7.1 First Example

Our �rst example realizes the bounds in Corollary 6.15 and Theorem 6.18. Let X
be the D-sphere, realized as the boundary of the (D + 1)-simplex with vertex set
[0, D + 1]. A cover U of X is given by its set of maximal faces, i.e. U = {Ui | i ∈
[0, D + 1]}, where Ui is the D-simplex spanned by [0, D + 1] \ {i}.

We also de�ne a �ltration X0 ≤ X2 ≤ . . . ≤ X2D+2 by adding one cover element
at a time, i.e.

X2j = U0 ∪ U1 ∪ . . . ∪ Uj.

Proposition 6.30. The homology of the nerve of U is given by

Hq(N ) ∼=


k[t]; q = 0,

t2k[t]; q = D,

0; otherwise.

Proof. At time 0, the vertices 1, . . . , D + 1 are born in X. For I ⊆ [0, D + 1] each
UI except U[1,D+1] and U[0,D+1] contains one of these vertices, so the nerve at time 0
consists of all I ⊆ [0, D+1], except for [1, D+1] and [0, D+1]. At time 2, the vertex
0 is born, which corresponds to the birth of [1, D+ 1] in the nerve. Since U[0,D+1] is
always empty, N j is contractible for j = 0, 1 and homeomorphic to a D-sphere for
j ≥ 2.

Proposition 6.31. The homology of the �ltered simplicial complex X is given by

Hq(X) ∼=


k[t]; q = 0,

t2D+2
k[t]; q = D,

0; otherwise.

99



Proof. Xj is contractible at the times j = 0, . . . , 2D + 1. For j ≥ 2D + 2 it is
homeomorphic to a D-sphere.

Computing the E1 page requires some preparation, namely simplifying U2j
I .

Proposition 6.32. Suppose that ∅ 6= I ⊆ [0, D + 1] and let j ∈ [0, D + 1]. If
j ≥ min I, U2j

I is a (D+ 1− |I|)-simplex. If j < min I, U2j
I is the join of a (j − 1)-

sphere, realized as the boundary of a j-simplex, and a (D − |I| − j)-simplex. We
allow D − |I| − j = −1 and interpret �(−1)-simplex� as the empty set.

Proof. Observe that

U2j
I = UI ∩X2j = UI ∩ (U0 ∪ . . . ∪ Uj) = UI∪{0} ∪ UI∪{1} ∪ . . . ∪ UI∪{j}.

For j ≥ min I, one of the terms is UI∪{min I} = UI , so U
2j
I = UI is the (D + 1− |I|)-

simplex with vertices [0, D + 1] \ I. (Intersecting with Ui corresponds to removing
the vertex i.)

For j < min I, UI∪{k} (where k ∈ [0, j]) is the (D − |I|)-simplex with vertices
[0, D + 1] \ (I ∪ {k}). So, U2j

I is the complex spanned by all the simplices of the
form J ∪ ([j + 1, D + 1] \ I) where J is a j-element subset of [0, j]. But this means
precisely that U2j

I is the simplicial join of the (D− |I| − j)-simplex [j + 1, D+ 1] \ I
and the (j − 1)-sphere, realized as the boundary of the j-simplex [0, j].

Proposition 6.33. Suppose that ∅ 6= I ⊆ [0, D + 1]. Then

Hq(UI) ∼=



t2q+2
k[t]

t2q+4k[t]
; q = D − |I| > 0, I = [q + 2, D + 1],

k[t]⊕ t2k[t]
t4k[t]

; q = 0, I = [2, D + 1],

k[t]; q = 0 < D − |I| or q = 0, |I| = D + 1, I 6= [1, D + 1],

t2k[t]; q = 0, I = [1, D + 1],

0; otherwise.

Proof. The join of a sphere and a non-empty simplex is contractible, so U2j
I can

only be non-acyclic is if it is the join of a sphere and an empty simplex. By the
previous proposition, this occurs precisely if D = |I|+ j − 1 and I = [j + 1, D + 1]
(the latter is required so that min I > j) in which case U2j

I is a (j − 1)-sphere. If
j − 1 > 0, this means that Hj−1(U2j

I ) ∼= k and H0(U2j
I ) ∼= k, if j − 1 = 0, it means

that Hj−1(U2j
I ) ∼= k

2, and for j = 0 all homology groups (corresponding to U[1,D+1])
are trivial. In all other cases, U2j

I is contractible, so H0(U2j
I ) ∼= k. The remaining

homology groups are 0. Setting q = j − 1 completes the proof.

Note that we have computed persistent homology slicewise, i.e. by computing
the simplicial homology at each step of the �ltration. To infer the correct k[t]-
module from this, we have used the facts that the �ltration only changes at even
times and that once it is born, the �rst class appearing in dimension 0 lives forever.
One immediate consequence of these computations is the following.

Corollary 6.34. The cover U is 1-acyclic.
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Since we already know that

E1
p,q =

⊕
|I|=p+1

Hq(UI),

the previous proposition also immediately yields the E1 page.

Corollary 6.35. The E1 page of the Mayer-Vietoris spectral sequence of (X,U) is
given by:

k[t](
D+2
D+1)−1 ⊕ t2k[t]k[t](

D+2
D ) ⊕ t2k[t]

t4k[t]

t4k[t]
t6k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

k[t](
D+2
D−1). . .

k[t](
D+2
2 )

k[t](
D+2
1 )

The E2 page can be inferred from this.

Corollary 6.36. The E2 page of the Mayer-Vietoris spectral sequence of (X,U) is
given by:

t4k[t]0

t4k[t]
t6k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

k[t]

Proof. We have already seen that all persistent homology groups Hq(X) for q 6= 0, D
are trivial. This means that the corresponding antidiagonals on the E∞ page must
consist of trivial modules. As there are no non-trivial di�erentials to and from Er

p,0

for p 6= D for r ≥ 2, these modules stabilize already on E2. Hence, these are all
trivial, except for E2

0,0
∼= H0(X) ∼= k[t]. The modules E2

p,q for q > 0 are isomorphic
to E1

p,q since d
1 is trivial above the bottom row. Finally, E2

D,0 = ker d1
D,0. This can

be computed explicitly from the generators, or inductively, as follows. We already
know most of E2, so we can use this to our advantage. Namely, we know that

ker d1
0,0

im d1
1,0

∼= k[t]
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and for p = 1, . . . , D − 1 we have

ker d1
p,0
∼= im d1

p+1,0.

From this, using the �rst isomorphism theorem, we can inductively infer that for
p = 0, . . . , D − 2

ker d1
p,0
∼= k[t]

∑p+1
k=0(−1)k( D+2

p+1−k)

and using the binomial theorem

ker d1
D−1,0

∼=
t2k[t]

t4k[t]
⊕ k[t]

∑D+2
l=2 (−1)l( D+2

D+2−l) ∼=
t2k[t]

t4k[t]
⊕ k[t]D+1.

Since
E1
D,0
∼= t2k[t]⊕ k[t]D+1

and
t2k[t]

t4k[t]
⊕ k[t]D+1 ∼= im d1

D,0
∼=

E1
D,0

ker d1
D,0

∼=
t2k[t]⊕ k[t]D+1

ker d1
D,0

,

we �nally infer that ker d1
D,0
∼= t4k[t] and thus conclude the proof.

The E∞ page can be inferred in a similar fashion.

Corollary 6.37. The E∞ page of the Mayer-Vietoris spectral sequence of (X,U) is
given by:

t2D+2
k[t]k[t]

Proof. Note that the only non-trivial di�erential on the r-th page, 2 ≤ r ≤ D, is
drD,0. Note that ER

D−r,r−1 has already stabilized for R > r, as there are no more
non-trivial di�erentials to and from this module. Since HD−1(X) = 0, we can
infer that Er+1

D−r,r−1 = 0 and that drD,0 is surjective. A simple inductive argument
shows that Er

D,0
∼= t2rk[t]. The spectral sequence collapses at r = D + 1 where

Er
D,0
∼= t2D+2

k[t].

From these considerations, it follows that this example has the following prop-
erties:

• E2
∗,0

η∼ H∗(N ) holds for η = 2 but not for η < 2,

• E2
∗,0

η∼ E∞∗,0 holds for η = 2(D − 1) but not for η < 2(D − 1),

and therefore, it attains the bounds from Corollary 6.15 and Theorem 6.18, so these
bounds are in fact sharp.
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6.7.2 Second Example

Our second example shows that the bound in Proposition 6.20 is also sharp. Let
D ≥ 1 and let X be the simplicial complex with vertex set [0, D + 3] consisting of
all simplices σ ⊆ [0, D + 3] such that [1, D + 1] 6⊆ σ and {D + 2, D + 3} 6⊆ σ.

We may visualize X geometrically as a bipyramid consisting of two (D + 1)-
simplices, each of which is subdivided into D + 1 smaller (D + 1)-simplices. More
speci�cally, consider the subdivision of the D-simplex [1, D + 1] into D + 1 smaller
D-simplices obtained by adding the point 0 at the barycenter and connecting it
to the vertices (note that this is not the barycentric subdivision). Then X can be
understood as the union of two cones over this subdivision, whose apices are D + 2
and D + 3.

A cover U of X is given by the cone with apex D + 3 and the D + 1 small
(D+ 1)-simplices the cone with apex D+ 2 is subdivided into. Speci�cally, the 0-th
cover element U0 is the full subcomplex of X spanned by [0, D + 1] ∪ {D + 3} and
for each i ∈ [1, D + 1], the i-th cover element Ui is de�ned as the full subcomplex
of X spanned by [0, D + 2] \ {i}. In the geometric interpretation mentioned above,
the intersection UI with 0 /∈ I is the cone with apex D + 2 over the corresponding
(D + 1− |I|)-simplex occurring in the subdivision of the base D-simplex [1, D + 1],
and UI∪{0} is this base (D + 1− |I|)-simplex.

Next, we de�ne a �ltration. The idea is to start with the boundary of the
bipyramid X and �ll in the Ui one at a time. Let A be the subcomplex of X
obtained by removing all simplices σ ⊆ [0, D+ 3] such that 0 ∈ σ. Geometrically, A
corresponds to the boundary of the bipyramid X. A �ltration X−2D ≤ X0 ≤ X2 ≤
X4 ≤ . . . ≤ X2D+2 of X is de�ned by

X−2D = A and X2j = A ∪ U0 ∪ . . . ∪ Uj for j ≥ 0.

