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A B S T R A C T

In most networks some edges or vertices are more central than others. To quan-
tify importance of nodes in networks, centrality indices were introduced. For
a given structural index, Freeman centralization [52] is a measure of how cen-
tral a vertex is regarding to how central all the other vertices are with respect
to the given index. In the thesis we study several such structural indices like
degree, eccentricity, closeness, betweenness centrality, the Wiener index and
transmission.

We confirm a conjecture by Everett, Sinclair, and Dankelmann [48] regard-
ing the problem of maximizing closeness centralization in two-mode data,
where the number of data of each type is fixed. Intuitively, our result states
that among all networks obtainable via two-mode data, the largest closeness
is achieved by simply locally maximizing the closeness of a node. Mathemat-
ically, our study concerns bipartite networks with fixed size bipartitions, and
we show that the extremal configuration is a rooted tree of depth 2, where
neighbors of the root have an equal or almost equal number of children.

We determine the maximum value of eccentricity centralization and (some)
maximizing networks for the families of bipartite networks with given parti-
tion sizes, tree networks with fixed maximum degree and fixed number of
vertices, and networks with fixed number of nodes or edges. As a by-product,
we introduce and study a new way of enumerating the nodes of a tree.

We also study the centralization of transmission, in particular, we deter-
mine the graphs on n vertices which attain the maximum or minimum value.
Roughly, the maximizing graphs are comprised of a path which has one end
glued to a clique of similar order. The minimizing family of extremal graphs
consists of three paths of almost the same length, glued together in one end-
vertex.

Group centrality indices, introduced in 1999 by Borgatti and Everett, mea-
sure the importance of sets of nodes in networks. We study the notion of group
centralization with respect to eccentricity, degree and betweenness centrality
measures. For groups of size 2, we determine the maximum achieved value of
group eccentricity and group betweenness centralization and describe the cor-
responding extremal graphs. For group degree centralization we do the same
with arbitrary size of group.

For a given integer k, by reduction to maximum domination problem [107],
we observe that determining the maximum group degree centralization some
k-subset of V(G) is NP-hard. We describe polynomial algorithm with the best-
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possible approximation ratio that calculates all centralizations for 1 6 k 6
n and altogether runs in O(n2) time. The constructed algorithm is tested on
six real-world networks. In results we observe a property of unimodality of
group degree centralization for parameter k, which may be a new property for
studying networks.

The well studied Wiener index W(G) of a graph G is equal to the sum of
distances between all pairs of vertices of G. Denote by W [Gn] the set of all
values of the Wiener index over all connected graphs on n vertices and let the
largest interval which is fully contained in W [Gn] be denoted by Wint

n . In the
thesis, we show that Wint

n is well-defined, it starts at (n
2), and that both Wint

n
and W [Gn] are of cardinality 1

6 n3 + O
(
n2) (in other words, most of integers

between the smallest value (n
2) and the largest value (n+1

3 ) are contained in
Wint

n and consequently in W [Gn]).
We describe the above results in separate chapters that are concluded with

some further discussion about open problems and future work. In the final
chapter we include a short description of our work in progress on between-
ness centralization, discuss some of presented results and summarize open
problems on extremal graphs.

Math. Subj. Class. (2010): 05C82, 05C35

Keywords: centrality, Freeman centralization, extremal graphs, group central-
ity
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P O V Z E T E K

V večini omrežij so nekatera vozlišča ali povezave pomembnejše od drugih.
Pomembnost vozlišč v omrežjih lahko izrazimo z merami centralnosti. Po-
danemu centralnostnemu indeksu lahko določimo indeks Freemanove central-
izacije [52], ki meri relativno centralnost vozlišča v primerjavi s centralnostjno
vseh ostalih vozlišč v omrežju. V tej disertaciji analiziramo različne strukturne
indekse, kot so stopnja točk, ekscentričnost, centralnost bližine, vmesnostna
centralnost, Wienerjev indeks ter totalna razdalja.

Potrdimo domnevo avtorjev Everett, Sinclair in Dankelmann [48] glede mak-
simiziranja bližinske centralizacije v dvodelnih omrežjih, s podanimi velikostmi
biparticij. Trdimo, da je največja vrednost centralizacije bližine (med vsemi
dvodelnimi omrežji) dosežena, če lokalno maksimiziramo bližinsko centralnost
v neki točki. Izkaže se, da je ekstremalna konfiguracija dosežena v korenskem
drevesu globine 2, z dodatnim pogojem, da imajo vsi sosedje od korena skoraj
enako stopnjo.

Med drugim določimo maksimizirajočo vrednost ekscentrične centralizacije
ter najdemo nekaj maksimizirajočih omrežij za družine dvodelnih grafov s
podanimi velikostmi biparticij, dreves fiksne velikosti s podano maksimalno
stopnjo, kot tudi splošnih povezanih omrežij pri podanem številu vozlišč ali
povezav. Tekom omenjene analize predstavimo tudi nov način enumeracije
drevesnih vozlišč.

Totalna razdalja vozlišča v je enaka vsoti vseh razdalj med v ter vsemi
drugimi vozlišči v omrežju. Pri analizi centralizacije totalne razdalje določimo
grafe na n točkah, ki dosežejo maksimalno ter minimalno vrednost le-tega in-
deksa. Izkaže se, da so maksimizirajoči grafi sestavljeni iz poti, ki je na enem
koncu identificirana s kliko podobne velikosti. Minimizirajoči grafi so sestav-
ljeni iz treh poti podobne velikosti, ki imajo eno krajišče identificirano v skupni
točki.

Centralnostni indeksi skupin, vpeljani l. 1999 (Everett in Borgatti [46]), me-
rijo pomembnost izbrane množice vozlišč v omrežju. V disertaciji preučujemo
skupinske indekse centralizacije ekscentričnosti, stopnje, ter vmesnostne cen-
tralnosti. Za skupine velikosti 2 določimo največje dosežene vrednosti skupinske
ekscentričnosti ter skupinske vmesnostne centralnosti, hkrati pa določimo tudi
pripadajoče ekstremalne grafe. Podobno določimo tudi za skupinsko central-
nost stopnje, neodvisno od velikosti skupine.

Na problem določanja najboljše skupine v smislu skupinske centralizacije
stopnje pri podanem omrežju G se osredotočimo tudi algoritmično. Pri podani
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velikosti skupine k omenjeni problem prevedemo na problem maksimalne k-
dominacije [107], ter opazimo da je le-ta NP-težak. Opišemo polinomski algo-
ritem z najboljšim možnim aproksimacijskim koeficientom, ki za vse smiselne
velikosti k izračuna centralizacijske vrednosti v skupni časovni zahtevnosti
O(n2). Omenjeni algoritem testiramo na šestih realnih omrežjih. V rezultatih
opazimo lastnost unimodalnosti (za parameter k), ki se lahko uporabi kot nova
metoda za preučevanje velikih omrežij.

Wienerjev indeks W(G) grafa G je enak vsoti razdalj med vsemi pari vo-
zlišč v G. Z W [Gn] označimo množico vseh vrednosti Wienerjevega indeksa
za družino povezanih omrežij na n vozliščih, pri čemer največji neprekinjen
interval iz W [Gn] označimo z Wint

n . V disertaciji pokažemo, da je Wint
n smiselno

definiran ter se začne v vrednosti (n
2). Poleg tega pokažemo, da je velikost

obeh Wint
n ter W [Gn] vsaj 1

6 n3 +O
(
n2), tj. večina vrednosti med (n

2) ter (n+1
3 ) je

vsebovana v Wint
n (ter posledično tudi v W [Gn]).

Zgornje rezultate predstavimo v ločenih poglavjih, ter jih zaključimo z morebit-
nimi idejami za prihodnje delo ter odprtimi domnevami. V zaključnem po-
glavju vključimo kratek povzetek tekočega dela v zvezi z vmesnostno cen-
tralizacijo, izpostavimo nekatere predstavljene rezultate ter pregledno povza-
memo nekatere odprte domneve na področju ekstremalnih grafov.

Math. Subj. Class. (2010): 05C82, 05C35

Ključne besede: centralnost, Freemanova centralizacija, ekstremalni grafi, skupin-
ska centralnost
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1
I N T R O D U C T I O N

It is hard to write properly about networks in general, since the term net-
work is used in many different contexts. The related field of network analy-
sis has grown in various directions, depending on the motivation of the re-
searchers. While the longest tradition of network analysis is credited to the
field of social sciences [53], experts that analyze networks come from various
other fields, such as mathematics, computer science, anthropology, electrical
circuits, project planning, complex systems, transportation systems, communi-
cation networks, epidemiology, bioinformatics, hypertext systems, bibliomet-
rics, text analysis, organization theory, genealogical research or event analysis.

As our focus in mathematics is graph theory, we see network analysis as
applied graph theory. Graph theory is a branch of mathematics that is both topo-
logical and combinatorial in nature, and is a comprehensive structural model,
or family of models, which is essentially free from context and with strong tools
already developed for network analysis. Based on this, the notations and terms
from network analysis are nowadays mostly unified with terms from graph
theory (a big contribution to achieving this is by Hage and Harary [62]).

In most networks some edges or vertices are more central than others. To
quantify this intuitive feeling, centrality indices were introduced. First mathe-
matical concept of centrality of graphs was introduced 146 years ago by Jordan
[74]. There are many ways to provide a measure of the relative “importance”
of a node in a network, thus different motivations lead to different centrality
measures that were developed in several fields. Centrality is used in chem-
istry [73], psychology [2], sociology [72], geography [99], game theory [58], and
many other fields. Arguably, the most common branch of centrality functions
is based on the distance between the nodes of the network. Standard centrality
indices from this branch are betweenness, closeness and eccentricity. Classic
applications of these centralities can be found in transportation-network the-
ory [59], communication-network theory [115] and many others. In the last
years, even more widespread interest is developing in the field of chemistry
[9], electrical circuits [33] and also in the study of food webs [12].
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2 introduction

The thesis is structured into two parts. Part one is consisted of some pre-
liminary theory from graph theory and network analysis which are discussed
in Chapters 2 and 3, respectively. Among other things, some relevant classes
of graphs and structural indices are presented, including some basic historical
background that we omit from Chapters 4–9. In the second part we present our
main results on several structural indices, such as degree, eccentricity, close-
ness, betweenness centrality, the Wiener index and transmission.

In Chapter 4 we confirm a conjecture by Everett, Sinclair, and Dankelmann
[48] regarding the problem of maximizing closeness centralization in two-mode
data, where the number of data of each type is fixed. In particular, our result
states that among all networks obtainable via two-mode data, the largest close-
ness is achieved by simply locally maximizing the closeness of a node. Math-
ematically, our study concerns bipartite networks with fixed size bipartitions,
and we show that the extremal configuration is a rooted tree of depth 2, where
neighbors of the root have an equal or almost equal number of children.

In Chapter 5 we determine the maximum value of eccentricity centralization
and (some) maximizing networks for the families of bipartite networks with
given partition sizes, tree networks with fixed maximum degree and fixed
number of vertices, and networks with fixed number of nodes or edges. As
a by-product, we introduce and study a new way of enumerating the nodes of
a tree, which might be of independent interest.

The transmission of a vertex v in a connected graph G is equal to the sum
of distances between v and all other vertices of G. In Chapter 6 we study the
centralization of transmission, in particular, we determine the graphs on n ver-
tices which attain the maximum or minimum value. Roughly, the maximizing
graphs are comprised of a path which has one end glued to a clique of simi-
lar order. The minimizing family of extremal graphs consists of three paths of
almost the same length, glued together in one end-vertex.

Group centrality indices, introduced in 1999 by Everett and Borgatti [46],
measure the importance of sets of nodes in networks. We study the notion
of group centralization with respect to eccentricity, degree and betweenness
centrality measures. For groups of size 2, we determine the maximum achieved
value of group eccentricity and group betweenness centralization and describe
the corresponding extremal graphs. For group degree centralization we do the
same with arbitrary size of group.

In Chapter 8, for fixed k, we observe that determining the maximum group
degree centralization some k-subset of V(G) is NP-hard. We reduce the prob-
lem to maximum domination problem [107], and describe polynomial algo-
rithm with the best-possible approximation ratio that calculates all central-
izations for 1 6 k 6 n and altogether runs in O(n2) time. The constructed



introduction 3

algorithm is tested on six real-world networks. In experiments we observe a
property of unimodality of maximum k-group degree centralization.