We claim that with this �ltration, X achieves the relevant bound of 2(D+1). To see
this, we compute the E1 page of the spectral sequence directly. This corresponds to
computing the persistent homology of the |I|-fold intersections UI , equipped with
the naturally induced �ltrations U2j

I = UI ∩X2j.
First, we compute homology of the nerve of the cover of X.

Proposition 6.38. The persistent homology of the nerve of U is given by

Hq(N ) =


t−2D

k[t]; q = 0,
t−2D

k[t]
k[t]

; q = D,

0; otherwise.

Proof. First recall the de�nition of a cover element UI . For I ⊆ [0, D+2], UI consists
of all simplices in the space spanned by [0, D+2]\I. The nerve becomes non-empty
at time −2D, since at this time all D-simplices I ⊆ [0, D+ 1], |I| = D+ 1, are born.
This is because for the simplex I = [0, D + 1] \ {i} in the nerve, where i > 0, by
de�nition U−2D

I contains the point i. On the other hand, if I = [1, D+ 1], the point
D + 2 is contained in U−2D

I . However, the top simplex [0, D + 1] only contains the
point 0, which is born at time 0. It follows from all this that N j is a (D+1)-simplex
for j ∈ [0,∞) and the boundary of this (D + 1)-simplex for j ∈ [−2D, 0).
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Next, we compute the persistent homology of the union.

Proposition 6.39. The persistent homology of X is given by

Hq(X) =


t−2D

k[t]; q = 0,
t−2D

k[t]
t2D+2k[t]

; q = D,

0; otherwise.

Proof. For each j ∈ [0, D], there is a collapse of X2j to X−2D. Observing that
X2D+2 = X is a bipyramid and X−2D = A is its boundary completes the proof.

In order to compute E1, we describe U2j
I in more familiar terms.

Proposition 6.40. Suppose that ∅ 6= I ⊆ [1, D+ 1] and let j ∈ [0, D+ 1]. Then the
following hold:

• if j ≥ min I, U2j
I is a (D + 2− |I|)-simplex,

• if j < min I, U2j
I is the join of the boundary j-sphere of a (j + 1)-simplex and

a (D − |I| − j)-simplex,

• U−2D
I is a (D + 1− |I|)-simplex,

• U2j
I∪{0} is a (D + 1− |I|)-simplex and U−2D

I∪{0} is a (D − |I|)-simplex,

• U2j
0 is a subdivided (D + 1)-simplex and U−2D

0 is the cone over the boundary
of a D-simplex.

In the second and fourth bullet points, we allow D−|I|− j = −1 resp. D−|I| = −1
and interpret �(−1)-simplex� as the empty set.

Proof. We begin by proving the �rst three bullet points. Observe that

U2j
I = UI∩X2j = UI∩((A∪U0)∪U1∪. . .∪Uj) = (UI∩(A∪U0))∪UI∪{1}∪. . .∪UI∪{j}.

For j ≥ min I, one of the terms is UI∪{min I} = UI , so U
2j
I = UI is the (D + 2− |I|)-

simplex with vertices [0, D + 2] \ I. (Intersecting with Ui, i > 0, corresponds to
removing the vertex i.)

For j < min I, UI∪{k} (where k ∈ [1, j]) is the (D+ 1− |I|)-simplex with vertices
[0, D + 2] \ (I ∪ {k}). The �rst term, UI ∩ (A ∪ U0), consists of two (D + 1 − |I|)-
simplices, [0, D + 1] \ I and [1, D + 2] \ I. So, U2j

I is the complex spanned by all
the simplices of the form J ∪ ([j + 1, D+ 1] \ I) where J is a (j + 1)-element subset
of [0, j] ∪ {D + 2}. But this means precisely that U2j

I is the simplicial join of the
(D − |I| − j)-simplex [j + 1, D + 1] \ I and the j-sphere, realized as the boundary
of the (j + 1)-simplex [0, j] ∪ {D + 2}.

By de�nition, U−2D
I = UI ∩ A is the (D + 1 − |I|)-simplex spanned by [0, D +

2] \ (I ∪ {0}).
To prove the fourth bullet point, note that

U2j
I∪{0} = UI∪{0} ∩X2j = UI∪{0} ∩ ((A ∪ U0) ∪ U1 ∪ . . . ∪ Uj)

= UI∪{0} ∪ UI∪{0,1} ∪ . . . ∪ UI∪{0,j} = UI∪{0}
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is the (D+ 1− |I|)-simplex spanned by [0, D+ 1] \ I and U−2D
I∪{0} = UI∪{0} ∩A is the

(D − |I|)-simplex spanned by [1, D + 1] \ I.
The last bullet point follows by de�nition of U0, namely U2j

0 = U0 ∩X2j = U0 is
the half of the bipyramid with apex D + 3, so it is a subdivided (D + 1)-simplex,
and U−2D

0 = U0 ∩ X−2D = U0 ∩ A is the cone with apex D + 3 over the boundary
(D − 1)-sphere of the base D-simplex of the bipyramid.

Using this fact, we can compute the persistent homology of the intersections UI .

Proposition 6.41. Suppose that ∅ 6= I ⊆ [1, D + 1]. Then

Hq(UI) =


t2qk[t]
t2q+2k[t]

; q = D + 1− |I| > 0, I = [q + 1, D + 1],

t−2D
k[t]⊕ k[t]

t2k[t]
; q = D + 1− |I| = 0,

t−2D
k[t]; q = 0 < D + 1− |I|,

0; otherwise.

and for any I ⊆ [1, D + 1] we have

Hq(UI∪{0}) =


t−2D

k[t]; q = 0 and I 6= [1, D + 1],

k[t]; q = 0 and I = [1, D + 1],

0; otherwise.

Proof. The join of a sphere and a non-empty simplex is contractible, so U2q
I can

only be non-acyclic if it is the join of a sphere and an empty simplex. The previous
proposition shows that this occurs precisely if D = |I|+ q− 1 and I = [q+ 1, D+ 1]
(the latter is required so that min I > q) in which case U2q

I is a q-sphere. If q > 0, this
means that Hq(U

2q
I ) ∼= k and H0(U2q

I ) ∼= k and if q = 0, it means that Hq(U
2q
I ) ∼= k

2.
In all other cases, including q = −D, U2q

I is contractible, so H0(U2q
I ) ∼= k. All other

homology groups of U2q
I are 0.

The second part holds because, once born, U2q
I∪{0} is contractible, so we have

H0(U2q
I∪{0}) = k for q ≥ −D if I 6= [1, D + 1] and for q ≥ 0 otherwise.

Again, persistent homology has been computed slicewise, so the remark from the
�rst example applies.

Corollary 6.42. The cover U is 1-acyclic.

As in the previous example, this immediately yields the E1 page.

Corollary 6.43. The E1 page of the Mayer-Vietoris spectral sequence of (X,U) is
given by:
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k[t](
D+2
D+2)k[t]

t2k[t]
⊕ (t−2D

k[t])(
D+2
D+1)

t2k[t]
t4k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

(t−2D
k[t])(

D+2
D ). . .(t−2D

k[t])(
D+2
2 )(t−2D

k[t])(
D+2
1 )

This allows us to infer the E2 page.

Corollary 6.44. The E2 = E∞ page of the Mayer-Vietoris spectral sequence of
(X,U) is given by:

t−2D
k[t]

t2k[t]

t2k[t]
t4k[t]

. . .

t2D−2
k[t]

t2Dk[t]

t2Dk[t]
t2D+2k[t]

t−2D
k[t]

Proof. We claim that the map d1
D+1,0 : E1

D+1,0 → E1
D,0 is injective. To see this, note

that ([0], [0, D + 1]) is a generator of E1
D+1 (see Section 2.6 for notation) and its

image

d1([0], [0, D + 1]) =
D+1∑
l=0

(−1)l([0], [0, D + 1] \ {l})

generates a free submodule of E1
D,0, since ([0], [0, D + 1] \ {l}) generates a free

submodule of H0(U[0,D+1]\{l}). This implies that E2
D+1,0 = 0, so there are no non-

trivial di�erentials to or from any Er
p,q for r ≥ 2. If q > 0, this is true also for r = 1.

Therefore, the spectral sequence collapses on E2 and E1
p,q
∼= E2

p,q for q > 0. As
we have seen, the persistent homology groups Hq(X) for q 6= 0, D are trivial. This
means that the corresponding antidiagonals on the E2 = E∞ page must consist of
trivial modules. Furthermore, E2

0,0
∼= H0(X) ∼= t−2D

k[t]. Finally, we shall compute
E2
D,0 explicitly. We already know im d1

D+1,0, so it remains to compute ker d1
D,0 and

the corresponding quotient. Using a similar inductive argument as in the proof of
Corollary 6.36, we have

k[t]

t2k[t]
⊕ (t−2D

k[t])D+2 ∼= E1
D,0
∼= im d1

D,0 ⊕ ker d1
D,0

∼= ker d1
D−1,0 ⊕ ker d1

D,0
∼= (t−2D

k[t])D+1 ⊕ ker d1
D,0.
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Since these modules are �nitely generated, we may conclude that

ker d1
D,0
∼=

k[t]

t2k[t]
⊕ t−2D

k[t].

In fact, the generators may be deduced from the explicit description of the intersec-
tions of the cover elements. Namely, they are given by

a := (t2D[D + 2]− [0], [1, D + 1])

and

b := ([D + 2], [1, D + 1]) +
D+1∑
l=1

(−1)l([l], [0, D + 1] \ {l}),

subject to the single relation t2a = 0. Note that since ([0], [0, D + 1] \ {l}) =
t2D([l], [0, D + 1] \ {l}), the generator of im d1

D+1,0 may be written as t2Db − a.
Therefore, letting x and y be the generators of k[t]⊕ t−2D

k[t], the quotient may be
computed as follows:

E2
D,0
∼=

〈x, y〉
〈t2x, t2Dy − x〉

=
〈t2Dy − x, y〉

〈t2D+2y, t2Dy − x〉
∼=

〈y〉
〈t2D+2y〉

∼=
t−2D

k[t]

t2k[t]
.

The modules HD(X) = t−2D
k[t]

t2D+2k[t]
and E∞D,0 = t−2D

k[t]
t2k[t]

are η-interleaved for η = 2D,
but not so for any η < 2D. Therefore, this example attains the bound of Proposition
6.20, so this bound is also sharp.
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7 Conclusions

The concept of unimodal category, as envisioned by Baryshnikov and Ghrist in [4],
has its origins in statistics. However, the de�nition of the concept requires much less
than this, namely a nonnegative function f : X → [0,∞). We feel that the question
of how many functions with a unique local maximum are needed to express such an
f is very natural from the point of view of mathematical analysis. For this reason,
we �nd it somewhat surprising that this question has received so little attention
thus far. One of the main aims of our work was to demonstrate that this area of
mathematics admits many interesting questions and has the potential to become a
vibrant area of research.

Our work is mainly centered around the monotonicity conjecture of [4], which has
turned out to be a more interesting question than initially thought, especially since
it turned out to be false. This leaves us with many open questions. For instance,
the constructions we provide rely on the existence of cycles in the superlevel sets
of the functions. This leads one to wonder if there is a more conceptual reason
explaining this failure of monotonicity in the presence of cycles and what are the
precise conditions a function should satisfy for monotonicity to hold. It would
be interesting to construct topological invariants measuring the extent to which
monotonicity can fail.

We have reformulated the original results of Baryshnikov and Ghrist for functions
f : R → [0,∞) in a language that we feel is more natural than that of the original
article, using the concepts of total, positive and negative variation. This has led us
to a general decomposition theorem for such functions, as well as a characterization
of functions f : S1 → [0,∞). The question of what the natural context for a general
treatment of ucat for continuous functions f : Rn → [0,∞) might be, remains
widely open. We speculate that the answer might lie in a new kind of (co)homology
theory, designed especially to treat such problems in general. This could in turn
provide a de�nite connection to the methods exploited in Section 6.

In fact, our work opens many more questions than it answers. This is also the
reason for the inclusion of Section 5 in the dissertation. Our hope is that the various
open questions posed there might stimulate other researchers from various areas of
mathematics to work on such problems.

The initial motivation for the work regarding the approximate nerve theorem
was algorithmic - given a �ltered simplicial complex, it would be computationally
desirable to construct a coarser simplicial complex via a cover such that the per-
sistent homology was preserved. This has been done for metric spaces [61] but not
for more general �ltrations. An alternate spectral sequence approach is used for
computation of persistence, but it does not allow for passing to a coarser represen-
tation. Our results suggest a natural approximation algorithm, where a coarse cover
is constructed and the condition of ε-acyclicity is checked locally for each �nite in-
tersection. Conversely, the maximum ε overall �nite non-empty intersections could
provide the bound. We would then have an explicit error bound relating the per-
sistent homology of the input simplicial complex and the coarser (and presumably
smaller) nerve.

Beyond the initial motivation, our setting of k[t]-modules and simplicial com-
plexes may seem restrictive. However, these were chosen to make the constructions
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as explicit as possible and to avoid technical complications. We believe the bounds
hold in much greater generality. For example, a natural direction is to consider a
sheaf of q-tame persistence modules and to use the Leray spectral sequence, of which
the Mayer-Vietoris spectral sequence is a special case. We believe the error analysis
goes through identically and plan to address this in a separate note. The main
technical obstacles are in setting up the spectral sequence so that the di�erentials
are well de�ned.

Likewise, the restriction to simplicial complexes is mainly to avoid complications
and should hold for CW complexes or perhaps even suitably nice singular spaces.
In general, our results should simplify proving approximation results. It does not
require individual sublevel sets of a function to have a good cover at any particular
level. In particular, this removes the need to consider the image of a pair of covers.
Finally, the ε-acyclicity is a local condition, making it easier to verify in a number
of applications.

Finally, we note that this work can also be extended to multidimensional per-
sistence modules. The weaker bound using only interleaving applies directly. The
tighter bound does not however, as in our proof that left and right interleavings do
not interact (Proposition 6.11), the last case uses the fact that persistence modules
have projective dimension of 1, which does not hold for multidimensional persistence
modules.
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A Graphs

The following are the graphs of u1, u2 : R2 → [0,∞) from Proposition 4.16:

These are the graphs of u1, u2, u3 : R2 → [0,∞) from Proposition 4.18:
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B Algorithm for the Circle

An algorithm computing ucat(f) for f : R → [0,∞) with �nitely many critical
points is given in [4]. We do not reproduce it here, but we do note that Theorem 3.4
provides a generalization of it. We do describe an algorithm to compute ucat(f)
for f : S1 → [0,∞) in the case of �nitely many critical points. Although this is
possible, as the proofs of the theorems leading to the algorithm are constructive in
nature, we do not compute the explicit decomposition.

Algorithm 1 Computing ucat for the Circle
Require: f : S1 → [0,∞) without zeros and with critical points x1, . . . , xk ∈ S1.
for i = 1, . . . , k do

fi(t) :=


(t+ 1)f(xi); t ∈ [−1, 0],

f(xie
2πit); t ∈ [0, 1],

(2− t)f(xi); t ∈ [1, 2],

0; t /∈ [−1, 2].

for i = 1, . . . , k do
j = 0
t0 = −∞
while tj < 1 do

j := j + 1
tj = min{(tj−1, t) | V −(fi; (tj−1, t)) > fi(tj−1)}

αi := j − 1
return min1≤i≤k αi.
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C Convergence of the Mayer-Vietoris spectral se-

quence

The aim of this Appendix is to brie�y describe the basic idea of the proof of Theorem
2.16. Let (M,∂0, ∂1) be the double complex associated to a �ltered cover of a �ltered
simplicial complex, i.e. a pair (X,U), and (Er, dr) the spectral sequence associated
to this double complex, as de�ned in Section 2.6. As mentioned there, the spectral
sequence associated to a double complex (M,∂0, ∂1) is just a tool to compute the
homology of the associated total complex (Tot(M), D), namely (Er, dr) will converge
to H∗(Tot(M)). This standard fact can be established by a series of elementary but
tedious computations, so we do not replicate the proof here, see, for instance, [57].
To prove Theorem 2.16, it is therefore su�cient to show that the homology of the
total complex Tot(M) is isomorphic to the homology of (X, f).

In fact, the double complex (M,∂0, ∂1) has a geometric counterpart, namely, the
�ltered Mayer-Vietoris blowup complex XU associated to (X,U). The total complex
Tot(M) arises as the chain complex associated to XU and M arises from a �ltration
on Tot(M) which in turn is induced by a natural �ltration of XU .

So far, we have been working mostly with �ltered simplicial complexes; however,
in the case at hand, it is slightly more convenient to work with �ltered CW complexes
and cellular homology. Any �ltered simplicial complex X gives rise to a �ltered CW
complex XCW whose cellular homology is isomorphic to the simplicial homology
of X. In fact, the corresponding chain complexes are isomorphic. Each simplex
σ in X is assigned a cell eσ in XCW. The cartesian product XCW

1 × XCW
2 of two

such complexes again has the structure of a CW complex whose cells are given as
eσ1 × eσ2 for each pair of simplices σ1 in X1 and σ2 in X2. The blowup complex is a
subcomplex of such a product.

De�nition. The �ltered Mayer-Vietoris blowup complex associated to (X,U) is the
�ltered CW complex (XU ,FU), where XU ≤ X ×N is given by

XU =
⋃
σ∈UI

eσ × eI

and the �ltration FU = (Xj
U)j∈Z is given by

Xj
U =

⋃
σ∈UjI

eσ × eI .

Let (CX∗ , ∂
X) be the (persistent) cellular chain complex associated toXCW and let

(CN∗ , ∂
N ) be the cellular chain complex associated toNCW. Let (C∗, ∂) be the cellular

chain complex associated to the blowup complex XU . Explicitly, each Cn is the free
k[t]-module, generated by the graded set of all cells eσ × eI with dimσ+ dim I = n,
where the grading is given by deg(eσ × eI), i.e. the birth times of the cells in
the �ltration of the blowup complex. Since the blowup complex is a subcomplex
of XCW × NCW, the boundary homomorphisms ∂n are simply restrictions of the
boundary homomorphisms of the chain complex associated to this product. These
satisfy the following relation:

∂n(eσ × eI) = ∂0
n(eσ)× eI + (−1)dimσeσ × ∂1

n(eI).
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Taking into account the isomorphisms between (CX∗ , ∂
X) and (CN∗ , ∂

N ) and the cor-
responding simplicial chain complexes, it follows that (C∗, ∂) ∼= (Tot∗(M), D). For
comparison, here is the boundary formula for the latter chain complex, written out
in full. If (σ, I) is a pair with dimσ = q and dim I = p such that p+ q = n, we have

Dn(σ, I) =

q∑
k=0

(−1)ktdeg(σ,I)−deg(σk,I)(σk, I) + (−1)q
p∑
l=0

(−1)ltdeg(σ,I)−deg(σ,Il)(σ, Il).

This also explains the grading from which the double complex structure ofM arises.
Namely for each pair p, q with p + q = n, let Np,q ≤ Cn be the submodule freely
generated by all cells eσ × eI with dimσ = q and dim I = p. Then, we have
Cn =

⊕
p+q=nNp,q and ∂X × id and id×∂N respect this grading. The aforemen-

tioned isomorphism of (C∗, ∂) ∼= (Tot∗(M), D) isomorphically maps the double com-
plex structure of N into that of M . Therefore, the homology of the total complex
(Tot(M), D) is precisely the (persistent) cellular homology of the blowup complex.
In other words, we have:

Proposition C.1. The homology of the total complex is isomorphic to the homology
of the �ltered blowup complex:

H∗(Tot(M), D) ∼= HCW
∗ (XU ,FU).