The well studied Wiener index W(G) of a graph G is equal to the sum of
distances between all pairs of vertices of G. Denote by W [Gn] the set of all
values of the Wiener index over all connected graphs on n vertices and let
the largest interval which is fully contained in W [Gn] be denoted by Wint

n . In
Chapter 9, we show that Wint

n is well-defined, it starts at (n
2), and that both Wint

n
and W [Gn] are of cardinality 1

6 n3 + O
(
n2) (in other words, most of integers

between the smallest value (n
2) and the largest value (n+1

3 ) are contained in
Wint

n and consequently in W [Gn]).
We describe the above results in separate chapters, that are concluded with

some further discussion about open problems and future work. Finally, in
Chapter 10 we include a short description of some work in progress on be-
tweenness centralization, discuss some of presented results and summarize
open problems on extremal graphs.
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2
G R A P H T H E O RY

Throughout the thesis, the term network is used to refer to the informal concept
describing an object composed of elements and interactions or connections be-
tween these elements. For example, the Internet is a network composed of ver-
tices (routers, hosts) and connections between these nodes (e.g. fiber cables).
The field of graph theory seems to be a natural way to model networks mathe-
matically and some of the same concepts in the intersection of both fields have
different names. Hence, some standard graph-theoretic terms (vertex, edge,
graph,...) will sometimes be interchanged with those from networks (node, con-
nection, network,...) without any distinction in the meaning.

2.1 basic notions

A graph G is an object formed by a set of vertices and a set of edges that connect
pairs of vertices. The vertex set and edge set of a graph G are denoted by V(G)

and E(G), respectively, while their cardinalities are usually denoted by n or m,
respectively. The two vertices joined by an edge are called its endvertices. If two
vertices are joined by an edge, they are adjacent and we call them neighbors.
Graphs can be undirected or directed. In undirected graphs, the order of the
endvertices of an edge is irrelevant. An undirected edge joining vertices u, v ∈
V(G) is denoted by {u, v}. Whenever we are dealing with directed graphs,
each directed edge has a destination and an origin. An edge with destination
v ∈ V(G) and origin u ∈ V(G) is represented by an ordered pair (u, v). For
convenience, an edge {u, v} or (u, v) will usually be denoted by uv. In an
undirected graph, uv and vu both stand for {u, v}, while in a directed graph
uv is short for (u, v). Graphs that can have directed edges as well as undirected
edges are called mixed graphs, but such graphs are encountered rarely and we
will not discuss them in the thesis. An edge is called a loop, if both its endpoints
are the same. The graph is simple, if it is undirected and does not contain loops
or multiple edges. Unless stated otherwise, we will assume that our graphs are
simple.

7



8 graph theory

The degree of a vertex v, denoted by deg(v), represents the number of its
neighbours. The set of neighbors of v is denoted by N(v). If the graph G is
directed the in-degree of v ∈ V(G), denoted by deg−(v), corresponds to the
number of edges with destination v. The out-degree of v ∈ V(G), denoted by
deg+(v), is the number of edges in E(G) with origin in v. An undirected graph
is called regular if all of its vertices have the same degree, and k-regular if that
degree is equal to k. Vertices of degree one are called leaves. The maximum,
minimum and average degree of an undirected graph G are denoted by ∆(G),
δ(G) and d(G), respectively.

A graph G′ is a subgraph of the graph G if V(G′) ⊆ V(G) and E(G′) ⊆ E(G).
It is an induced subgraph if E(G′) contains all edges e ∈ E(G) that join vertices
in V(G′). The induced subgraph of G with vertex set X ⊆ V(G) is denoted by
G [X]. If F is a subset of E(G), then G− F denotes the graph obtained from G by
deleting all edges in F. If C is a proper subset of V(G), then G− C denotes the
graph obtained from G by deleting all vertices in C and their incident edges.

A path in a graph G is a sequence of edges which connect a sequence of
pairwise distinct vertices. The distance dG(u, v) in G of two vertices u, v is the
length of the shortest path with endpoints u and v. If no such path exists,
we set d(u, v) = ∞. The distance d(v, U) between a vertex v and a set of
vertices U ⊆ V(G) is defined as d(v, U) = minu∈U d(v, u). The diameter of
G, denoted diam(G), stands for the greatest distance between any two ver-
tices in G, i.e. maxu,v∈V(G) d(u, v). Two graphs G and H are isomorphic, if there
exists a bijection f : V(G) → V(H), such that all edges are preserved, i.e.
uv ∈ E(G)⇔ f (u) f (v) ∈ E(H). The above relation is denoted with G ' H.

Let γ(G) be a cardinality of a minimum set that dominates graph G (also
known as domination number), i.e. it is the smallest integer, such that

∃S ∈
(

V(G)

γ(G)

)
:
⋃
v∈S

(N(v) ∪ {v}) = V(G).

A function f is said to be unimodal if locally there is only a single highest value
in f . If the graph under consideration is not clear from the context, these and
other notations will sometimes be augmented by specifying the graph as an
index. For example, degH(v) denotes the degree of vertex v in the graph H.

2.2 relevant classes of graphs

The family of all connected graphs Gn represents the most basic class of graphs
– the collection of all possible connected graphs with vertex-set of order n. We
now define some classes of graphs that we use throughout the thesis.
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(a) a bipartite network (b) a tree

Figure 2.1: Examples of a directed bipartite graph (a) and a tree (b).

Bipartite graphs

If we can partition the vertex set of an (undirected) graph into two parts, such
that no edge connects two vertices from the same part, we call such graph a bi-
partite graph. Denote by B(n0, n1) the family of all bipartite networks on fixed
bipartition sizes n0 and n1. Bipartite networks are important also in social sci-
ences [21], where the word two-mode data is usually used instead. An example
of a directed bipartite graph can be observed on Fig. 2.1a, where circles rep-
resent faculties, squares are courses, and arrows indicate which faculty chose
which courses.

Complete graphs and complete bipartite graphs

Another standard class of graphs are the complete graphs. The complete graph
Kn is a graph on n vertices, where any pair of distinct vertices is connected by
an edge. The complete bipartite graph Ka,b is a graph on a + b vertices, where
any pair of vertices from distinct bipartitions is connected by an edge. Among
Gn, graph Kn maximizes the number of edges and some other centrality indices,
described in Section 3.3 on page 21. An example of a complete graph can be
observed on Fig. 2.2b.

Trees and forests

An undirected graph is a tree, if for any pair of its distinct vertices, there exists
the unique path between them. Note that all trees are bipartite. An example
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(a) a path (b) a complete graph (c) a star

Figure 2.2: An example of P7 (a), K5 (b) and S12 (c).

can be observed on Figure 2.1b. An undirected graph is a forest, if for any pair
of its distinct vertices, there exists at most one path between them. As no cycles
are allowed in trees, they are members of bipartite graphs by definition. The
family of trees, usually denoted with T is very important in graph theory and
most of graph families described below are members of the trees.

Paths and stars

A very simple subfamily of trees are paths. Graph on n vertices is a path Pn,
if it contains two leaves, while n − 2 of its remaining vertices are of degree
2. Among Gn, graph Pn maximizes diameter, radius, Wiener index, and some
other graph indices. An example of a path is shown on Fig. 2.2a.

A star Sn is a tree on n + 1 vertices, consisted of a vertex connected to n
leaves, i.e. Sn ' K1,n. Among graphs from Gn, star is a tree with maximum
number of leaves. As we observe later, among graphs from Gn, the star graphs
are the maximizing family for several topological indices. An example of a star
S12 is depicted in Figure 2.2c.

The graph families that follow are a mixture of path, star and complete
graphs.

Dandelion graphs and comets

Let D(n, l) be the Dandelion graph on n vertices, consisted of the star Sn−l and
a path Pl , on vertices p0, p1, . . . , pl−1, where p0 is identified with a star center.
The notion of Dandelion graphs will be important in Chapters 7 and 9. An
example of D(17, 8) is shown in Fig. 2.3a.
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(a) Graph D(17, 8).

(b) Graph C(17, 8).

Figure 2.3: Examples of a Dandelion graph and a comet.

The family of comets looks similar as the family of dandelion graphs. Let
C(n, l) be the comet on n vertices, consisted of a complete graph Kn−l+1 and a
path Pl , on vertices p0, p1, . . . , pl−1, where p0 is identified with a vertex from
Kn−l+1. An example of C(17, 8) is shown in Fig. 2.3b.

The bipartite family of graphs H

Later on in the thesis we will also consider rooted trees on fixed partition sizes
n0 and n1 that are of depth two and have nicely distributed degrees of all non-
root vertices. Formally, they are described as follows (see Everett et al. [48]).

Definition 2.1. Let H(v; n0, n1) be the connected bipartite tree with node bipar-
tition (A0, A1) such that

• |Ai| = ni for i ∈ {0, 1};

• there exists a node v ∈ A0 such that NG(v) = A1; and

• deg(w) ∈
{

1 +
⌈

n0−1
n1

⌉
, 1 +

⌊
n0−1

n1

⌋}
for all nodes w ∈ A1.

The node v is called the root of H(v; n0, n1). The family of graphs H(·, ·, ·)
will play an important role in Chapter 4. An example of a graph H(0, 18, 14)
can be observed on Fig. 2.4.
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Figure 2.4: A graph H(0, 18, 14).



3
N E T W O R K T H E O RY

For many decades, social networks have been a fundamental subject of study
in social sciences. With the rapid growth of the internet and the world wide
web in recent years, many large-scale on-line based social networks appeared,
and many large-scale social network data became easily available, thereby pro-
viding an important source of materials for analysis [43, 109, 110, 118].

As the connections among the nodes can exhibit complicated patterns, a net-
work can be a complex structure. Still, most networks appearing in nature, de-
spite their diversity, follow some universal organizing principles. When study-
ing complex networks, one challenge is to develop simplified measures that
capture some elements of the structure in an understandable way. Let us de-
scribe some of those here.

3.1 basic terms and properties

As mentioned in the introduction, a network is often conveniently modeled by
a graph: nodes (vertices) represent individual objects and connections (edges)
represent the relationships between pairs of these objects. In the thesis we
will freely interchange terms vertex/node and graph/network, without any
meaningful difference. We work on simple unweighted networks: our network
only tells us, for a given (binary) relation R, which pairs of individual are in
relation according to R.

Degree distribution

One property that ignores any patterns among different nodes and just look at
each node separately is the degree distribution. If one zooms in onto a node and
ignores all other nodes, the only thing one can see is how many connections
the node has, i.e., the degree of the node. The degree distribution of a graph
G is a probability distribution that maps integers [1, ∆G] to the real interval

13
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source: Davis et al. [38]

Figure 3.1: A non-trivial part of an adjacency matrix of two-mode network. Rows
represent the participation of women in social events reported in Old City
Herold.

[0, 1]. It contains information about the probability of the degree of a randomly
chosen node in a network. In other words, we can define it as

Pdeg(k) = a fraction of nodes of degree k in G.

An example of the degree distributions for two-mode networks from Figures 2.1a
and 3.1 above can be observed on Figure 3.2.

Power-law degree distributions and scale-free Networks

If the number of nodes Pdeg(k) of degree k is given by Pdeg(k) ∝ k−γ for some
γ > 1, we call such degree distribution a power-law distribution.

When we increase the scale or units by which we measure a distribution of a
power-law network by a constant factor, the shape of the distribution remains
unchanged except for the multiplicative constant. For this reason, networks
with a power-law distribution are also called scale-free networks.

The fact that power law degree distribution is very common among large
real-world networks shows that real networks are not “random” (see a related
study by Faloutsos et al. [49]). From a power-law degree distribution, it fol-
lows that such scale-free networks contain many vertices with a degree that
greatly exceeds the average. Those are often called “hubs”, and are thought to
serve specific purposes in their networks, although this depends greatly on the
domain. Examples of scale-free networks include citation graphs [124], phone
call graphs [1], the Web [76, 27, 11, 69, 90, 100] (also see Figure 3.3), on-line
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Figure 3.2: The non-normalized degree distributions of graphs from Figures 2.1a
and 3.1.

Network The degree exponent γ

The web graph [11]
γin = 2.1

γout = 2.4

Autonomous systems [49] γ = 2.4

Table 3.1: Real-world examples of different values of the degree exponent in two net-
works.

social networks [30], the Internet [49], click-stram data [18] and many others.
For most networks, the degree exponent falls inside an interval γ ∈ [2, 3]. Two
real-world examples can be observed in Table 3.1.

Network Diameter

As noted above, a network diameter is the maximal distance between any pair
of nodes in a network. By this definition, disconnected graphs have infinite
diameter. In 2001, Tauro et al. [132] introduced a notion of an effective diameter,
which is the smallest distance at which at least 90% of all connected pairs of
nodes can be reached.
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Small-world Networks

Many networks have an interesting mathematical property so that most nodes
can be reached from every other by a small number of steps, and at the same
time most nodes are not neighbors of one another. Those graphs are also called
small-world networks (see [139]). Formally, a small-world network is defined to
be a network with

d ∝ log n,

where d is an expected distance between two randomly chosen nodes and n is
the number of nodes in a graph. Since any isolated vertex force a diameter of
a whole network to be infinite, big real-world networks often use more robust
measure of effective diameter.