It only remains to check that HCW
∗ (XU ,FU) ∼= H∗(X,F). To see this, it su�ces

to construct a homotopy equivalence of the two spaces, in the �ltered sense. Let
π : XU → XCW be the natural projection (to the �rst component) and let πj : Xj

U →
(Xj)CW be the appropriate restriction. It is a standard fact [42, Proposition 4G.2]
that these projections are homotopy equivalences. Finally, these maps obviously
also respect the �ltration, i.e. for each j1 ≤ j2, the diagram

Xj1
U Xj2

U

(Xj1)CW (Xj2)CW

πj1 πj2

commutes, because the projections simply forget the second component, whereas the
information from the �rst component remains unchanged. Therefore, as claimed in
Theorem 2.16, the Mayer-Vietoris spectral sequence of (X,U) converges to the cellu-
lar persistent homology of XCW and therefore to the simplicial persistent homology
of X.
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D Slovenski povzetek

Za uspe²no delovanje znanosti je pomembno, da znamo eksperimentalno zbrane po-
datke statisti£no analizirati. Pri tem naletimo na razli£ne verjetnostne porazdelitve,
med katerimi je ²e posebej pomembna in dobro razumljena normalna porazdelitev.
Ena od opaznej²ih zna£ilnosti te porazdelitve je unimodalnost, ki pomeni, da ima
njena gostota porazdelitve enoli£no dolo£en lokalni maksimum. Ve£ina drugih po-
razdelitev, ki so znane iz klasi£nega verjetnostnega ra£una, je prav tako unimodalnih.
Po drugi strani v eksperimentalno izmerjenih porazdelitvah dostikrat opazimo po-
razdelitve z ve£ kot enim modusom, pri katerih se podatki ne zgo²£ajo okrog ene
same vrednosti, pa£ pa imajo ve£ opaznih zgostitev. Razumevanje tega pojava je ²e
posebej pomembno, saj obi£ajno nakazuje na prisotnost ve£ kot enega pomembnega
vpliva na vrednosti podatkov. Kot nekoliko poenostavljen primer lahko omenimo
zgo²£evanje prometa. Ta je bolj zgo²£en v jutranjih in popoldanskih urah, vpliva, ki
pojasnjujeta ti zgostitvi, pa sta dejstvi, da se zjutraj ljudje vozijo v sluºbo, popoldne
pa se vra£ajo domov.

Posebej pomembno je torej znati iz porazdelitve, ki opisuje neki pojav, ki nas
zanima, dolo£iti minimalno ²tevilo vplivov, ki ta pojav pojasnjujejo. Z drugimi
besedami, dano porazdelitev z ve£ kot enim modusom bi radi razcepili na unimodalne
sumande. V statistiki je ta problem podrobno ²tudiran v posebnem primeru, ko
so posamezni vplivi normalno porazdeljeni [7, 33, 56], in do neke mere tudi za
splo²nej²e porazdelitve [45, 46]. Zanimiv je tudi pojav fantomskih modusov (ang.
ghost modes), opisan v [28]: me²anica n izotropnih normalnih porazdelitev ima
lahko ve£ kot n modusov. V praksi so porazdelitve posameznih vplivov lahko ra-
zli£ne, poleg tega pa morda podatki sploh niso numeri£ni in zato vsakr²en anali-
ti£en opis porazdelitve izhaja iz umetno izbranega koordinatnega sistema, ne pa iz
problema samega. Kljub temu imamo na podatkih obi£ajno naraven pojem bliºine
oziroma podobnosti. Baryshnikov in Ghrist sta zato leta 2007 problem topolo²ko
abstrahirala in vpeljala pojem unimodalne kategorije, ki je natan£neje opisan v
[4]. V tem kontekstu namesto gostote verjetnosti Rn → [0,∞) ²tudiramo poljubno
funkcijo f : X → [0,∞) na topolo²kem prostoru X. Pravimo, da je funkcija
u : X → [0,∞) unimodalna, £e obstaja ²teviloM > 0, da so nadnivojnice u−1[a,∞)
kontraktibilne za a ∈ (0,M ] in prazne za a > M . Unimodalna kategorija funkcije
f : X → [0,∞) je najmanj²e naravno ²tevilo k, za katerega obstajajo unimodalne
funkcije u1, . . . , uk : X → [0,∞), da velja f =

∑k
i=1 ui (kjer je vsota de�nirana

po to£kah). V tem primeru pi²emo k = ucat(f). Unimodalna kategorija je torej
spodnja meja za ²tevilo sumandov, ne glede na to, kak²ne unimodalne porazdelitve
imajo posamezni vplivi, ki nas zanimajo. Pojem lahko naravno posplo²imo, £e
namesto razcepov funkcije f na vsote unimodalnih funkcij opazujemo razcepe na
`p-kombinacije unimodalnih funkcij, p ∈ (0,∞], kar nam da pojem unimodalne p-
kategorije ucatp(f). Baryshnikov in Ghrist [4] kot naravnega kandidata za primer
p = 0 predlagata gcat(supp(f)), geometrijsko kategorijo nosilca funkcije f . Uni-
modalno p-kategorijo funkcije f torej lahko razumemo tudi kot nekak²no deformacijo
geometrijske kategorije njenega nosilca. (Geometrijska kategorija je razli£ica slavne
Lusternik-Schnirelmannove kategorije [24], obe pa merita minimalno ²tevilo �enos-
tavnih kosov�, na katere je mogo£e razcepiti prostor.) Druga£e re£eno, unimodalno
kategorijo lahko razumemo kot dvig geometrijske kategorije, ki je topolo²ka invari-
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anta prostorov, do topolo²ke invariante funkcij na teh prostorih. Tako dviganje
invariant se je v zadnjem £asu izkazalo kot posebej uspe²no, primer je npr. Eulerjev
ra£un [25] (ang. Euler calculus), kjer Eulerjevo karakteristiko razumemo kot mero,
integral konstruktibilne funkcije po tej meri pa imenujemo Eulerjev integral. Tudi
zelo uspe²en pojem vztrajne homologije [30] lahko razumemo kot podoben dvig; v
najosnovnej²i razli£ici je to dvig homologije, ki je invarianta prostorov (in preslikav
med njimi), do invariante �ltracij teh prostorov.

O unimodalni kategoriji ni veliko znanega, niti v osnovnem primeru X = Rn,
ki je najbolj zanimiv s stali²£a statistike. Za primer n = 1 sta Baryshnikov in
Ghrist zasnovala enostaven algoritem [4], s pomo£jo katerega je mogo£e unimodalno
kategorijo u£inkovito izra£unati za vse funkcije, ki imajo kon£no mnogo kriti£nih
to£k. Primer n = 2 v £lanku obravnavata le delno, zaklju£ita pa z domnevo o
monotonosti, za katero menita, da bo klju£nega pomena pri izra£unu natan£nej²ih
mej za unimodalno kategorijo v vi²jih dimenzijah � domnevata namre£, da za �ksno
funkcijo f : X → [0,∞) in 0 < p < q ≤ ∞ vselej velja ucatp(f) ≤ ucatq(f). Primer
n = 2 nekoliko podrobneje obravnavajo Hickok, Villatoro in Wang v [43], in sicer se
omejijo na Morsove distribucije na ravnini, katerih Morse-Smaleov graf je drevo. V
tem primeru unimodalno kategorijo skoraj popolnoma karakterizirajo.

Disertacija sestoji iz dveh konceptualnih delov. Prvi del je ve£inoma osredoto£en
na domnevo o monotonosti, medtem ko drugi del zadeva aproksimativni izrek o ºivcu
[41].

V prvem delu najprej pokaºemo, da lahko dekompozicijo, ki sledi iz algoritma
za X = R, posplo²imo na poljubne funkcije f : R → [0,∞), in sicer kot razli£ico
Jordanove dekompozicije [58] za funkcije z omejeno variacijo (vsako tako funkcijo
lahko zapi²emo kot razliko dveh monotono nara²£ajo£ih funkcij). Potem te rezul-
tate posplo²imo na primer X = S1. Dobljena posplo²itev je primerna za ²tudij
domneve o monotonosti, poleg tega pa porodi preprost algoritem za izra£un uni-
modalne kategorije funkcije f : S1 → [0,∞), £e ima ta le kon£no mnogo kriti£nih
to£k. Rezultati so dovolj splo²ni, da nam omogo£ijo dokaz domneve o monotonosti
za poljubne funkcije na X = R in X = S1. Nato pokaºemo, da monotonost ne drºi
za nekatere splo²nej²e prostore, in sicer konstruiramo dva protiprimera na gra�h,
ki pokaºeta, da domneva za ve£ino grafov ne drºi. Pomembneje, konstruiramo tudi
dva protiprimera na prostoru X = R2. Nazadnje pokaºemo, da domneva kljub temu
velja za X = R2 v primeru funkcij, katerih Morse-Smaleov graf je drevo.

Drugi del disertacije, zgo²£en v razdelku 6, je povezan z bolj razvitimi podro£ji
ra£unske topologije, kot je npr. vztrajna homologija. Zato zanj potrebujemo neko-
liko ve£ ozadja in si zasluºi poseben uvod.

Da bi motivirali ta del disertacije, opazimo, da je vsak pojem kategorije povezan
z dolo£enim tipom pokritja danega prostora. Npr. Lusternik-Schnirelmannova kat-
egorija zadeva kategori£na pokritja, tj. pokritja, kjer so elementi kontraktibilni zno-
traj prostora, geometrijska kategorija pa zadeva pokritja s kontraktibilnimi mnoºi-
cami. Unimodalna kategorija je prav tako povezana s konceptom pokritja, le da je
povezava zapletenej²a. Najenostavnej²i primer je primer unimodalne ∞-kategorije,
kjer funkcijo f : X → [0,∞) razcepimo kot f = min1≤i≤n ui, pri £emer so funkcije
ui : X → [0,∞) unimodalne. To pomeni, da na vsakem nivoju c > 0 velja
f−1[c,∞) =

⋃n
i=1 u

−1
i [c,∞), tj. da na vsakem nivoju nadnivojnice unimodalnih

funkcij v dekompoziciji tvorijo pokritje ustreznih nadnivojnic originalne funkcije in
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da to pokritje sestoji iz kontraktibilnih mnoºic.
Sklepanje na globalne lastnosti prostora iz lokalnih lastnosti, npr. na homologijo

prostora iz homologije elementov primernega pokritja prostora, je pogosta tema v
algebrai£ni topologiji. Zato lahko pri£akujemo, da se bodo take metode izkazale kot
plodovite tudi v kontekstu unimodalne kategorije, ko se to podro£je dovolj razvije.