In the context of a social network, constant or small expected distance be-
tween two randomly chosen nodes implies the so-called small world phenomenon.
In 1998, Watts and Strogatz [139] published the first network model on the
small-world phenomenon, which we further discuss in Section 3.2. The charac-
teristics of small-world network can be observed in social networks, the connec-
tivity of the Internet, Web and many other networks [4, 103, 5, 19, 27, 32, 139].

On Figure 3.3 one can observe a representation of the most known small-
world networks – World Wide Web by B. Lyon [100], where different colors
represent different continents of origin.

Clustering coefficient

In most real-world networks, in particular social networks, nodes tend to create
highly connected groups characterized by a relatively high edge density; the
edge-probability in such a group is greater than the average probability of a
random edge between two nodes (see [66, 139]). The clustering coefficient is a
measure correlated to a number of triangles in the network, i.e., sets of fully
connected triples of nodes. Let G be our network and let ∆o and ∆c be the
number of induced P3 and K3 in G, respectively. The clustering coefficient of G
is defined as:

C(G) =
∆c

∆c + ∆o
.

Similarly, clustering coefficient of a vertex v is defined as

C(v) =
∆′(v)

(deg(v)
2 )

,

where ∆′(v) represents a number of triangles that contains a vertex v. A further
generalizations to weighted, directed and bipartite networks are presented in
[116, 39, 98, 3].
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Figure 3.3: The web-graph [100]; one of most known small-world networks. Different
colors represent different continents of origin.
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Studies show that clustering coefficient is significantly higher in real net-
works than in random networks of the same degree distribution (the model
that generates such random graphs is described in [105]). In real networks, it
has further been observed [41, 122] that for a vertex v clustering coefficient
C(v) decreases as deg(v) increases. Moreover, C(v) scales as a power law, i.e.
C(v) ∝ deg(v)−1. Consider a social network in which nodes are people and
links are acquaintance relationships between people. One interpretation of this
phenomenon is that the low-degree nodes belong to very dense sub-graphs
and those sub-graphs are connected to each other through hubs. An example
of clustering in social networks are people that tend to form small groups in
which everyone knows almost everyone else (communities). These are often
organized or hierarchically nested.

One can observe community-like sets of nodes tend in various networks.
For example, they correspond to functional modules in biological networks
[123], organizational units in social networks [111], and scientific disciplines in
collaboration networks between scientists [57].

Graph motifs and graphlets

Network motifs [104, 6] are basic building blocks of complex networks:¸

Network motifs are sub-graphs that repeat themselves in a specific net-
work or even among various networks. Each of these sub-graphs, defined
by a particular pattern of interactions between vertices, may reflect a frame-
work in which particular functions are achieved efficiently. Indeed, motifs
are of notable importance largely because they may reflect functional prop-
erties. (from [143])

The idea is to enumerate and count occurrences of all possible subgraphs of a
given graph G up to a small number of nodes. The subgraphs considered are
usually of size up to n = 5 nodes, as the computation for larger values of n
is unfeasible. The frequencies of motifs are stored in a vector and compared
to those of a random graph with the same degree distribution (the model that
generates such random graphs is described in [105]). Finally, one can extract
motifs that occur significantly more frequently in real-world network than in
the random-generated graph.

A variant of network motifs are so-called graphlets, introduced by Pržulj et al.
[120], that requires all small subgraphs to be induced. On Figure 3.4 one can
observe all 30 non-isomorphic graphs on n ∈ {2, 3, 4, 5} nodes (denoted by
G0, G1, . . . , G29) that correspond to all 72 non-isomorphic rooted graphlets.
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Figure 3.4: All 30 non-isomorphic graphs on n ∈ {2, 3, 4, 5} nodes (denoted by
G0, G1, . . . , G29) that correspond to all 72 non-isomorphic rooted graphlets.

3.2 models

Another interesting field in network analysis is generation of networks with
given specific properties. Given the set of properties or limitations that we
want the resulting network to have, one needs to construct a procedure that
will construct the desired graph. In the base part of our thesis, in particular
in Chapters 4–8, we will deal with a similar task; trying to find the struc-
ture of graphs that maximizes some very special centrality-related property. In
this section we present some of the most common models for generating real-
world like networks and describe the appropriate global properties that can be
observed in each of them.

Erdős-Rébyi random graph

In graph theory, the two most known models for generating random graphs
(namely Gn,p and Gn,m) are named after Paul Erdős and Alfréd Rényi. They
first introduced the Gn,p model in 1959 (see [44]), while the other model was
independently introduced by Edgar Gilbert [56]. In the model denoted Gn,p,
an edge between each pair from n nodes is placed independently of the other
edges, with a fixed probability p. The other variant (denoted Gn,m) is to fix
number of nodes and edges (n and m respectively) and then uniformly at ran-
dom choose a graph from a set of all possible graphs on n nodes and m edges.
In the probabilistic method, these models can be used to provide a rigorous
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Figure 3.5: Erdős-Rébyi random graph with n = 16 and m = 48.

definition of what it means for a property to hold for almost all graphs, or
to prove the existence of graphs satisfying various properties. A close corre-
spondence exists between both models and in practice most theorems hold for
both variants. An example of Erdős-Rébyi random graph can be observed on
Fig. 3.5.

One can show that the average shortest path length of a random graph grows
with the number of nodes n as O(log log n) and that the diameter increases
asymptoticly as O(log n) [31]. Furthermore, the degree distribution of Erdős-
Rébyi random graph follows a binomial distribution with mean d [4] (note that
d stands for an average degree of a network). When assessing the clustering
coefficient of some network, graph motifs vector or graphlet degree-vector, one
usually compare it to the values from random graph with the same degree
distribution. The model that generates such random graphs is described in
[105].

Although Erdős-Rébyi random graph model is the fundamental one for
graph generation, the resulting graphs do not have some important properties
observed in many real-world networks. Since they have a constant and inde-
pendent probability of two nodes being connected, their clustering coefficient
is artificially small. Furthermore they do not account for the formation of hubs.
Finally, the degree distribution of a general Erdős-Rébyi graphs converges to
a Poisson distribution, rather than a power law observed in many real-world,
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scale-free networks. To address some of the above mentioned limitations, the
following models were designed.

Watts and Strogatz model

The Watts–Strogatz model is a random graph generation model that produces
graphs with small-world properties, including short average path lengths and
high clustering. As its name suggests, it was proposed Watts and Strogatz
[139].

For a positive integer n and an even integer k, let C(n, k) denote the graph ob-
tained from a cycle Cn by adding the additional edges uv, whenever dCn(u, v) 6
k. The Watts–Strogatz graph WS(n, k, p) can be constructed from C(n, k) by re-
placing each edge in C(n, k) with probability p by a randomly chosen edge. An
example of Watts and Strogatz random graph can be observed on Fig. 3.6a.

Barabási–Albert model

Unfortunately, Watts and Strogatz model is also unable to generate networks
that have power-law degree distribution. By using preferential attachment met-
hod, the Barabási–Albert model [4] is an algorithm that indeed generates random
scale-free networks. The algorithm constructs a network by adding new nodes
to the network one at a time.

The algorithm begins with some initial connected graph of m0 nodes. Each
new node is connected to m 6 m0 existing nodes with a probability that is
proportional to the number of links that the existing nodes already have. This
results in a desired phenomenon so that vertices of high degree tend to quickly
accumulate even more neighbors, while those with only a few links are un-
likely to be chosen as an endpoint of a new edge. An example of Barabási–Albert
random graph can be observed on Fig. 3.6b.

3.3 network centrality

In most networks some edges or vertices are more central than others. To quan-
tify this intuitive feeling, centrality indices were introduced. First mathemati-
cal concept of centrality of graphs was introduced 146 years ago by Jordan
[74]. There are many ways to provide a measure of the relative “importance”
of a node in a network, thus different motivations lead to different centrality
measures that were developed in several fields. Centrality is used in chem-
istry [73], psychology [2], sociology [72], geography [99], game theory [58],
transportation-network theory [59], communication-network theory [115] and
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(a) Watts and Strogatz random graph with
n = 16 and k = 5 and p = 1

2 .
(b) Barabási–Albert random graph with n =

16 and m = 4.

Figure 3.6: Graphs on 16 nodes and 48 edges, generated by different random models.

many other fields. Arguably, the most basic centrality measure is the degree of
the node, and the most common branch of other centrality functions is based
on the distance between the nodes of the network. Standard centrality indices
from this branch are betweenness, closeness and eccentricity. For detailed defi-
nitions and discussion on various centrality indices, we refer the reader to the
work of Brandes and Erlebach [25], Bavelas [13, 15], Koschützki et al. [82], Proc-
tor and Loomis [119], Seeley [127]. In the last years, even more widespread
interest is developing in the field of chemistry [9], electrical circuits [33] and
also in the study of food webs [12].

In this section we outline some fundamental concepts in centrality theory.
First consider one of fundamental properties that all centrality measures share.

Definition 3.1. Let G be an (undirected) graph. A function f : V(G) → R is
called a structural index if the following condition is satisfied:

∀v ∈ V(G) : G ' H =⇒ fG(v) = fH (φ(v)) ,

where φ is an isomorphism between G and H.

Clearly, two isomorphic networks should always attain the same centrality
values on their nodes, therefore any centrality index is required to be a struc-
tural index. Thus, relation 6 with respect to any centrality measure induces
a semi-order on the vertex-set of a graph. For a given centrality index, it is
natural to ask if it satisfies the rule of monotonicity, defined as follows.
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Definition 3.2. Let G be an (undirected) graph. A centrality measure f : V(G)→
R on G satisfies the rule of monotonicity if u is “more central” than v whenever
f (u) > f (v), for any two nodes u and v of G.

In next two subsections, we present two important aspects of centrality mea-
sures, namely group centrality and Freeman centralization.

3.3.1 Group Centrality

In 1999, Everett and Borgatti [46] introduced the concept of group centrality
which enables researchers to answer questions such as “how central is the en-
gineering department in the informal influence network of this company?” or
“among middle managers in a given organization, which are more central, the
men or the women?” With these measures we can also solve the inverse prob-
lem: given the network of ties among organization members, how can we form
a team that is maximally central? In [46], the authors introduced group central-
ity for measures of degree, closeness and betweenness centrality, which we use
in this paper. In 2006, Borgatti introduced another important group centrality
measure (usually called KPP) that is motivated by key players problem (see [20]).
In his paper he focused on finding a set of vertices for the purpose of opti-
mally diffusing something through the network by using selected vertices as
seeds, or for maximally fragmenting the network by removing the key nodes.
Interestingly, Borgatti claims that previously mentioned group closeness and
betweenness are not proper tools to define KPP centrality. He therefore used
tools like graph fragmentation and information entropy to define KPP central-
ity. To make the distinction between a vertex or a group centrality index precise,
the following definition is used in the thesis.

Definition 3.3 (Group Centrality Measure). Let G be a (directed) graph. The
class of group centrality indices is the class of functions f : 2V(G) → R that are
invariant under isomorphism.

Several more concepts of centrality with respect to some subset of vertices
have been introduced throughout last decade. Those can easily be mistaken for
a group centrality measure, but are in fact an extended type of vertex-centrality
indices. In 2003, Smith and White [141] introduced a measure called personal-
ization that shows, how central an individual is according to given subset R
(group of important people) in given social network. In 2005, subgraph central-
ity has been introduced by Estrada and Rodríguez-Velázquez [45], and char-
acterizes the participation of each node in all subgraphs in a network, which
is calculated from the spectra of the adjacency matrix of the network. In the
same year, Everett and Borgatti in [47], introduced another measure (i.e. core
centrality), where they evaluate the extent to which a network revolves around
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a core group of nodes. Finally, very recently Bell [17] introduced the concept
called subgroup centrality, where centrality (of one vertex) is calculated only on
restricted set of vertices. Let us remark that all four mentioned centralities in
principle measure importance of an individual vertex (with respect to some
conditions) and are different from group centrality, proposed in [46]. In Sec-
tion 3.4 we present some relevant group centrality indices that we use in the
thesis.

It should be noted that the centrality ratio or difference of two vertices cannot
generally be used to quantify how much more central one vertex is comparing
to the other one. For example, having 350 connections on Facebook was an
average degree for US in 2014. On the other hand, having the same degree in
coauthorship network would be quite impressive. To be able to compare such
vertices from different context, a proper normalization of a given centrality in-
dex is needed. Arguably, the most standard way to do this is by using Freeman
centralization that we define in the following subsection.

3.3.2 Network Centralization

In his study, Freeman [52] realized that despite all defined vertex-centrality
indices, there was a need for graph centrality measure based on differences in
point centrality. He defined a centralization index that can be used in combi-
nation with any vertex-centrality to determine to what extent some vertex in
network stands out from others in terms of given centrality index. Furthermore
he used this approach to compare different graphs, depending on their highest
centralization scores. The general definition of centralization for graphs assigns
a centralization measure F1 to any existing centrality measure F.

Definition 3.4. If F is a vertex-centrality measure, then set

F1(G, v) = ∑
u∈V(G)

(F(v)− F(u)) . (3.1)

In order to compare centralization values of graphs with different sizes, Free-
man used a normalized formula, dividing the expression (3.1) by the theoret-
ically largest such sum of differences in any graph from the given class of
graphs. In general, for centrality index F, its centralization measure is thus
defined as

F1(G, v) =
F1 (G, v)

maxG′∈Gn maxv′∈V(G′) F1(G′, v′)
. (3.2)

There is some interest in studying the extremal graphs for centralization
of various centrality indices. Freeman argued that the centralizations for de-
gree centrality, betweenness centrality and closeness centrality attain their max-
imum if and only if G is the star network. The statement was later proved in
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Figure 3.7: An example of a graph and its degrees.

detail by Everett et al. [48], therefore in (3.2) one can replace G′ by a star Sn−1.
In 2006, Butts [28] studied the extremal values of degree centralization among
all graphs on n vertices. Further results on extremal graphs for centralization
can be found Chapters 4–8.

Whenever graph G is known from the context, we omit it from the notions
of centrality or centralization.

3.4 relevant structural indices

We now give an overview of structural indices that we use in the thesis. For
each of them, we also define their Freeman centralization versions, as well as
their group centrality version.

3.4.1 Degree Centrality

Historically the first and most basic centrality measure is the degree centrality of
a vertex v that is simply defined as the degree deg(v) of a vertex v if the con-
sidered graph is undirected (Figure 3.7). In a directed case there are two possi-
bilities of defining the degree centrality: the in-degree centrality deg−(v) and
the out-degree centrality deg+(v). The degree centrality can be interpreted in
terms of the immediate risk of a node for catching whatever is flowing through
the network (such as a virus, or some information). The degree centrality for
directed graphs is also applicable whenever the graph represents something
like a voting result. These networks represent a static situation and we are in-
terested in the vertex that has the most direct votes or that can reach most other
vertices directly. The degree centrality is a local measure, because the centrality
value of a vertex is only determined by the number of its neighbors. Applying
Freeman centralization to degree centrality yields the following definition from
[52].
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Definition 3.5. Let G be a graph on n vertices and m edges and let D be the
degree centrality function. The degree centralization is defined as:

D1(G, v) =
n · degG(v)− 2m
(n− 1) (n− 2)

.

Here we used the fact that among all graphs in Gn, the graph that maximizes
D1 is the star Sn, and that maxv∈V(G′) D1(Sn, v) = (n− 1) (n− 2), where v is
the center of the star. In 2006, Butts [28] studied bounds for an unnormalized
version of degree centralization in graphs with different densities. He showed
that roughly half of the region of conceivable degree centralization scores is
actually feasible, and that the geometry of the feasible region alters with the
graph size.

We now give the definition of group centrality measure by Everett and Bor-
gatti [46], which basically counts the cardinality of the neighborhood of a given
set of vertices.

Definition 3.6. Let G be a graph and let S ⊆ V(G). Group degree centrality is
defined as

GD(S, G) =

∣∣∣∣∣⋃
v∈S

N(v) \ S

∣∣∣∣∣ .

3.4.2 Eccentricity

The aim of the next centrality index is to determine a node that minimizes the
maximum distance to any other node in the graph.

A first paradigm for location based problems on the minimization of trans-
portation costs was introduced by Weber [140] in 1909. However, no significant
progress was made before 1960, when facility location emerged as a research
field. Facility location analysis deals with the question of finding optimal loca-
tions for one or more facilities in a given environment. Applications include
transportation-networks [64] and communication-networks [26]. The spatial lo-
cation of facilities often takes place in the context of a given transportation,
communication, or transmission system, which may be represented as a net-
work for analytic purposes. As an example, consider the problem of determin-
ing the location for an emergency facility such as a hospital. The main objective
of such an emergency facility location problem is to find a site that minimizes
the maximum response time between the facility and the site of a possible
emergency.

The motivation described above corresponds to a centrality measure known
as eccentricity (or group eccentricity). The eccentricity e(v) of a node v in a con-
nected network G is the maximum distance (in the network) between v and
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Figure 3.8: A network with the eccentricity of each node.

u, over all nodes u of G. For a disconnected network, all nodes are defined to
have infinite eccentricity. To state this formally:

e(v) =

max
{

dG(v, u) : (u, v) ∈ V(G)2} ; G is connected,

∞ ; otherwise.

The center (or Jordan center [138]) of a network is the set of all nodes of mini-
mum eccentricity, i.e. {v ∈ V(G); ∀u ∈ V(G) e(v) 6 e(u)}[101]. The set of points
from the center (also called central or median points) is denoted with m(G). An
example of graph with its eccentricity values is shown on Figure 3.8.

Based on eccentricity, Hage and Harary [63] proposed a corresponding cen-
trality measure.

Definition 3.7. Let G be a graph and let v ∈ V(G). The centrality measure of
eccentricity is defined as

E(v) =
1

eG(v)
.

The reciprocal of the eccentricity value is convenient, since it obeys the rule
of monotonicity from Definition 3.2. Let us state the Freeman centralization of
eccentricity [52].

Definition 3.8. A Freeman centralization of eccentricity measure is the eccen-
tricity centralization, given by

∀v ∈ V(G), E1(G, v) =
∑u∈V(G)(EG(v)− EG(u))

n− 1
.

Here we use the fact that the star graph Sn achieves the maximal value of E1,
and that maxv∈V(Sn) E1(Sn, v) = n− 1.
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In order to determine the location of more sites that minimizes the maximum
response time between closest facility and the site of a possible emergency,
group eccentricity [84] measure need to be used.

Definition 3.9. Let G be a graph and let C ⊆ V(G). The group eccentricity of a
set C is defined as

GE(G, C) =
1

maxx∈V(G) d(x, C)
,

where d(x, C) = minc∈C d(x, c).

3.4.3 Betweenness Centrality

A popular indicator of a node’s centrality is the betweenness centrality, intro-
duced by Anthonisse [7] and popularized by Freeman [51]. As the name sug-
gests, betweenness measures the extent to which a given vertex is situated in
paths between pairs of vertices. This measure is of particular importance in
communication networks where a vertex v can attain a certain level of impor-
tance, responsibility, or status by controlling the flow of information across the
network. In the simplest case, where there is a unique path between any pair
of vertices (i.e., when the network is a forest), a vertex v can block or facili-
tate information flow between all pairs of vertices {x, y} for which the unique
path between x and y passes through v. It would be natural, then, to define
B(v) = B(v; G), the betweenness centrality index of the vertex v in the graph
G, to be the number of exactly such pairs {x, y}. Given a graph G and a pair
of vertices s, t ∈ V(G), let σs,t be the number of (s, t)-paths of length d(s, t).
For a vertex v 6∈ {s, t}, let σs,t(v) be the number of shortest (s, t)-paths that go
through v. So, the expression σs,t(v)/σs,t gives the proportion of shortest (s, t)-
paths that pass through v. Let us now formally define betweenness centrality.

Definition 3.10. The betweenness centrality of a vertex v is then defined as fol-
lows:

B(v) = B(v; G) = ∑
s 6=v 6=t

σs,t(v)
σs,t

.

In this regard, B(v) measures how much information flows through v. How-
ever, it is usually also interesting to know the relative importance of the vertex
v. For example, if a graph G is highly symmetric, it may be the case that a ver-
tex controls the most flow without exerting dominance; that is, all vertices have
a roughly equal share of responsibility and no one vertex can be considered
as the hub. Therefore, it becomes important to define the betweenness centraliza-
tion index, B1, of a vertex as a measure of its dominance over other vertices in
information flow.
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Definition 3.11. Let G be a graph and let v ∈ V(G). The betweenness centraliza-
tion is defined as

B1(G, v) = ∑u∈v B(v)− B(u)
1
2 (n− 1)2 (n− 2)

.

For a highly symmetric graph G it is clear that B1(v, G) would be close to
zero, no matter the choice of v. On the other hand, it is an easy calculation
to show that the central vertex of the star K1,n has betweenness centralization
index n(n

2) which, as shown in [52], is the maximum betweenness centralization
value that can be attained by vertices belonging to graphs on n + 1 vertices
(one can also appeal here to the very idea of being a hub). The fact that the
star maximizes B1 in the family of Gn is also the reason for the denominator
in definition above. The central vertex of K1,m is also easily seen to maximize
B1(·, ·) if one fixes the number of edges, m.

Definition 3.12. Let G be a graph and let C ⊆ V(G). Let σu,v(C) be the number
of geodesics connecting u to v passing through some vertex of C. Then, the
group betweenness centrality of C is given by

GB(C) = ∑
{u,v}⊆V(G)\C

σu,v(C)
σu,v

.

3.4.4 Closeness Centrality

Suppose that we want to place one or more service facilities, e.g., a shopping
malls, such that the total distance from nearest shopping mall to all inhabitants
in the region is minimal. This would make the chosen locations as convenient
as possible for most inhabitants. In network analysis the centrality index based
on this concept is called closeness centrality. Closeness centrality measures how
close a node is to all other nodes in the network: the smaller the total distance
from a node v to all other nodes, the more important the node v is. It was
introduced by Bavelas [15]. On Figure 3.9 the total sum of distances from each
vertex to all others is displayed.

Definition 3.13. Let G be a graph and let v be one of its vertices. Closeness
centrality is defined as

C(v) =
1

∑u∈V(G) d(u, v)
.

Since the star graph Sn again attains maximal value of C1, it is easy to cal-
culate that maxv∈V(Sn) C1(Sn, v) = 1

2 − 1
4n−6 = n−2

2n−3 . Hence we can state the
Freeman centralization of closeness.
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Figure 3.9: The total sum of distances from each vertex to all others.

Definition 3.14. Let G be a graph and let v ∈ V(G). Then closeness centralization
is defined as

C1(G, v) = 2n−3
n−2 · ∑

u∈V(G)

C(v)− C(u).

The case of positioning multiple shopping malls in the motivation above
corresponds to the notion of group closeness centrality, introduced by Everett
and Borgatti [46].

Definition 3.15. Let G be a graph and let C ⊆ V(G). Then, the group closeness
centrality is defined as

GC(C) =
1

∑v∈V(G) dG(v, C)
.

In [46], authors also mention some other variants of group closeness central-
ity by giving three different definitions of dG(v, U). In the thesis we only use
version with the usual meaning of d(v, U), i.e. d(v, U) = minu∈U d(v, u).

3.4.5 Wiener index and Transmission

The Wiener index W(G), introduced by Wiener [142], is a graph index defined
for connected graph G as the sum of the lengths of shortest paths between all
unordered pairs of vertices in G, formally

W(G) = ∑
u,v∈V(G)

dG(u, v).

It is the oldest topological index related to molecular branching and based
on its success, many other topological indices correlated to distance matrix of
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chemical graphs have been developed subsequently to Wiener’s work. Wiener
index was at first used for predicting the boiling points of paraffins [142], but
later a strong correlation between Wiener index and other chemical or physical
properties of a compound was found, such as critical points in general [131],
the density, surface tension, and viscosity of compounds liquid phase [125] and
the van der Waals surface area of the molecule [60].

There are some recent papers on Wiener index of trees [67], common neigh-
borhood graphs [34, 78] and line graphs [144, 77, 80, 79]. Finding graph ex-
tremals for Wiener index and its derivatives is nicely summarized in a recent
survey by Gutman et al. [145]. It is easy to conclude that among connected
graphs on n vertices, minimal and maximal values of Wiener index are (n

2) and
(n+1

3 ) obtained at Kn and Pn, respectively. In the class of trees, both extremal
graphs are Sn and Pn with Wiener values (n− 1)2 and (n+1

3 ), respectively. These
and many other bounds for the Wiener index are presented in [145, 81].

It is easy to conclude that among connected graphs on n vertices, minimal
and maximal values of Wiener index are (n

2) and (n+1
3 ) obtained at Kn and Pn,

respectively. In the class of trees, both extremal graphs are Sn and Pn with
Wiener values (n− 1)2 and (n+1

3 ), respectively.
Transmission of a particular vertex v ∈ V(G) (in some literature also called

farness or vertex-Wiener index) is defined as a sum of the lengths of all shortest
paths between chosen vertex and all other vertices in G, i.e.

W(v) = ∑
u∈V(G)\{v}

dG(u, v).

In order to define a Freeman centralization to Wiener index of a vertex, notice
that

W1(v) = ∑
u∈V(G)\{v}

(W(v)−W(u)) = n ·W(v)− 2W(G).