Z vidika vztrajne homologije funkcija f : X → [0,∞) podaja nadnivojsko �l-
tracijo prostoraX in unimodalna∞-dekompozicija f = min1≤i≤n ui poraja �ltrirano
pokritje tega prostora, pri £emer je vztrajna homologija elementov tega pokritja triv-
ialna. Zaenkrat ni jasno, kak²na je splo²na povezava med vztrajnostjo in unimodalno
kategorijo. V primeru, ko je pokritje posebej enostavno, in sicer dobro pokritje, pa
obstajajo klasi£ni rezultati za ne�ltrirani primer. Z uporabo spektralnih zaporedij
smo te rezultate posplo²ili v kontekst vztrajne homologije. Zdi se verjetno, da je
mogo£e podobne metode uporabiti splo²neje za delo s �ltriranimi pokritji, katerih el-
ementi so na vsakem nivoju kontraktibilni, kot v primeru unimodalne∞-kategorije.

Znano je tudi, da je za funkcije f : R → [0,∞) koncept vztrajnosti povezan s
konceptom totalne variacije [6]. �e upo²tevamo prvi del disertacije, to pomeni, da
je v enodimenzionalnem primeru pojem ucat tesno povezan s pojmom vztrajnosti.

D.1 De�nicije in predhodno znani rezultati

Doktorska disertacija se za£ne z omembo nekaterih splo²no znanih rezultatov, ki
jih potrebujemo za nadaljnje delo. Vpeljan je pojem unimodalne kategorije in po-
dana primerjava z nekaterimi drugimi klasi£nimi pojmi kategorije. Medtem ko npr.
geometrijska kategorija podaja minimalno ²tevilo elementov v pokritju danega pros-
tora s kontraktibilnimi podmnoºicami, pojem unimodalne kategorije zadeva razcep
funkcij. Pojem, analogen kontraktibilnosti, ki ima smisel za funkcije, je unimodal-
nost.

De�nicija. Zvezna funkcija u : X → [0,∞) je unimodalna, £e obstaja M > 0, tako
da so nadnivojnice u−1[c,∞) kontraktibilne za 0 < c ≤M in prazne za c > M .

To nas pripelje direktno do de�nicije unimodalne kategorije, kakr²no sta podala
Baryshnikov in Ghrist v £lanku [4].

De�nicija. Naj bo p ∈ (0,∞). Unimodalna p-kategorija ucatp(f) funkcije f : X →
[0,∞) je minimalno ²tevilo n unimodalnih funkcij u1, . . . , un : X → [0,∞), tako da
po to£kah velja f = (

∑n
i=1 u

p
i )

1
p . Podobno je unimodalna ∞-kategorija ucat∞(f)

funkcije f : X → [0,∞) minimalno ²tevilo n unimodalnih funkcij u1, . . . , un : X →
[0,∞), tako da po to£kah velja f = max1≤i≤n ui. Namesto ucat1(f) obi£ajno pi²emo
ucat(f).

Baryshnikov in Ghrist pojem ²e nekoliko posplo²ita in poljubni normi ν na pros-
toru R(N) priredita ustrezen pojem unimodalne ν-kategorije. Pomembna lastnost
unimodalne kategorije je naslednje dejstvo [4, Lemma 9], iz katerega lahko razber-
emo, da metode za ra£unanje unimodalne 1-kategorije lahko uporabimo tudi za
ra£unanje unimodalne p-kategorije za p ∈ (0,∞).

Lema D.1 ([4], Lemma 9). �e je f : X → [0,∞) poljubna zvezna funkcija, velja

ucatp(f) = ucat(fp).
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Pojem unimodalne kategorije je zanimiv predvsem na topolo²kih prostorih, ki
niso preve£ patolo²ki, recimo na mnogoterostih ali CW kompleksih.

Pri izra£unu unimodalne kategorije za splo²ne zvezne funkcije f : R→ [0,∞) je
koristno poznavanje klasi£nega pojma totalne variacije (glej npr. [3, Chapter 6]) in
nekaterih sorodnih pojmov.

De�nicija. Totalna variacija funkcije f : R → R na intervalu [a, b] je de�nirana s
formulo

V (f ; [a, b]) = sup
n∑
i=1

|f(xi)− f(xi−1)|,

kjer supremum te£e po vseh delitvah a = x0 < x1 < . . . < xn = b intervala [a, b].
Podobno de�niramo pozitivno variacijo funkcije f na intervalu [a, b] kot

V +(f ; [a, b]) = sup
n∑
i=1

max{0, f(xi)− f(xi−1)},

in negativno variacijo funkcije f na intervalu [a, b] kot

V −(f ; [a, b]) = sup
n∑
i=1

max{0, f(xi−1)− f(xi)}.

Ti pojmi imajo naslednje lastnosti.

Izrek D.2. Naj V ∗ ozna£uje V, V + ali V − in naj bo f : [a, b]→ R. Potem velja:

• �e je f nara²£ajo£a na [a, b], potem je V (f ; [a, b]) = V +(f ; [a, b]) = f(b)−f(a)
in V −(f ; [a, b]) = 0.

• �e je f nara²£ajo£a na [a, b], potem je V (f ; [a, b]) = V −(f ; [a, b]) = f(a)−f(b)
in V +(f ; [a, b]) = 0.

• �e je f =
∑n

i=1 fi, potem je V ∗(f ; [a, b]) ≤
∑n

i=1 V
∗(fi; [a, b]).

• �e je a = x0 < . . . < xn = b, potem je V ∗(f ; [a, b]) =
∑n

i=1 V
∗(f ; [xi−1, xi]).

• V +(f ; [a, b])+V −(f ; [a, b]) = V (f ; [a, b]) in V +(f ; [a, b])−V −(f ; [a, b]) = f(b)−
f(a).

Vse tri pojme lahko raz²irimo tudi do pozitivnih Borelovih mer na R, smisel pa
imajo tudi za funkcije f : J → R, kjer je J ⊆ R poljuben interval. Najzanimivej²e
za nas so funkcije z omejeno variacijo, tj. take, za katere velja V (f ; J) <∞. Take so
npr. monotone funkcije na kon£nih intervalih, pa tudi omejene monotone funkcije.
Od tod sledi, da imajo tudi unimodalne funkcije u : R→ [0,∞) omejeno variacijo.

�e de�niramo npr. g(x) = V +(f ; J ∩ (−∞, x)) in h(x) = V −(f ; J ∩ (−∞, x)),
lahko dokaºemo, da za funkcije z omejeno variacijo velja Jordanov izrek o dekom-
poziciji.

Izrek D.3. Naj bo f : J → R funkcija z omejeno variacijo. Potem lahko f izrazimo
kot razliko f = g − h dveh monotono nara²£ajo£ih funkcij g, h : J → R.

124



Za obravnavo funkcij na Rn, kjer je n > 1, je koristno poznati tudi nekaj osnov
Morsove teorije.

Izrek D.4 ([51]). Naj bo f : M → R Morsova funkcija na mnogoterosti M , p ∈M
kriti£na to£ka indeksa i in f(p) = a ustrezna kriti£na vrednost. Za vsak x ∈ R naj bo
Mx = f−1(−∞, x]. �e [a−ε, a+ε] ne vsebuje nobene druge kriti£ne vrednosti funkcije
f , potem podnivojnico Ma+ε dobimo (do homotopije natan£no) iz podnivojnice Ma−ε
z lepljenjem i-ro£aja.

Za na²e namene je pomembno dejstvo, da lepljenje i-ro£aja ali uni£i homolo²ki
razred v Hi−1 ali pa ustvari homolo²ki razred v Hi.

Za obravnavo aproksimativnega izreka o ºivcu prav tako potrebujemo nekaj pred-
hodnih de�nicij in znanih izrekov s podro£ja vztrajne homologije. Delamo predvsem
z Z-�ltriranimi simplicialnimi kompleksi in indeksiranimi Z-�ltriranimi pokritji.

De�nicija. Naj bo J ⊆ R. J-�ltriran simplicialni kompleks je par (X,F), kjer je
X abstrakten simplicialni kompleks in F = (Xj)j∈J druºina podkompleksov, tako
da iz j1 ≤ j2 sledi Xj1 ⊆ Xj2 , X−∞ :=

⋂
j∈J X

j = ∅ in X∞ :=
⋃
j∈J X

j = X.
J-�ltrirano pokritje s podkompleksi J-�ltriranega simplicialnega kompleksa (X,F)

je indeksirana druºina U = (Ui,Fi)i∈Λ, kjer je vsak Ui podkompleks v X in je Fi
�ltracija tega podkompleksa, tako da �ltracije F in Fi zado²£ajo kompatibilnos-
tnemu pogoju, in sicer, da velja Xj =

⋃
i∈Λ U

j
i za vse j ∈ J . Pripomnimo, da

ima v primeru, da je I ⊆ Λ, presek UI :=
⋂
i∈I Ui naravno �ltracijo FI , in sicer

U j
I :=

⋂
i∈I U

j
i .

Filtracijo lahko podamo tudi s podnivojnicami funkcije f : X → Z. �e je na
danem simplicialnem kompleksu podana �ltracija, ji lahko na poljubnem pokritju
tega simplicialnega kompleksa s podkompleksi priredimo inducirano �ltracijo.

Smiseln je tudi pojem �ltriranega triangulabilnega prostora. V tem primeru
�ltracijo na prostoru Y obi£ajno podamo s podnivojnicami zvezne funkcije f : Y →
R.

Spomnimo se ²e standardne konstrukcije ºivca danega pokritja:

De�nicija. Danemu pokritju (Ui)i∈Λ prostora X priredimo ºivec N , in sicer kot
mnoºico vseh kon£nih podmnoºic indeksne mnoºice Λ, ki ustrezajo naslednjemu
pogoju: kon£na mnoºica I ⊆ Λ je element N natanko tedaj, ko velja

UI :=
⋂
i∈I

Ui 6= ∅.

�e I pripada N , potem to velja tudi za vse podmnoºice mnoºice I. Torej je N
abstrakten simplicialni kompleks.