Using the results from Chapter 6 we can also determine the maximizing graph
for W1 and calculate the denominator of Wiener (or transmission) centraliza-
tion.

Definition 3.16. Let G be a graph and let v ∈ V(G). Transmission centralization
of a vertex v is defined by

W1(v) =
n ·W(v)− 2W(G)

f (n)
,

where

f (n) =

 5
24 n3 − 3

4 n2 + 19
24 n− 1

4 ; n is odd,
5

24 n3 − 3
4 n2 + 2

3 n ; n is even.
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3.4.6 Other Centrality Measures

Let us also mention two other centrality measures that we do not discuss in
the thesis.

Eigenvector centrality assigns relative scores to all vertices in the graph based
on the concept that connections to vertices with high centrality contribute more
to the score of the vertex in question than connections to low-scoring vertices.
For a vertex v, the eigenvector centrality Eig(v) is defined as

Eig(v) =
1
λ ∑

u∈N(v)
Eig(u),

where λ is a constant. For different values of λ this system can have many
different solutions. However, since all the eigenvector values must be positive,
not all solutions are admissible. In particular, by the Perron–Frobenius theorem
[117], only the greatest eigenvalue results in the desired centrality measure. A
variant of the eigenvector centrality measure is Google’s PageRank. Another
closely related centrality measure is the Katz centrality, that we describe now.

Katz centrality was introduced by Leo Katz in 1953 [75] and is a generaliza-
tion of the transmission. It is a distance-type centrality measure that measures
influence of a node v by taking into account the total number of walks between
v and all other vertices, where the long walks have less contribution than the
short ones, depending on attenuation factor α, formally

CKatz(v) =
∞

∑
k=1

∑
u∈V(G)

αk
(

Ak
)

u,v

where (A)u,v is the value of adjacency matrix of G that corresponds respectively
to the row and the column of vertices u and v.
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4
C L O S E N E S S C E N T R A L I Z AT I O N F O R T W O - M O D E
N E T W O R K S O F P R E S C R I B E D S I Z E S

In this chapter we focus on closeness centrality, which measures how close
a node is to all other nodes in the network. It is one of standard centrality
that assigns more importance to nodes with smaller total distance to all other
nodes. We confirm a conjecture by Everett, Sinclair, and Dankelmann [48] re-
garding the problem of maximizing closeness centralization in two-mode data,
where the number of data of each type is fixed. Intuitively, our result states
that among all networks obtainable via two-mode data, the largest closeness
is achieved by simply locally maximizing the closeness of a node. Mathemat-
ically, our study concerns bipartite networks with fixed size bipartitions, and
we show that the extremal configuration is a rooted tree of depth 2, where
neighbors of the root have an equal or almost equal number of children.

4.1 basic notions

We will work on simple unweighted networks: our network only tells us, for a
given (binary) relation E(G), which pairs of nodes are in relation according to
E(G).

Formally, for a node v of a network G, the closeness of v is defined to be

CG(v) :=
1

∑u∈V(G) dG(v, u)
, (4.1)

where dG(u, v) is the length of a shortest path in G between nodes u and v. We
shall use the shorthand WG(v) := ∑u∈V(G) dG(v, u). In both notations, we may
drop the subscript when there is no risk of confusion. Various closeness-based
measures have been developed and/or discussed by Bavelas [14], Beauchamp
[16], Botafogo et al. [22], Nieminen [114], Moxley and Moxley [108], Sabidussi
[126], Valente and Foreman [135], Nieminen [114].

While centrality measures compare the importance of a node within a net-
work, the associated notion of centralization, as introduced by Freeman [52],
allows us to compare the relative importance of nodes within their respective

35



36 closeness centralization for two-mode networks of prescribed sizes

networks (see 3.3.2 on page 24). The closeness centralization of a node v in a
network G is given by

C1(v, G) := ∑
u∈V(G)

[
C(v)− C(u)

]
. (4.2)

Further, we set C1(G) := max {C1(v; G) : v ∈ V(G)}.
It is important to note that the parameter C1 is really tailored to compare the

centralization of nodes in different networks. If only one network is involved,
then one readily sees that maximizing C1(v; G) over the nodes of a network G
amounts to minimizing WG. Indeed, suppose that G is a network and v a node
of G such that WG(v) 6 WG(u) for every u ∈ V(G). Then, for every node x of
G it holds that

C1(v; G)− C1(x; G) = (n− 1)
(

1
WG(v)

− 1
WG(x)

)
−
(

1
WG(x)

− 1
WG(v)

)
= n

(
1

WG(v)
− 1

WG(x)

)
> 0.

In what follows, we use the following notation. The star network of order n,
sometimes simply known as an n-star [134], is the tree on n + 1 nodes with one
node having degree n. The star network is thus a complete bipartite network
with one part of size 1. Over all networks with a fixed number of nodes, the
closeness is maximized by the star network.

Theorem 4.1 (48). If G is a network with n nodes, then

C1(u; Sn−1) > C1(G),

where u is the node of Sn−1 of maximum degree.

Everett, Sinclair, and Dankelmann [48] considered the problem of maximiz-
ing centralization measures for two-mode data. In this context, the relation
studied links two different types of data (e.g., persons and events) and we
are interested in the centralization of one type of data only (e.g., the most
central person). Thus the network obtained is bipartite: its nodes can be par-
titioned into two parts so that all the edges join nodes belonging to different
parts. An example of a real-world two-mode network N on 89 edges with
partition sizes |P1| = 18 and |P2| = 14, borrowed from Davis et al. [38] is
depicted on Figure 4.1. On the figure, one can observe a frequency of inter-
participation of a group of women in social events in Old City, 1936. On Ta-
bles 4.1 and 4.2, one can observe closeness centralization for partitions P1 and
P2 and notice that closeness centrality (and hence centralization) is maximized
at “Mrs. Evelyn Jefferson” and the event from “September 16th”, respectively.
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v ∈ P1 CN(v) C1(v, N)

Mrs. Evelyn Jefferson 0.01667 0.07779

Miss Theresa Anderson 0.01667 0.07779

Mrs. Nora Fayette 0.01667 0.07779

Mrs. Sylvia Avondale 0.01613 0.06058

Miss Laura Mandeville 0.01515 0.02930

Miss Brenda Rogers 0.01515 0.02930

Miss Katherine Rogers 0.01515 0.02930

Mrs. Helen Lloyd 0.01515 0.02930

Miss Ruth DeSand 0.01471 0.01504

Miss Verne Sanderson 0.01471 0.01504

Miss Myra Liddell 0.01429 0.00160

Miss Frances Anderson 0.01389 −0.01110

Miss Eleanor Nye 0.01389 −0.01110

Miss Pearl Oglethorpe 0.01389 −0.01110

Mrs. Dorothy Murchison 0.01351 −0.02311

Miss Charlotte McDowd 0.01250 −0.05555

Mrs. Olivia Carleton 0.01220 −0.06530

Mrs. Flora Price 0.01220 −0.06530

Table 4.1: Nodes from the group of women and their closeness values.
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v ∈ P2 label on fig . 4.1 CN(v) C1(v, N)

September 16th P8 0.01923 0.15984

April 8th P9 0.01786 0.11588

March 15th P7 0.01667 0.07779

May 19th P6 0.01562 0.04445

February 25th P5 0.01351 −0.02311

April 12th P3 0.01282 −0.04529

April 7th P12 0.01282 −0.04529

June 10th P10 0.01250 −0.05555

September 26th P4 0.01220 −0.06530

February 23rd P11 0.01220 −0.06530

June 27th P1 0.01190 −0.07459

March 2nd P2 0.01190 −0.07459

November 21st P13 0.01190 −0.07459

August 3rd P14 0.01190 −0.07459

Table 4.2: Nodes from the partition of social events events from 1936, reported in Old
City Herald, and their closeness values.
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Figure 4.1: A two-mode network N on 89 edges with partition sizes n0 = 18 and
n1 = 14. The network represents the participation of a given set of people
in the social events from 1936 reported in the Old City Herald, where rect-
angles represent social events while circles represent women, labeled by
their initials (see Tables 4.1 and 4.2).

Everett et al. formulated an interesting conjecture, which was later proved
by Sinclair [128]. To state it, we first need a definition.

Definition 4.2. Let H(v; n0, n1) be the connected bipartite tree with node bipar-
tition (A0, A1) such that

• |Ai| = ni for i ∈ {0, 1};

• there exists a node v ∈ A0 such that NG(v) = A1; and

• deg(w) ∈
{

1 +
⌈

n0−1
n1

⌉
, 1 +

⌊
n0−1

n1

⌋}
for all nodes w ∈ A1.

The node v is called the root of H(v; n0, n1).

The aforementioned conjecture was that the pair (H(v; n0, n1), v) is an ex-
tremal pair for the problem of maximizing betweenness centralization in bipartite
networks with a fixed sized bipartition into parts of sizes n0 and n1. Recall
that for two-mode data, we are only interested in one type of data: in graph-
theoretic terms, we look only at nodes that belong to the part of size n0, and
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we want to know which of these nodes has the largest closeness in the network.
In other words, letting A0 be the part of size n0 of V(G), we want to determine
max {C1(u; G) : u ∈ A0}.

A similar study for the centrality measure of eccentricity is described in
Chapter 5. Everett et al. [48] also suggested that the same pair is extremal for
closeness and eigenvector centralization measures. In this chapter, we confirm
the conjecture for the closeness centralization measure. That is, we prove that
the pair H(v; n0, n1) is extremal for the problem of maximizing closeness cen-
tralization in bipartite networks with parts of size n0 and n1, where v is the
root.

4.2 bipartite networks with fixed number of nodes

In this section, we present the proof of the main theorem from this chapter,
which confirms the claim by Everett et al. [48] about graph H(·; n0, n1) being
extremal for closeness centralization measure on the class of bipartite networks
with fixed bipartition sizes.

Theorem 4.3. Let G be a bipartite network with node parts A0 and A1 of sizes n0 and
n1, respectively. Then for each v ∈ A0,

C1(u; H(u; n0, n1)) > C1(v; G).

To prove Theorem 4.3, suppose that G is a bipartite network with biparti-
tion (A0, A1) where |Ai| = ni for i ∈ {0, 1}, and u is a node in A0 such that
C1(u; G) > C1(v; H(v; n0, n1)). We prove that this inequality must actually be
an equality by showing that any such extremal pair C1(u; G) must satisfy the
following three properties:

(P1) G is a tree;

(P2) degG(u) = n1; and

(P3)
∣∣degG(w1)− degG(w2)

∣∣ 6 1 whenever w1, w2 ∈ A1.

Property (P1) is relatively straightforward to check and so is (P3) if we assume
that (P2) holds. Thus the majority of the discussion below will be devoted to
proving that (P2) holds, which we do last. For convenience, we define V to be
V(G).

We start by establishing (P1); namely, that the network G is a tree. Assume,
for the sake of contradiction, that G is not a tree and let T be a breadth-first-
search tree of G rooted at u. Note that WG(u) = WT(u) and WT(x) > WG(x)
for any node x ∈ V(G). In addition, there exist at least two nodes for which the
above inequality is strict. It follows that C1(u; T) > C1(u; G), a contradiction.
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We now establish that (P3) holds if (P2) does. Thus we know that G is a tree
and we assume that NG(u) = A1, therefore also all nodes from A0 \ {u} are
leaves. Suppose, for the sake of contradiction, that there exist nodes w1, w2 ∈
A1 such that deg(w1) > deg(w2) + 2. Let z be a neighbor of w1 different from u
and consider the network G′ obtained by deleting the edge w1z and replacing
it with w2z. Note that WG′(u) = WG(u) and that WG′(x) = WG(x) unless
x ∈ NG[w1] ∪ NG[w2], that is unless x belongs to the closed neighborhood of
either w1 or w2. So

C1(u; G′)− C1(u; G) = ∑
x∈NG [w1]∪NG [w2]

1
WG(x)

− ∑
x∈NG [w1]∪NG [w2]

1
WG′(x)

. (4.3)

Now, let {u, z, x1, . . . , xt} = NG(w1) and {u, y1, . . . , ys} = NG(w2) where, by
assumption, t > s.

Recalling that G is a tree, observe that the following hold for every i ∈
{1, . . . , t} and every j ∈ {1, . . . , s} (for better illustration, see Figure 4.2).

(i). WG′(xi) = WG(xi) + 2;

(ii). WG′(yj) = WG(yj)− 2;

(iii). WG(yj) = WG(xi) + 2(t− s + 1) > WG(xi) + 2;

(iv). WG′(z) = WG(z) + 2(t− s) > WG′(z);

(v). WG′(w1) = WG(w1) + 2; and

(vi). WG′(w2) = WG(w2)− 2.

From (i)–(iii), we infer that for any j ∈ {1, . . . , s},

1
WG′(xj)

+
1

WG′(yj)
<

1
WG(xj)

+
1

WG(yj)
,

and similarly by (v) and (vi),

1
WG′(w1)

+
1

WG′(w2)
<

1
WG(w1)

+
1

WG(w2)
.

Thus the right side of (4.3) is greater than

1
WG(z)

− 1
WG′(z)

+
t

∑
j=s+1

1
WG(xj)

− 1
WG′(xj)

,

which is positive by (i) and (iv). This contradiction shows that (P3) holds pro-
vided (P2) does.
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w2w1

u

x1 xt z y1 ys

Figure 4.2: The subtree of G induced by NG[w1] ∪ NG[w2].

To complete the proof, it remains to prove that (P2) holds. First, if n1 = 1,
then the tree G must be an n0-star, hence the second property is satisfied. Now
consider the case where n1 = 2. Then there is precisely one node x that is
adjacent to both nodes in A1. Moreover, WG(x) 6 WG(w) if w ∈ A0 since, if
w ∈ A0 \ {x} then WG(w) > 2(n0− 1) + 4 = 2n0 + 2 while WG(x) = 2+ 2(n0−
1) = 2n0 + 1. Thus u = x and hence degG(u) = n1 = 2, as wanted.

From now on, we assume that n1 > 3. As in the proof of (P3), we argue that
if (P2) does not hold then C1(u; G) can be increased by altering the network G.
In this case, however, we find it necessary to use our assumption that C1(u; G)

itself is at least as large as C1(v; H(v; n0, n1)). This shall allow us to have a
lower bound on C1(u; G), thanks to the next lemma.

Lemma 4.4. C1(v; H(v; n0, n1)) >
n1−1

2(2n1−1) .

Proof. We establish the inequality via a direct computation. Unfortunately, the
expressions involved force a lengthy computation.

We set m := n0 − 1 and we write m = pn1 + r where 0 6 r < n1. Let us now
calculate W(x) for each node x of H(v; n0, n1).

1. W(v) = n1 + 2m.

2. Consider the neighbors of v. There are

a) r neighbors x for which W(x) = dm/n1e + 1 + 2(n1 − 1) + 3(m −
dm/n1e); and

b) n1 − r neighbors x for which W(x) = bm/n1c + 1 + 2(n1 − 1) +
3(m− bm/n1c).

3. Consider the nodes at distance two from v. There are

a) r dm/n1e nodes x for which W(x) = 1 + 2 dm/n1e + 3(n1 − 1) +
4(m− dm/n1e); and

b) (n1 − r) bm/n1c nodes x for which W(x) = 1 + 2 bm/n1c+ 3(n1 −
1) + 4(m− bm/n1c).
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Since bm/n1c = (m− r)/n1 and, for r > 0, we have dm/n1e = (m + n1− r)/n1.
It follows that

C1(v) =
n1 + m
n1 + 2m

− rn1

3mn1 − 2m + 2n2
1 − 3n1 + 2r

− n1(n1 − r)
3mn1 − 2m + 2n2

1 − n1 + 2r

− r(m + n1 − r)
4mn1 − 2m + 3n2

1 − 4n1 + 2r
− (n1 − r)(m− r)

4mn1 − 2m + 3n2
1 − 2n1 + 2r

(4.4)

>
n1 + m

n1 + 2m
− n2

1

3mn1 − 2m + 2n2
1 − 3n1 + 2r

− n1m
4mn1 − 2m + 3n2

1 − 4n1 + 2r
,

(4.5)

where we used that n1 > 0 to derive (4.5).
As is seen from (4.4), if n1 is fixed and n0 tends to infinity (hence, so does

m), then C1(v) approaches 1/2− n1/(4n1 − 2) = n1−1
4n1−2 .

Let us now subtract n1−1
4n1−2 from the right side of (4.5) and show that the

difference is non-negative. After cross-multiplying and simplifying, we obtain
a fraction with positive denominator (since each denominator in the right side
of (4.5) is positive), and with numerator equal to

m2(10n4
1 − 44n3

1 + 12n2
1r + 30n2

1 − 8n1r− 4n1)

+ m(15n5
1 − 77n4

1 + 38n3
1r + 74n3

1 − 54n2
1r− 14n2

1 + 8n1r2 + 8n1r)

+ (6n6
1 − 35n5

1 + 22n4
1r + 45n4

1 − 48n3
1r− 12n3

1 + 12n2
1r2 + 14n2

1r− 4n1r2). (4.6)

This expression increases with n1 and is clearly positive when n1 = 6 (to see it
quickly just compare, in each parenthesis, every (maximal) sequence of consec-
utive negative terms with the (maximal) sequence of positive terms preceding
it). Further, a direct calculation ensures that (4.6) is actually positive even when
n1 = 5.

However, if n1 ∈ {3, 4}, then (4.6) could take on negative values for certain
values of m. To deal with these two cases we revert back to the initial equa-
tion (4.4).

Assume that n1 = 3. Then subtracting n1−1
4n1−2 from both sides of (4.4) yields

that C1(v)− n1−1
4n1−2 is at least

m + 3
2m + 3

− 3r
7m + 9 + 2r

− 9− 3r
7m + 15 + 2r

− r(m + 3− r)
10m + 15 + 2r

− (3− r)(m− r)
10m + 21 + 2r

− 1
5

.

(4.7)
Placing (4.7) under one (positive) denominator, the numerator becomes

1540m4 + 2m3(9075− 1016r + 588r2) + 6m2(10605− 1047r + 937r2 + 112r3)

+ m(88155− 3816r + 9828r2 + 2408r3 + 96r4)

+ (42525 + 1350r + 6174r2 + 2280r3 + 184r4), (4.8)
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which is clearly positive as r 6 n1 − 1 = 2.
A similar calculation yields the conclusion when n1 = 4. In this case, the

difference of (4.4) and n1−1
4n1−2 yields that C1(v)− n1−1

4n1−2 is at least

m + 4
2m + 4

− 2r
5m + 10 + r

− 8− 2r
5m + 14 + r

− r(m + 4− r)
14m + 32 + 2r

− (4− r)(m− r)
14m + 40 + 2r

− 3
14

,

whose numerator, when placed under a common (positive) denominator, is

1855m4 + 4m3(5855− 82r + 100r2) + 2m2(52090 + 206r + 1405r2 + 80r3)

+ 4m(49180 + 2022r + 1793r2 + 194r3 + 4r4)

+ 3(44800 + 4080r + 2204r2 + 332r3 + 13r4).

This is non-negative as r 6 n1 − 1 = 3. This concludes the proof.

It remains to demonstrate that (P2) holds. To this end, we consider the tree G
to be rooted at u and, for a node x, we let Tx be the subtree of G rooted at x. To
avoid unnecessary notation later, let us observe immediately that if degG(u) =
1 then (P2) holds. For otherwise, n1 > 2 and there exists a node u′ at distance
two from u such that degG(u

′) > 2. As a result, WG(u) > WG(u′) + |V(Tu′)| −
1 > WG(u′), which implies that C1(u′; G) > C1(u; G), a contradiction.

We also note that if dG(u, x) 6 2 for all x ∈ V(G), then (P2) is satisfied. So
assume that there exists some child of u whose subtree has depth at least 2.
Among all such children of u, let z be such that |V(Tz)| is maximum, that is,

|V(Tz)| = max {|V(Tv)| : v child of u and Tv has depth at least 2} .

We now give some notations, which are illustrated in Figure 4.3. Let y1, . . . , yt

be the nodes of Tz with depth 2 and set Y := ∪t
i=1V(Tyi). Note that, by defini-

tion, t > 1 and dG(u, yi) = 3 whenever 1 6 i 6 t. Let p1, . . . , p` be the children
of z (in Tz) with degree more than 1 and set P := {p1, . . . , p`}. Let P′ be the set
of children of z with degree 1 and set k := |P′|.

Note that for any w ∈ N(u), the definition of z ensures that Tw is a star
whenever |V(Tw)| > |V(Tz)|. The network G′ is obtained from G as follows.
(An illustration is given in Figure 4.4.) For convenience, we set n := n0 + n1 =

|V(G)|.

(a). For each i ∈ {1, . . . , t}, the edge uyi is added.

(b). For each i ∈ {1, . . . , `}, the edge zpi is removed and all other edges inci-
dent to pi but one are removed.

(c). If there exists a child w of u different from z with |V(Tw)| > n/2, then
we select an arbitrary set S ⊂ V(Tw) \ {w} of size |V(Tw)| − bn/2c and,
for each s ∈ S, we replace the edge sw by the edge sz.
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R

Figure 4.3: Figurative view of the subsets of nodes of G. Recall that S′ := V(Tw) \ w if
S = ∅.

(d). If there is no node w as in (c), then we let w be a child of u different
from z such that |V(Tw)| is as large as possible, and we define S′ to be
V(Tw) \ {w}. (Recall that degG(u) > 2, hence such a child always exists.)
Moreover, we set S := ∅ for convenience.

As noted earlier, if (c) applies then Tw is a star. Moreover, if S 6= ∅, then one
can see that WG(w) < WG(u) and hence C1(w; G) > C1(u; G). However, this is
not a contradiction since C1(u; G) = max {C1(v; G) : v ∈ A0} and w ∈ A1.

Regardless of whether (c) or (d) applies, it always holds that |S′| 6
⌊ n

2

⌋
− 1.

Actually, it is important to notice that, in G′, no child of u different from z has
more than bn/2c − 1 children itself. Even more, for any such child x it holds
that |V(Tx)| 6 bn/2c. This follows from our previous remark if Tx has depth
at most 2, and from the fact that |V(Tx)| 6 |V(Tz)| otherwise. Also observe
that for every node pi ∈ P, we have

dG(pi, x) =


dG(u, x)− 2 if x ∈ V(Tpi)

dG(u, x) + 2 if x ∈ R ∪V(Tw)

dG(u, x) otherwise.



46 closeness centralization for two-mode networks of prescribed sizes

z
w

u

p1 p`

y1
yi yj

yt

Ty1 Tyi Tyj Tyt

S ′

S

P

Y

P ′

Other nodes of G
R

Figure 4.4: Obtaining G′ from G. Recall that S′ := V(Tw) \ w if S = ∅.

Therefore, W(pi) 6 W(u)− 2(
∣∣V(Tpi)

∣∣− (|R|+ |V(Tw)|)). Since the definition
of u implies that W(pi) > W(u), it follows that the size of V(Tpi) is at most
bn/2c.

Note that G′ is a tree, which we see rooted at u, and G and G′ have the same
node set, which we call V. In addition, G and G′ have the same bipartition
(A0, A1). Our next task is to compare the total distance of nodes in G and in
G′, that is, we compare WG(x) and WG′(x). For readability purposes, let us set
W(x) := WG(x), W ′(x) := WG′(x), and let T′x be the subtree of G′ rooted at x.
We now make a few statements about W(x) and W ′(x) for various nodes. Set
R := V \V(Tz) ∪V(Tw) and S′ := V(Tw) \ (S ∪ {w}). We shall often use that

n = |V| = |R|+ |Y|+ |P|+
∣∣P′∣∣+ |S|+ ∣∣S′∣∣+ 2.

Lemma 4.5. The following hold:

(i). If x ∈ R, then W(x)−W ′(x) = 2 |Y|.

(ii). If x ∈ {z} ∪ P′, then W ′(x) > W(x)− 2 |S|.

(iii). If x ∈ {w} ∪ S′, then W ′(x) = W(x) + 2 |S| − 2 |Y|.

(iv). If x ∈ P ∪ S, then W ′(x) > W(x).
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(v). If S 6= ∅, then whenever x1 ∈ P′ and x2 ∈ S′ it holds that W(x1) > W(x2)

and W ′(x1) > W ′(x2).

(vi). If x ∈ Y, then W ′(x) 6 W(x).

(vii). W ′(x) > W ′(u) for every node x ∈ Y ∪ R ∪ S′ ∪ {w}.

Proof. We prove all the statements in order.

(i). If x ∈ R, then the distance from x to any node not in Y is unchanged. In
addition, dG′(x, y) = dG(x, y)− 2 whenever y ∈ Y, hence the conclusion.

(ii). If x ∈ {z} ∪ P′, then dG′(x, v) > dG(x, v) for each v ∈ V \ S. In addition, if
s ∈ S, then dG′(x, s) = dG(x, s)− 2, which yields the conclusion.

(iii). It suffices to observe that if x ∈ {w} ∪ S′, then

dG′(x, v) =


dG(x, v) if v ∈ V \ (S ∪Y)

dG(x, v)− 2 if v ∈ Y

dG(x, v) + 2 if v ∈ S.

(iv). First note that if x ∈ P, then the definition of G′ ensures that dG′(x, v) >
dG(x, v) for each v ∈ V, which implies that W ′(x) > W(x).