Rezultati v razdelku 6 so zapisani v jeziku k[t]-modulov (glej npr. [34], kjer so ti
pojmi opisani v nekoliko druga£nem jeziku). Tu k ozna£uje polje koe�cientov, k[t]
pa stopni£asti kolobar polinomov v eni spremenljivki s koe�cienti v k. Pojem k[t]-
modula razumemo v primernem stopni£astem smislu, del strukture k[t]-modula M
je torej tudi razcepM =

⊕
j∈ZM

j, kjer soM j ustrezni k-podmoduli vM , delovanje
kolobarja k[t] pa upo²teva ta razcep.
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�e je ε ∈ N0, vpeljemo pojem ε-mor�zma k[t]-modulov M in N , to je homomor-
�zem f : M → N , ki upo²teva omenjeni razcep modulov M in N , tj. za vse j ∈ Z
velja f(M j) ⊆ N j+ε. Namesto izraza 0-mor�zem raje uporabljamo izraz mor�zem.

To nam omogo£a vpeljavo pojma prepletanja, ki je formalizacija intuitivne ideje
�aproksimativnega izomor�zma�, tj. para mor�zmov, ki sta si skoraj inverzna, v
smislu, da je njun kompozitum v poljubnem vrstnem redu enak id2ε. Tu je id2ε

2ε-mor�zem, ki je karseda blizu identiteti, in sicer id2ε(x) = t2εx.

De�nicija. Par (φ, ψ) ε-mor�zmov φ : M → N and ψ : N → M se imenuje
ε-prepletanje k[t]-modulov M in N , £e velja φψ = id2ε in ψφ = id2ε. Pojem 0-
prepletanja se ujema s pojmom izomor�zma. �e obstaja ε-prepletanje modulov M
in N , pravimo, da sta M in N ε-prepletena in pi²emo M ε∼ N .

Pojem prepletanja nam omogo£i vpeljavo pojma prepletne razdalje med modu-
loma M in N , tj. najmanj²a vrednost parametra ε, za katero velja M ε∼ N . Tako
formaliziramo idejo aproksimacije modulov. Module, ki so ε-prepleteni s trivial-
nim modulom 0, razumemo kot v nekem smislu majhne, in so tako uporabni za
modeliranje eksperimentalnih napak v podatkih.

Pri ²tudiju vztrajne homologije obi£ajno vpeljemo ²e pojem vztrajnostnega mod-
ula, ki je funktor F : (I,≤)→ Vect, kjer je (I,≤) ustrezna delno urejena mnoºica,
ki jo razumemo kot kategorijo. V tem pogledu k[t]-modulom ustrezajo ravno vz-
trajnostni moduli F : (Z,≤) → Vect. V praksi obi£ajno vztrajnostni modul
F : (Z,≤) → Vect dobimo z diskretizacijo ustreznega modula G : (R,≤) → Vect,
ki je idealizacija danega naravnega procesa, ki ga ºelimo opisati. Vztrajnostni modul
slednje oblike npr. lahko dobimo tako, da na podnivojski �ltraciji, ki ustreza dani
funkciji f : X → R, uporabimo homolo²ki funktor.

O opisanem procesu diskretizacije si lahko bralec ve£ prebere npr. v [16], [62] in
[18].

Da je ra£unanje s k[t]-moduli karseda u£inkovito, nazadnje potrebujemo ²e po-
jem spektralnega zaporedja. Spektralna zaporedja obi£ajno dobimo iz dvojnih kom-
pleksov. Opis teh lahko najdemo v [57, Chapter 10] in [50]. Uporabljamo Mayer-
Vietorisovo spektralno zaporedje. Nekatere njegove razli£ice so opisane npr. v [11]
in [12].

De�nicija. Dvojni kompleks (bikompleks) k[t]-modulov je trojica (M,∂0, ∂1), kjer
je M dvojno stopni£ast k[t]-modul in sta ∂0 = (∂0

p,q)p,q∈Z in ∂1 = (∂1
p,q)p,q∈Z dve

druºini mor�zmov ∂0
p,q : Mp,q → Mp,q−1 in ∂1

p,q : Mp,q → Mp−1,q, tako da velja
∂0
p,q−1∂

0
p,q = 0, ∂1

p−1,q∂
1
p,q = 0 in ∂1

p,q−1∂
0
p,q + ∂0

p−1,q∂
1
p,q = 0 za p, q ∈ Z.

Dvojnemu kompleksu lahko priredimo totalni kompleks.

De�nicija. Naj bo M dvojni kompleks. Totalni kompleks (Tot(M), D), prirejen
M je veriºni kompleks k[t]-modulov Totn(M) =

⊕
p+q=nMp,q z robnim operatorjem

D = ∂0 + ∂1.

Spektralna zaporedja so orodje za izra£un homologije takega totalnega kom-
pleksa. V praksi je taka situacija precej pogosta, saj npr. iz �ltracij topolo²kih
prostorov lahko na naraven na£in dobimo dvojne komplekse, homologija ustreznih
totalnih kompleksov pa se ujema s homologijo originalnega prostora, ki jo ºelimo
izra£unati. Prav to se zgodi tudi v na²em primeru.
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Spektralno zaporedje sestoji iz strani, kjer je vsaka stran Er, r = 0, 1, . . ., difer-
encialni bistopni£asti modul, iz dane strani pa se da izra£unati naslednjo, tako da
izra£unamo njeno homologijo glede na dani diferencialni operator. Diferencialni
operator na r-ti strani je oblike

dr : Er
p,q → Er

p−r,q+r−1.

Lahko se zgodi, da obstaja R, tako da so za vse r > R diferenciali z za£etkom ali
koncem v Er

p,q ni£elne preslikave. V tem primeru se (p, q)-ta komponenta stabilizira
v smislu, da so vsi moduli Er

p,q za r > R izomorfni. �e se to zgodi za vsak par (p, q),
re£emo, da spektralno zaporedje konvergira in stabilne module Er

p,q ozna£imo E∞p,q.
Dvojno stopni£asti modul s komponentami E∞p,q imenujemo ∞-stran spektralnega
zaporedja. �e velja EN = E∞ za neki kon£ni N , re£emo, da spektralno zaporedje
kolabira na N -ti strani.

Vsaka naslednja stran spektralnega zaporedja podaja bolj²o aproksimacijo ho-
mologije totalnega kompleksa. �e spektralno zaporedje bikompleksa M konvergira,
zato re£emo, da konvergira k H∗(Tot(M)). V praksi to pomeni, da H∗(Tot(M))
lahko rekonstruiramo iz strani E∞, vendar je pri tem morda treba razre²iti dolo£ene
raz²iritvene probleme.

Paru (X,U), kjer je X �ltrirani simplicialni kompleks in U = (Ui,Fi)i∈Λ nje-
govo �ltrirano pokritje, lahko priredimo (komutativni) dvojni kompleks (E0, ∂0, ∂1).
Ustrezne module de�niramo kot

E0
p,q =

⊕
|I|=p+1

Cq(UI),

robne preslikave ∂0
p,q : E0

p,q → E0
p,q−1 in ∂1

p,q : E0
p,q → E0

p−1,q pa s predpisoma

∂0
p,q(σ, I) =

q∑
k=0

(−1)ktdeg(σ,I)−deg(σk,I)(σk, I)

in

∂1
p,q(σ, I) =

p∑
l=0

(−1)ltdeg(σ,I)−deg(σ,Il)(σ, Il).

Spektralno zaporedje (Er, dr), prirejeno temu dvojnemu kompleksu, se imenuje
Mayer-Vietorisovo spektralno zaporedje para (X,U), pomembno pa je zato, ker
zado²£a naslednjemu izreku (glej npr. [48, 11, 12, 38]).

Izrek D.5. Mayer-Vietorisovo spektralno zaporedje para (X,U) konvergira k vztrajni
homologiji H∗(X).

Od tod je mogo£e razmeroma enostavno izpeljati Sheehyjev izrek o vztrajnih
ºivcih.

Izrek D.6. Recimo, da je X �ltriran simplicialni kompleks in U vztrajno acikli£no
pokritje za X. Potem velja H∗(X) ∼= H∗(N (U)).

Ta rezultat vzamemo za osnovo nadaljnjega dela, aproksimativni izrek o ºivcu
je namre£ njegova posplo²itev na primer, ko je pokritje le pribliºno acikli£no, kar
je pogosta situacija v praksi, kjer je nemogo£e zagotoviti popolno natan£nost v
podatkih.
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D.2 Ra£unanje unimodalne kategorije

Najosnovnej²e vpra²anje, ki nas zanima za dano funkcijo f : X → [0,∞), je kako
izra£unati njeno unimodalno kategorijo ucat(f). V primeru funkcij f : R→ [0,∞)
s kon£nim ²tevilom kriti£nih to£k sta nanj odgovorila ºe Ghrist in Baryshnikov [4,
Theorem 11] z uporabo enostavnega algoritma s pometanjem.

V razdelku 3 pokaºemo, da ta algoritem lahko razumemo kot posledico Jor-
danovega izreka o dekompoziciji za funkcije z omejeno variacijo. Ta opazka nam
omogo£a popolno karakterizacijo unimodalne kategorije za funkcije na X = R. Isto
idejo lahko uporabimo za izra£un unimodalne kategorije v primeru X = S1.

Najprej opazimo, da je vpra²anje zanimivo le za funkcije z omejeno variacijo,
saj imajo unimodalne funkcije u : R → [0,∞) omejeno variacijo. (To ne drºi za
unimodalne funkcije u : Rn → [0,∞), £e je n > 1.) Pojem intervala izsiljenega mak-
simuma iz dela [4] lahko nato z uporabo negativne variacije posplo²imo na poljubne
intervale in poljubne funkcije.

De�nicija. Interval (x, y) je interval izsiljenega maksimuma (glede na f), £e
velja

V −(f ; (x, y)) > f(x).

Re£emo ²e, da je (x, y) skoraj interval izsiljenega maksimuma, £e je (x, y + δ)
interval izsiljenega maksimuma za vsak δ > 0. �e ima f : R → [0,∞) kompakten
nosilec, de�niramo M(f) kot najve£je moºno ²tevilo paroma disjunktnih odprtih
intervalov, ki so intervali izsiljenega maksimuma za f , M̃(f) pa je analogno ²tevilo
za skoraj intervale izsiljenega maksimuma.

Izkaºe se, da se ti dve ²tevili ujemata. Z uporabo Jordanove dekompozicije
lahko dani funkciji f : R → [0,∞) priredimo delitev realne osi na skoraj intervale
izsiljenega maksimuma, tem pa priredimo unimodalno dekompozicijo funkcije f in
tako posplo²imo algoritem iz [4].