Now let x ∈ S. Observe that if v ∈ V, then dG′(x, v) > dG(x, v) − 2. In
addition, if v ∈ S′ ∪ {w}, then dG′(x, v) = dG(x, v) + 2. Consequently,

W ′(x)−W(x) > 2
∣∣S′ ∪ {w}∣∣− 2

∣∣V \ ({x, w} ∪ S′)
∣∣ ,

which is non-negative since |S′ ∪ {w}| = b|V| /2c when S 6= ∅, and x /∈ S′ ∪
{w}.

(v). Let x1 ∈ P′ and x2 ∈ S′. Then

W(x1) = 1 + 2(
∣∣P′∣∣− 1) + ∑

v∈P∪Y
dG(x1, v) + ∑

r∈R
dG(x1, r) + 3 + 4(|S|+

∣∣S′∣∣)
and

W(x2) = 1 + 2(|S|+
∣∣S′∣∣− 1) + ∑

v∈P∪Y
dG(x2, v) + ∑

r∈R
dG(x2, r) + 3 + 4

∣∣P′∣∣ .
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Now, notice that dG(x1, u) = 2 = dG(x2, u), which yields that

∑
r∈R

dG(x1, r) = ∑
r∈R

dG(x2, r).

Similarly, for each i ∈ {1, . . . , k}, it holds that dG(x2, pi) = 4 = dG(x1, pi) + 2.
Therefore,

∑
v∈P∪Y

dG(x2, v) = ∑
v∈P∪Y

dG(x1, v) + 2(|P|+ |Y|).

Consequently, W(x1)−W(x2) equals

2(
∣∣P′∣∣− 1) + 4(|S|+

∣∣S′∣∣)− 2(|S|+
∣∣S′∣∣− 1)− 4

∣∣P′∣∣− 2(|P|+ |Y|)
= 2(|S|+

∣∣S′∣∣− |P| − ∣∣P′∣∣− |Y|).
This quantity is positive since, as S 6= ∅, we know that |S|+ |S′| > bn/2c − 1
while |P|+ |P′|+ |Y| 6 n− |S| − |S′| − 3 < bn/2c − 2.

A similar analysis in G′ yields that

W ′(x1)−W ′(x2) = 2(
∣∣S′∣∣− |S| − ∣∣P′∣∣),

which is again positive since |S′| = bn/2c − 1 while |P′|+ |S′| 6 n− |S′| − 3 6
bn/2c − 2.

(vi). Let x ∈ Y. Observe that if dG′(x, v) > dG(x, v), then v must be the child
of z that is an ancestor of x (that is, v ∈ P and x ∈ V(Tv)). Furthermore, in
this instance, the distance increases by exactly 2. As the distance from x to any
node in R decreases by 2 (and |R| > 1), it follows that W ′(x) 6 W(x).

(vii). For readability, the proof is split intro three cases depending on whether
x ∈ {w}, x ∈ R, x ∈ S′ or x ∈ Y. The interested reader will notice that a similar
argument is used in all these cases, however, proceeding with cases simplifies
the verification and gives a better vision of the situation.
We start by showing that W ′(w) > W ′(u). Since dG′(w, u) = 1, we know that

dG′(w, v) =

dG′(u, v)− 1 if v ∈ V(Tw) \ S = S′ ∪ {w}
dG′(u, v) + 1 otherwise.

Therefore,

W ′(w)−W ′(u) =
∣∣V \ (S′ ∪ {w})∣∣− ∣∣S′ ∪ {w}∣∣

= |V| − 2(
∣∣S′∣∣+ 1),

which is non-negative since |S′| 6 bn/2c − 1.
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A similar reasoning applies to the nodes in R. Let x ∈ R \ {u}. Set d :=
dG′(x, u) and let x′ be the child of u on the unique path between u and x in G.
Note that T′x′ = Tx′ . Since

dG′(x, v) = dG′(u, v) + d if v ∈ V \V(Tx′)

and

dG′(x, v) > dG′(u, v)− d if v ∈ V(Tx′),

we observe that

W ′(x)−W ′(u) > d · (|V \V(Tx′)| − |V(Tx′)|) .

This yields the desired inequality since, as reported earlier, |V(Tx′)| 6 n/2.
We now deal with the nodes in S′. Let x ∈ S′. First, if S 6= ∅, then S′

is composed of precisely bn/2c − 1 nodes, which are all children of w. The
definition of G′ thus implies that dG′(x, v) > dG′(u, v) whenever v 6= x, hence
W ′(x) > W ′(u), as asserted. Assume now that S = ∅. The situation can then
be dealt with in the very same way as for the nodes in R. Indeed, in this case,

W ′(x)−W ′(u) > dG′(x, u) · (|V \V(Tw)| − |V(Tw)|) ,

and Tw contains at most n/2 nodes since S = ∅.
Finally, let x ∈ Y. Similarly as before, set d := dG′(x, u). For every v ∈ V, it

holds that
dG′(x, v) > dG′(u, v)− d.

Let yi be the ancestor of x among {y1, . . . , yt}. If v /∈ V(T′yi
), then

dG′(x, v) = dG′(u, v) + d.

Consequently,

W ′(x)−W ′(u) > d ·
(∣∣∣V \V(T′yi

)
∣∣∣− ∣∣∣V(T′yi

)
∣∣∣) .

Now let pk be the father of yi in G. Then V(T′yi
) ⊆ V(Tpk). As reported earlier,∣∣V(Tpk)

∣∣ 6 bn/2c, which yields that W ′(x)−W ′(u) > 0.

The next lemma in particular bounds C1(u; G) from below.

Lemma 4.6. If x ∈ Y, then 0 6 W(x)−W ′(x)
W(x) < 2C1(u; G).

Proof. Assume that x ∈ V(Tyi). Lemma 4.5(vi) ensures that W ′(x) 6 W(x),
thereby proving that W(x)−W ′(x)

W(x) is non-negative.
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Let D be the set of those nodes whose distance to x is greater in G than in
G′, that is, D := {v ∈ V : dG(v, x) > dG′(v, x)}. Observe that W(x)−W ′(x) 6
2 |D|, since dG′(x, v) > dG(x, v)− 2 for every v ∈ V.

We partition D into parts D1, . . . , Dm where v ∈ Dj if and only if v ∈ D and
dG(x, v) = j. Note that D1 = ∅ = D2. In addition, D3 = {u} if x ∈ {y1, . . . , yt}
while D3 = ∅ if x ∈ Y \ {y1, . . . , yt}. Finally, if x /∈ {y1, . . . , yt}, then D4 ⊆ {u},
while otherwise D4 is contained in A1 \ {x, z}. In both cases, we deduce that
|D4| 6 n1 − 2, since n1 > 3. Thus

W(x)−W ′(x) 6 2
m

∑
i=3
|Di| (4.9)

and, since G contains at least one node at distance two from x,

W(x) > 1 + 2 +
m

∑
i=3

i |Di| . (4.10)

Since we assume that C1(u; G) > C1(v; H(v; n0, n1)), it follows from Lemma 4.4
that C1(u; G) > n1−1

2(2n1−1) . Therefore,

W(x)−W ′(x)
W(x)

− 2C1(u; G) 6
W(x)−W ′(x)

W(x)
− n1 − 1

2n1 − 1

6
2 ∑m

i=3 |Di|
W(x)

− n1 − 1
2n1 − 1

6
2(2n1 − 1)∑m

i=3 |Di| − (n1 − 1)(3 + ∑m
i=3 i |Di|)

(2n1 − 1)W(x)

=
−3n1 + 3 + ∑m

i=3 |Di| (n1(4− i)− 2 + i)
(2n1 − 1)W(x)

6
−3n1 + 3 + |D3| (n1 + 1) + 2 · |D4|

(2n1 − 1)W(x)

6
−3n1 + 3 + (n1 + 1) + 2(n1 − 2)

(2n1 − 1)W(x)
= 0,

where the second line follows from (4.9), the third line from (4.10), and the fifth
and seventh lines from our assumption that n1 > 3.

To complete the proof of Theorem 4.3, what remains is to show that C1(u; G′) >
C1(u; G) which contradicts the choice of (G, u). We define

γ := ∑
u∈{w}∪S′

2 |S|
W(u)W ′(u)

− ∑
u∈{z}∪P′

2 |S|
W(u)W ′(u)

.
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By Lemma 4.5(v) and the fact that |S′ ∪ {w}| > |P′ ∪ {z}| whenever S 6= ∅, we
infer that γ is always non-negative (noticing that γ = 0 if S = ∅).

Note that

C1(u; G′)− C1(u; G) = ∑
v∈V

1
W ′(u)

− 1
W(u)

−
(

1
W ′(v)

− 1
W(v)

)
= ∑

v∈V

W(u)−W ′(u)
W(u)W ′(u)

− W(v)−W ′(v)
W(v)W ′(v)

.

For readability, set f (v) := W(u)−W ′(u)
W(u)W ′(u) −

W(v)−W ′(v)
W(v)W ′(v) and g(v) := 1

W(v)W ′(v) for
each node v ∈ V.

By Lemma 4.5(i) and (iii),

f (v) =

2 |Y| (g(u)− g(v)) if v ∈ R

2 |Y| (g(u)− g(v)) + 2 |S| g(v) if v ∈ S′ ∪ {w}.

In addition, if v ∈ P ∪ S then W ′(v) > W(v), by Lemma 4.5(iv), so f (v) >
2 |Y| g(u). In total, we infer that C1(u; G′)− C1(u; G) is at least

∑
v∈Y∪({z}∪P′)

f (v) + ∑
v∈R∪S′∪{w}

2 |Y| · (g(u)− g(v))

+2 |Y| ∑
v∈P∪S

g(u) + ∑
v∈S′∪{w}

2 |S| · g(v).

Notice that g(u) > 1
W ′(u)

(
1

W(u) − 1
W(v)

)
for every node v ∈ V. Moreover by

Lemma 4.5(i), (vi), (vii) and Lemma 4.6 we know that

∑
v∈Y

f (v) = 2 |Y| ∑
v∈Y

g(u)− ∑
v∈Y

(W(v)−W ′(v))g(v)

> 2 |Y| ∑
v∈Y

g(u)− 1
W ′(u) ∑

v∈Y

W(v)−W ′(v)
W(v)

> 2 |Y| ∑
v∈Y

g(u)− |Y|
W ′(u)

· 2C1(u; G)

>
2 |Y|

W ′(u) ∑
v∈Y

(
1

W(u)
− 1

W(v)

)
− 2 |Y|C1(u; G)

W ′(u)
.

So we infer that C1(u; G′)− C1(u; G) is greater than

∑
v∈P′∪{z}

f (v) + 2 |Y| ∑
v∈R∪S′∪{w}

(g(u)− g(v))

+
2 |Y|

W ′(u) ∑
v∈Y∪P∪S

(
1

W(u)
− 1

W(v)

)
+ 2 |S| ∑

v∈{w}∪S′
g(v)− 2 |Y| C1(u; G)

W ′(u)
.
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According to Lemma 4.5(vii), if v ∈ R ∪ S′ ∪ {w} then

g(u)− g(v) >
1

W ′(u)

(
1

W(u)
− 1

W(v)

)
.

In addition, by Lemma 4.5(ii) if v ∈ P′ ∪ {z}, then

f (v) > 2 |Y| g(u)− 2 |S| g(v) > 2 |Y|
W ′(u)

(
1

W(u)
− 1

W(v)

)
− 2 |S| g(v).

Consequently, we deduce that

C1(u; G)− C1(u; G′) >
2 |Y|

W ′(u) ∑
v∈V

(
1

W(u)
− 1

W(v)

)
− 2 |Y|

W ′(u)
C1(u; G) + γ

>
2 |Y|

W ′(u)
(C1(u; G)− C1(u; G))

= 0.

This completes the proof.

4.3 concluding remarks and future work

On Figure 4.1 we have a bipartite network N on 89 edges with partition sizes
|P1| = 18 and |P2| = 14 that maximizes closeness centralization at nodes cor-
responding to Mrs. Evelyn Jefferson and to the event from September 16th,
1936 (Old City), respectively. Their closeness values are approximately equal
to 0.0167 and 0.0192, while their closeness centralization values are approx-
imately equal to 0.078 and 0.160, respectively. As shown above, the graphs
H(0, 18, 14) and H(0, 14, 18) maximize closeness centralization among all bi-
partite graphs with partition sizes 11 and 28 (regarding from which partition
we are measuring). These graphs are depicted on Figure 4.5. In both graphs
the maximum closeness centralization is attained at the node labeled 0 with
values C1(H(0, 14, 18), 0) ≈ 0.329 and C1(H(0, 11, 28), 0) ≈ 0.299, respectively.