Izrek D.7. �e ima f : R→ [0,∞) kompakten nosilec, potem velja

ucat(f) = M(f).

�e je M(f) = n < ∞, lahko konstruiramo eksplicitno minimalno unimodalno
dekompozicijo (ui)

n
i=1 funkcije f po naslednjem postopku. Najprej raz²irimo f na

R = [−∞,∞] in de�niramo g, h : R→ [0,∞) s predpisoma

g(x) = V +(f ; (−∞, x]) in h(x) = V −(f ; (−∞, x]).

Rekurzivno de�niramo kon£no zaporedje (xi)
n
i=0:

x0 = −∞,
xi = inf{x | V −(f ; (xi−1, x)) > f(xi − 1)}, i = 1, . . . , n,

xn+1 =∞.

Nazadnje de�niramo ui : R→ [0,∞) s predpisom

ui(x) =


0; x ≤ xi−1,

g(x)− g(xi−1); x ∈ [xi−1, xi],

h(xi+1)− h(x); x ∈ [xi, xi+1],

0; x ≥ xi+1.
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To nam omogo£i tudi popolno karakterizacijo funkcij s kon£no unimodalno kat-
egorijo ter izra£un unimodalne kategorije za funkcije na intervalih J ⊆ R.

Podoben postopek deluje za funkcije f : S1 → [0,∞). Tudi v tem primeru
so zanimive le funkcije z omejeno variacijo. Privzamemo pa lahko tudi, da funkcija
nima ni£el, saj se sicer problem enostavno prevede na primer X = R. Nato vpeljemo
nekaj oznak.

Oznake. �e je a ∈ S1, de�niramo φ+
a : [0, 1]→ S1 s predpisom φ+

a (t) = a exp(2πit)
in φ−a : [0, 1] → S1 s predpisom φ−a (t) = a exp(−2πit). Vpeljemo f+

a = f ◦ φ+
a in

f−a = f ◦ φ−a . Poljubno funkcijo g : [0, 1] → [0,∞) raz²irimo do funkcije ĝ : R →
[0,∞) kot v ena£bi (3). Namesto f+

a v£asih pi²emo f+
a .

Funkciji f priredimo naslednja ²tevila:

M+
a (f) = M(f̂+

a |(−∞,1]), M+(f) = min
a∈S1

M+
a (f),

M−
a (f) = M(f̂−a |(−∞,1]), M−(f) = min

a∈S1
M−

a (f).

Unimodalno kategorijo funkcije f : S1 → [0,∞) je zdaj mogo£e karakterizirati
takole.

Izrek D.8. �e funkcija f : S1 → [0,∞) nima ni£el, potem velja:

ucat(f) = max{2,M+(f)} = max{2,M−(f)}.

Rezultat pomeni, da lahko unimodalno kategorijo funkcije f : S1 → [0,∞)
izra£unamo s konstrukcijo druºine skoraj intervalov izsiljenega maksimuma podobno
kot v primeru f : R→ [0,∞), £e le vemo, v kateri to£ki kroºnice za£eti. Izkaºe pa se,
da je v primeru, ko je kriti£nih to£k le kon£no mnogo, dovolj preizkusiti te kriti£ne
to£ke, torej je v tem primeru mogo£ popolnoma algoritmi£en izra£un.

D.3 Domneva o monotonosti

Baryshnikov in Ghrist svoj £lanek [4] zaklju£ita z naslednjo domnevo.

Domneva. Recimo, da je f : X → [0,∞) in 0 < p1 < p2 ≤ ∞. Potem velja
ucatp1(f) ≤ ucatp2(f).

Z drugimi besedami, domnevata, da je ²tevilo ucatp(f) pri �ksni funkciji f
monotona funkcija parametra p. V razdelku 4 dokaºemo, da ta domneva drºi za
X = R in X = S1 in da odpove, £e je X primerno izbran graf, pa tudi v primeru,
ko je X = R2 evklidska ravnina.

V primeru X = R oziroma X = S1 domnevo dokaºemo s pomo£jo naslednje
leme, ki je posledica Karamatove neenakosti [44].

Lema D.9. Naj bo 0 < q < 1 in x, y, z ≥ 0, tako da velja max{x, z} ≤ y ≤ x + z.
Potem je

(x− y + z)q ≤ xq − yq + zq.

Od tod lahko izpeljemo, da mora biti v primeru p1 < p2 vsak interval izsiljenega
maksimuma za funkcijo fp1 tudi interval izsiljenega maksimuma za funkcijo fp2 , od
tod pa lahko potem dokaºemo ºeleni izrek.
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Izrek D.10. Naj bo f : R→ [0,∞) in 0 < p1 < p2 ≤ ∞. Potem velja ucatp1(f) ≤
ucatp2(f).

Kot posledico tega izreka in karakterizacije unimodalne kategorije za funkcije
f : S1 → [0,∞) iz razdelka 3 od tod dobimo, da je unimodalna kategorija monotona
tudi za funkcije na S1.

Posledica D.11. Naj bo f : S1 → [0,∞) in 0 < p1 < p2 ≤ ∞. Potem velja
ucatp1(f) ≤ ucatp2(f).

Za splo²ne prostore pa domneva o monotonosti ne drºi. V razdelku 4.2 je po-
dan primer funkcije f : X → [0,∞) na grafu X, za katero v nasprotju z domnevo
o monotonosti velja ucat(f) = 2 in ucat

1
2 (f) = 3. Graf je dovolj enostaven, da

se da ta protiprimer posplo²iti na precej ²irok razred grafov. Te lastnosti primera
dokaºemo neposredno, ideja konstrukcije pa je v tem, da lahko s pomo£jo ciklov v
nadnivojnicah funkcije f do neke mere nadzorujemo vrednosti unimodalnih suman-
dov.

V razdelku 4.3 konstruiramo nekoliko druga£en protiprimer, in sicer funkcijo f :
X → [0,∞) na nekem drugem grafu X, za katero velja ucat(f) = 3 in ucat∞(f) =
2. Konstrukcija protiprimera v tem primeru sloni na dejstvu, da ima cikel dolºine 3
kromati£no ²tevilo 3.

Podobne primere z uporabo podobnih idej nato konstruiramo na ravnini. V
razdelku 4.4 je podan primer funkcije f : R2 → [0,∞), ki zado²£a pogojema
ucat(f) = 3 in ucat2(f) = 2, v razdelku 4.5 pa primer funkcije f : R2 → [0,∞), ki
zado²£a pogojema ucat(f) = 3 in ucat∞(f) = 2.

Nazadnje z uporabo trditve Proposition 4.3 iz [43] dokaºemo ²e monotonost za
nekatere dovolj enostavne funkcije f : R2 → [0,∞).

Izrek D.12. Naj bo f : R2 → [0,∞) Morsova funkcija, ki ima v razli£nih kriti£nih
to£kah razli£ne kriti£ne vrednosti. Recimo, da je njen Morse-Smaleov graf drevo in
0 < p1 < p2 ≤ ∞. Potem velja

ucatp1(f) ≤ ucatp2(f).

D.4 Razno

V razdelku 5 je predstavljenih nekaj moºnih smeri raziskovanja, ki se avtorju zdijo
obetavne.

Najprej predstavimo nekaj idej za ²tudij funkcij f : Rm → [0,∞). To sta po-
jem multimodalne funkcije in lema o raz²iritvi. Namen prvega je posplo²iti pojem
funkcije, katere Morse-Smaleov graf je drevo, ne da bi se pri tem sklicevali na glad-
kost. Namesto tega za osnovo vzamemo povsem topolo²ki pogoj, soroden unimodal-
nosti.

De�nicija. Funkcija f : X → [0,∞) je multimodalna, £e obstajaM > 0 da je vsaka
nadnivojnica f−1[c,∞) za 0 < c ≤M homotopsko ekvivalentna kon£ni mnoºici to£k
in prazna za c > M .

Zanimivo je vpra²anje, ali je unimodalna p-kategorija take funkcije monotona
v p. V primeru, ko poleg multimodalnosti privzamemo, da je funkcija f : Rm →
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[0,∞) Morsova in ima v razli£nih kriti£nih to£kah razli£ne kriti£ne vrednosti, lahko
pokaºemo, da ima le kriti£ne to£ke indeksov m in m − 1, kar pomeni, da ji lahko
priredimo Morse-Smaleov graf, kar za take funkcije odpira moºnost podobnega
pristopa, kot so ga uporabili avtorji [43] v primeru R2.

Nato si ogledamo nekaj odprtih vpra²anj. Vpra²amo se lahko npr., kak²en pojem
kategorije dobimo, £e v de�niciji unimodalnosti besedo �kontraktibilnost� zamen-
jamo za �povezanost s potmi�.

De�nicija. Zvezna funkcija u : X → [0,∞) je π0-unimodalna £e obstaja M > 0, da
so nadnivojnice u−1[c,∞) povezane s potmi za 0 < c ≤M in prazne za c > M .

Od tod dobimo naslednji pojem kategorije, katerega lastnosti bi bilo zanimivo
podrobneje ²tudirati. Prav tako bi si bilo zanimivo ogledati razli£ice, ki jih dobimo,
£e namesto kontraktibilnosti za osnovo vzamemo npr. povezanost, konveksnost ali
pa £e za unimodalne funkcije ne privzemamo zveznosti.

De�nicija. Naj bo p ∈ (0,∞). Vpeljimo π0-unimodalno p-kategorijo ucatpπ0(f)
funkcije f : X → [0,∞) kot minimalno ²tevilo n π0-unimodalnih funkcij u1, . . . , un :

X → [0,∞), tako da po to£kah velja f = (
∑n

i=1 u
p
i )

1
p . Pojem π0-unimodalne ∞-

kategorije de�nirajmo analogno z uporabo ∞-norme.

Opazimo lahko, da pojem Morse-Smaleovega grafa v [43] nikjer ne upo²teva
lokalnih minimumov. Ti nakazujejo prisotnost ciklov in si po avtorjevem mnenju
zasluºijo ve£je pozornosti. �e eno nere²eno vpra²anje je, na kak²nih gra�h lahko
upamo na algoritme, sorodne algoritmu s pometanjem iz [4].

Nazadnje se vpra²amo ²e, ali je pojem unimodalne kategorije mogo£e ²tudirati
s pomo£jo kohomolo²kega pristopa. Ta se je izkazal kot precej plodovit v primeru
Lusternik-Schnirelmannove kategorije. V primeru unimodalne kategorije za za£etek
ni jasno niti, kak²no homolo²ko teorijo bi sploh lahko uporabili, niti £e je tako
kohomolo²ko teorijo sploh mogo£e konstruirati.

D.5 Aproksimativni izrek o ºivcu

Izrek o ºivcu je eden od klasi£nih rezultatov algebrai£ne topologije, ki govori o
odnosu med dovolj lepim pokritjem topolo²kega prostora in ºivcem tega pokritja, in
ima korenine v delu Aleksandrova [2].

Izrek D.13 (Corollary 4G.3 [42]). �e je U odprto pokritje parakompaktnega prostora
X, tako da je vsak neprazen presek kon£nega ²tevila mnoºic v U kontraktibilen, potem
je X homotopsko ekvivalenten ºivcu N (U).

Ena od novej²ih aplikacij tega izreka je na podro£ju topolo²ke analize podatkov
[37, 14, 63]. Cilj je pridobiti informacije o topologiji prostora, pri £emer pogosto
poznamo le diskreten vzorec tega prostora. Na to temo obstaja precej £lankov, kjer
so dokazani rezultati v razli£nih kontekstih, kar vklju£uje [21, 9, 26], £e jih na²tejemo
le nekaj. Skupna to£ka vseh teh rezultatov je uporaba izreka o ºivcu, eksplicitno ali
pa implicitno, z uporabo konstrukcij kot je npr. �echov kompleks.

Glavna ideja vztrajne homologije, ki je mo£no orodje na podro£ju topolo²ke anal-
ize podatkov, je da namesto homologije enega samega prostora ²tudiramo homologijo
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�ltracije. Uporaba homolo²kega funktorja na taki �ltraciji porodi vztrajnostni modul.
�e ra£unamo homologijo s koe�cienti v polju, lahko dobimo popolno topolo²ko in-
varianto, ki se imenuje vztrajnostna £rtna koda ali vztrajnostni diagram. Uporaben
primer �ltracij so npr. podnivojske (oziroma nadnivojske) �ltracije � za dani pros-
tor, opremljen z realno zvezno funkcijo f : X → R podnivojnice te funkcije tvorijo
�ltracijo, ta pa porodi vztrajnostni diagram, ki ga ozna£imo Dgm(X, f).

Pomemben primer take funkcije je razdalja do dane kompaktne mnoºice. Kadar
ta kompaktna mnoºica sestoji iz to£k vzorca, je funkcija povezana s pojmom mer-
ila in je ekvivalentna �echovi �ltraciji. Spomnimo se, da je �echov kompleks na
mnoºici to£k P de�niran kot ºivec druºine krogel z radijem r. To£ke obi£ajno leºijo
v evklidskem prostoru, kar omogo£a uporabo izreka o ºivcu s pomo£jo konveksnosti.
Spreminjanje radija r nam da �echovo �ltracijo. Druge �ltracije, ki se pogosto
obravnavajo so: nadnivojska �ltracija prirejena dani funkciji gostote verjetnosti [9],
podnivojska �ltracija prirejena vzor£eni funkciji [21] in �ltracije prijene vi²inskim
funkcijam na ploskvah [1]. Vztrajnostni diagrami so se izkazali kot zanimivi, ker so
stabilni [23], kar pomeni, da majhna sprememba v �ltraciji povzro£i enako majhno
spremembo v invarianti. En na£in za merjenje te spremembe je ozkogrlna razdalja.
Stabilnost nam omogo£a, da dokaºemo izreke o aproksimaciji vztrajne homologije
�ltracije s pomo£jo druge �ltracije, ki jo dobimo iz diskretnega vzorca, in sicer nam
pove, da je ozkogrlna razdalja majhna.

Pomembna metoda v dokazovanju take aproksimacije je prepletanje [19], ki po-
daja algebrai£ni pogoj za aproksimacijo (razdelek 2.5). Pogosta tema je konstruk-
cija prepletanja z dobrim pokritjem, kjer je aproksimacija teoreti£no zagotovljena.
V nekaterih primerih, kot npr. za distan£no �ltracijo, lahko prepletanje z dobrim
pokritjem pogosto pokaºemo direktno. V splo²nej²ih kontekstih je direkten dokaz
v£asih teºji. Glavni cilj razdelka 6 je, da dokaºemo zgornjo mejo za aproksimacijo s
pomo£jo stabilnosti vztrajne homologije, ki nam omogo£i nekoliko omiliti zahtevo,
da je pokritje dobro. Pomembno je dejstvo, da rezultate izpeljemo zgolj na podlagi
predpostavk o lokalnih lastnostih prostora in funkcije, kar omogo£a uporabo v zelo
razli£nih aplikacijah.

Delamo z vztrajno homologijo, zato izhajamo iz homolo²ke verzije izreka 1.1.

Izrek D.14 (Theorem 4.4 [12]). Recimo, da je X unija podkompleksov Ui, tako da
je vsak neprazen presek Ui0 ∩ · · · ∩ Uip za p ≥ 0 acikli£en. Potem velja H∗(X) ∼=
H∗(N (U)), kjer je N (U) ºivec pokritja.

Glavni rezultat razdelka 6 je aproksimativna verzija zgornjega izreka v kontek-
stu vztrajne homologije. Za dani prostor in funkcijo najprej de�niramo pojem ε-
acikli£nega pokritja. Pripomnimo, da se ne omejimo na inducirane funkcije na
�ksnem pokritju, ampak ²tudiramo pokritje s �ltriranimi prostori. Ta pojem je
nekoliko manj intuitiven, je pa zato precej ²ir²e aplikativen. Uporabljamo Shee-
hyjevo formalizacijo pokritja s �ltriranimi prostori [60]. Na² glavni rezultat se v
neformalnem jeziku glasi:

Rezultat D.15. Naj bo dan prostor X, opremljen s funkcijo f in (�ltriranim)
pokritjem U . �e je vsak neprazen presek elementov pokritja ε-acikli£en, potem ob-
staja funkcija na ºivcu g : N (U) → R, tako da ozkogrlna razdalja dB(·) zado²£a
oceni

dB(Dgm(X, f),Dgm(N (U), g)) ≤ 2(Q+ 1)ε,
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kjer je
Q = min{dim(X), dim(N (U))}.

Konstrukcija funkcije na ºivcu je podana eksplicitno in se ujema z metodami, ki
se za izra£un vztrajne homologije trenutno uporabljajo v praksi.

V dokazih ne uporabljamo vztrajnostnih diagramov in ozkogrlne razdalje, saj
menimo, da je priro£neje delati neposredno z ustreznimi vztrajnostnimi moduli in
prepletanji. Zato ozkogrlne razdalje in vztrajnostnih diagramov ne de�niramo ek-
splicitno, saj niso nujni za formulacijo na²ih rezultatov. Kljub temu aludiramo na
te pojme, kadar bi to utegnilo biti v pomo£ bralcem, seznanjenim z vztrajnostjo. V
primeru, ko so diagrami dobro de�nirani, ocene na podlagi ozkogrlne razdalje sledijo
avtomati£no.

Glavni rezultat dokaºemo z uporabo Mayer-Vietorisovega spektralnega zaporedja,
ki nam omogo£a zlepiti informacije o ε-acikli£nih elementih pokritja v globalno infor-
macijo o vztrajni homologiji prostora. Da dobimo tesno mejo, vpeljemo pojma levih
in desnih prepletanj (razdelek 6.2), ki imajo dodatno strukturo. Na ta na£in lahko
zajamemo podobne fenomene kot rezultati v [5], s to razliko, da delamo neposredno
na nivoju modulov, in ne £rtnih kod. Zato ne zahtevamo, da so moduli razcepni, za
vpeljane pojme pa menimo, da so neodvisno zanimivi.

Ta tip aproksimacijskih rezultatov je poºel precej pozornosti na podro£ju ra£unske
topologije. Poleg zgoraj omenjenih aplikacij vztrajna lema o ºivcu v [22] pokaºe,
da homotopska ekvivalenca med dobrim pokritjem in njegovim ºivcem komutira z
inkluzijami, kar omogo£a uporabo v vztrajnem kontekstu. V zadnjem £asu je bilo to
uporabljeno v [10], kjer avtorji aproksimirajo vztrajno homologijo �echovega kom-
pleksa v evklidskem prostoru z uporabo pokritij, ki niso dobra. Primerljiv rezultat
se je pred kratkim pojavil tudi v [15]. Ta rezultat je bil splo²nej²i od predhodne
razli£ice £lanka [41], v kateri niso bile obravnavane �ltracije �ltracij (oziroma mul-
tipokritja) � v trenutni verziji £lanka in v pri£ujo£i disertaciji pa zdaj obravnavamo
tudi ta primer. Razli£en je tudi pristop, saj [15] zahteva, da so elementi pokritja
(in njihovi kon£ni preseki) �ε-nulhomotopni�. Pokaºejo, da je pri tej predpostavki
mogo£e zgraditi eksplicitno veriºno preslikavo, ki je hkrati prepletanje (in ustreza
isti aproksimacijski konstanti kot v na²em primeru). Na² pristop pa je povsem al-
gebrai£en in tako zanj potrebujemo le strukturo na nivoju homologije, ne pa tudi
homotopije.

Rezultat dokaºemo v dveh korakih: najprej pokaºemo, kako se aproksimaci-
jska meja spreminja skozi izra£un spektralnega zaporedja (razdelek 6.3), potem
pa razre²imo raz²iritveni problem in tako poveºemo rezultat spektralnega zaporedja
z vztrajno homologijo danega prostora (razdelek 6.4). Razdelek 6 smo poskusili
napisati tako, da bi bil samostojno berljiv, a na nekaterih mestih ²e vedno privze-
mamo nekaj poznavanja spektralnih zaporedij, pri tem pa kjer je le mogo£e, poda-
jamo tudi ustrezno intuicijo in vire.

133





Izjava

Podpisani Dejan Govc izjavljam, da je disertacija z naslovom Unimodalna kategorija
oziroma Unimodal category plod mojega lastnega ²tudija in raziskovalnega dela.

Ljubljana, 2017 Dejan Govc