We showed that among all two-mode networks with fixed size bipartitions
n0 and n1, the largest closeness centralization is achieved by a rooted tree of
depth 2, where neighbors of the root have an equal or almost equal number of
children, namely at node v of a graph H(v, n0, n1). This confirms a conjecture
by Everett, Sinclair, and Dankelmann [48] regarding the problem of maximiz-
ing closeness centralization in two-mode data, where the number of data of
each type is fixed. A similar statement for the centrality measure of eccentric-
ity was recently established and is described in Chapter 5. However, the same
conjecture remains open for eigenvector centrality.
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(b) H(0, 18, 14)

Figure 4.5: The two graphs that maximize closeness centralization among all bipartite
graphs with partition sizes 14 and 18. Note that in both cases the root is
node 0.

Conjecture 4.7. Let B(n0, n1) be the class of all bipartite graphs with bipartition P0

and P1 such that |Pi| = ni for i ∈ {0, 1}. Then

max
G∈B(n0,n1)

max
v∈P0

Eig1(v, G) = Eig1 (v, H (v, n0, n1)) .

A centrality measure C is said to satisfy the max-degree property in the family
F if for every graph G ∈ F and any node v ∈ V(G), it holds that

CG(v) = max
u∈V(G)

CG(u) =⇒ degG(v) = max
u∈V(G)

degG(u).

While degree centrality trivially satisfies the max-degree property in Gn, one
can easily observe that this is not true for closeness centrality. Still, it is interest-
ing to observe that the maximizing family for bipartite graphs H (v, |P0| , |P1|)
(or stars, for connected graphs Gn in general) both satisfies the max-degree
property. It may be interesting to seek for necessary or sufficient conditions on
the family F , where closeness satisfies the max-degree property.





5
E C C E N T R I C I T Y O F N E T W O R K S W I T H S T R U C T U R A L
C O N S T R A I N T S

The concept of centrality is of fundamental importance in social network anal-
ysis. Its goal is to provide a measure of the relative “importance” of a node
in a network and different motivations lead to different centrality measures.
Many of the centrality concepts were first developed in social network analy-
sis, and many of the terms used to measure centrality reflect their sociological
origin [112, 51]. For further discussion on centrality, please refer to Section 3.3
on page 21.

Arguably, the most common branch of centrality functions is based on the
distance between the nodes of the network. The aim of the eccentricity is to
determine a node that minimizes the maximum distance to any other node in
the graph.

The field of eccentricity centrality is rich with many possible applications.
Recently, average eccentricity in various types of graphs has been studied by
Dankelmann and others [35, 42, 70] where some computer generated and other
conjectures has been settled. Interested reader can find various applications
of eccentricity in [54, 55, 36, 68, 71]. Eccentricity is also studied in the field
of networks (see [8]). Let us also mention, that some topological indices that
involves eccentricity are used in chemical graph theory [146].

5.1 basic notions

The eccentricity eG(v) of a node v ∈ V(G) in a connected network G is the
maximum distance (in the network) between v and u, over all nodes u of G.
For a disconnected network, all nodes are defined to have infinite eccentricity.
To state this formally:

eG(v) := max
{

dG(v, u) : (u, v) ∈ V(G)2} ∈N∪ {∞}.
The center (or Jordan center [138]) of a network is the set of all nodes of

minimum eccentricity, that is, the set of all those nodes v such that the greatest
distance dG(v, u) to other nodes u is minimal [101]. Equivalently, it is the set of

55
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nodes with eccentricity equal to the network’s radius. Thus nodes in the center
(also called central or median points) minimize the maximal distance from other
points in the network and we define m(G) to be the set of central nodes.

Based on eccentricity, Hage and Harary [63] proposed a corresponding cen-
trality measure, namely

∀v ∈ V(G), EG(v) :=
1

eG(v)
.

The reciprocal of the eccentricity value is convenient, since it obeys the rule of
monotonicity (see Definition 3.2 on page 22).

The centralization of a network is a measure of how central its most central
node is in relation to how central all the other nodes are. The general defini-
tion of centralization for non-weighted networks was proposed by Freeman
[52] in 1979. Centralization measures then calculate the sum of differences in
centrality between the most central node in a network and all other nodes;
and divide this quantity by the theoretically largest such sum of differences in
any network of the same degree [52]. Thus every centrality measure can have
its own centralization measure. In 2006, Butts [28] studied bounds for degree
centralization in graphs with different densities.

A centralization measure for eccentricity is the eccentricity centralization, given
by

∀v ∈ V(G), E1(G, v) := ∑
u∈V(G)

(EG(v)− EG(u)).

When there is no risk of confusion regarding the network G, we shall write
E1(v) instead of E1(G, v). We also set

E1(G) := {max E1(u) : u ∈ V(G)} .

Note that E1(G) > 0 for every network G. Moreover, if G is a disconnected
network, then E1(G) = 0 since eG(v) = ∞ for every node v of G.

Freeman [52] showed that the centralizations for degree centrality, between-
ness centrality and closeness centrality attain their maximum if and only if G
is the star network. We provide the same result for E1, the eccentricity central-
ization (see Proposition 5.5 on page 60).

If C is a collection of networks, we set

E∗1(C ) := max {E1(G) : G ∈ C } .

We define C ∗ to be the set of those networks G in C such that E1(G) = E∗1(C ).

Remark 5.1. For network G with n nodes, then E1(G, v) = E1(G) if and only if
v ∈ m(G).
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Indeed E1(G, v) = n · 1
eG(v)
−∑u∈V(G) EG(u) is maximized when eG(v) is min-

imized, forcing v to be a median.
We provide a thorough study of E∗1(C ) for various network classes C , de-

fined by prescribing parameters or structure. Specifically, we focus on bipartite
networks with fixed part sizes in Section 5.2 and on networks with fixed num-
ber of nodes or edges and/or maximum degree in Section 5.3. For instance, we
determine E∗1(C ) when C is the class of all networks with n nodes (or n edges)
and provide structural information about networks with maximum eccentricity
(Proposition 5.5, Corollary 5.6). We also study the class of tree networks with
fixed number of nodes and fixed maximum degree (Subsection 5.4). Among all
tree networks with maximum eccentricity, we characterize those with the least
number of edges and provide an efficient algorithmic way of building them
all. In the course of this study, we shall develop a new way of enumerating
the nodes of a tree, coined S-enumerations, which might be useful in different
contexts, too.

Unless specified otherwise, every rooted tree is assumed to be rooted at a
central node. In all notations, the subscripts may be omitted when there is no
risk of confusion. The number of nodes of a network is its order, while the
number of edges of a network is its size. We define G to be the collection of all
networks.

We end the introduction with a straightforward, but useful, observation con-
cerning the center of a tree.

Lemma 5.2. Let T be a tree with diameter ` and let P = v0, . . . , v` be a longest path
of T. If ` is even then m(T) = {v`/2} and if ` is odd then m(T) = {vb `2c, vd `2e}.

Proof. First note that m(T) contains vb `2c and vd `2e (which are the same node

if ` is even). In addition, no other node from P belongs to m(T). It is therefore
enough to show that m(T) is a subset of every longest path of T. Assume
otherwise, and let v ∈ m(T) \ P. Since T is connected, there exists a unique
path R that connects v with P; note that R contains at least one edge. Let
{vi} = V(R) ∩V(P). We derive a contradiction as follows:

eT(v) =
⌈
`

2

⌉
> max (dG(v, v0), dG(v, v`))

= |E(R)|+ max(i, `− i)

> 1 +
`

2
.

Lemma 5.2 will often be used implicitly in what follows.
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k1 `− 2 k2

Figure 5.1: A schematic view of some members of T , where k1 + k2 = k− 3.

5.2 bipartite networks with fixed partition sizes

Centrality in bipartite networks with fixed partition sizes was studied by Ev-
erett et al. [48] and next by Sinclair [128, 129]. They considered betweenness
centralization and closeness. Following them, let us consider, given two in-
tegers k and `, the family C of all connected networks whose nodes can be
partitioned into two sets K and L such that no two nodes in K are adjacent, no
two nodes in L are adjacent, |K| = k and |L| = `. In this section, we focus on
the notion of eccentricity centralization over the same family C of networks.
Without loss of generality, we shall always assume that K is the larger of the
two parts, that is, k > `.

Let T be the sub-family of C composed of all trees with diameter 4. (Since
T ⊆ C by definition, note that all trees in T admit a bipartition into two parts
of order k and `.) A schematic view of some of the elements in T is given by
Figure 5.1. Our goal is to establish the following statement.

Theorem 5.3. If ` > 2 and T is a tree, then T ∈ C ∗ if and only if T ∈ T .

Our proof of Theorem 5.3 uses the next lemma, which states there exists a
tree achieving the maximum eccentricity over C .

Lemma 5.4. The set C ∗ contains a tree.

Proof. Let G ∈ C ∗. Fix a median v of G and a breadth-first search tree T of G
rooted at v. is a bipartite network with bipartition orders k and `, so T ∈ C .
In addition, observe that ET(u) 6 EG(u) for each node u ∈ V(G) and, further,
ET(v) = EG(v). Consequently, E1(T, v) > E1(G, v) and hence T ∈ C ∗, which
concludes the proof.

Lemma 5.4 permits to deal with the case where one part of the bipartition is
a singleton. Indeed, if ` = 1 then there is a unique tree in C , namely the star
with k + 1 nodes. Thus the star on k + 1 nodes belongs to C ∗.
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Proof of Theorem 5.3. First consider a tree T in T and let us compute E1(T).
Since T has diameter 4, the (unique, by Lemma 5.2) median v of T is at distance
at most 2 from every other node of T. If v ∈ K, then

E1(T) =
k + `− 1

2
− `

3
− k− 1

4

=
`

6
+

k− 1
4

.

Let ν be `
6 +

k−1
4 . If v ∈ L, then it would follow that

E1(T) =
k + `− 1

2
− k

3
− `− 1

4

=
k
6
+

`− 1
4

,

which is at most ν as k > `. Consequently, v ∈ K and E∗1(C ) > ν.
The second part of the proof consists in establishing the following statement,

which yields the sought conclusion:

A tree T in C either belongs to T or verifies that E1(T) < ν.

Let T ∈ C ∗ and v ∈ m(T). Recall that T has a bipartition with parts of orders k
and `. Setting r := eT(v), we know that eT(u) 6 dT(u, v) + r for every u ∈ V(T).
Therefore, letting ni(T) be the number of nodes at distance precisely i from v,
and n the total number of nodes of T, we deduce that

E1(T) = E1(T, v) 6
n− 1

r
−

r

∑
i=1

ni(T)
r + i

. (5.1)

If r > 3, then r + 1 < 2r− 1 and since n1(T) > 1, we deduce that

E1(T) 6
n− 1

r
− 1

r + 1
− `− 1

2r− 1
− k− 1

2r

<
n− 1

r
− `

2r− 1
− k− 1

2r

= ` ·
(

1
r
− 1

2r− 1

)
+ (k− 1) · 1

2r
,

where the first inequality uses that v and its neighbor(s) belong to different
parts of T.

Let f (r, k, `) := ` ·
( 1

r − 1
2r−1

)
+ (k − 1) · 1

2r . So f (2, k, `) = ν. Observe that
if r > 3, then f (r − 1, k, `) > f (r, k, `). Indeed, first 1

r−1 − 1
2(r−1)−1 > 1

r − 1
2r−1

for r > 3 since the mapping x → x−1
x(2x−1) is (strictly) decreasing for x ∈ [2, ∞).

Second, the mapping x → 1
2x is also decreasing, which yields the observation.

As a result, E1(T) < f (2, k, `) = ν unless r = 2, in which case T ∈ T (and
E1(T) = ν, as reported earlier).
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5.3 networks with prescribed order or size

We are interested in maximizing E1 over the class of networks with n nodes,
for a fixed integer n. Formally, let Gn be the collection of all networks on n
nodes. We consider

E∗1(Gn) = max {E1(G, v) : G ∈ Gn and v ∈ V(G)} .

We show that this maximum is equal to n−1
2 and is realized by networks that

contain a unique universal node — that is, a node adjacent to all other nodes of
the network — and this node is then a median and no other node is universal.
In particular, a tree with a universal node is a star centered at that node.

Proposition 5.5. Let n be an integer greater than 2. If G ∈ Gn and v ∈ V(G), then
E1(G, v) 6 n−1

2 with equality if and only if v is the only universal node.

Proof. Let G ∈ Gn. Let v ∈ m(G), so E1(G, v) = ∑u∈V(G)(1/e(v) − 1/e(u)).
Letting r be the radius of G, we observe that 1

r > 1
e(u) > 1

2r for every node u.
Thus we deduce that E1(G) 6 (n− 1) · (1/r− 1/2r) 6 (n− 1)/2, since r > 1.
Furthermore, E1(G) = (n− 1)/2 if and only if r = 1 = e(v) and e(u) = 2 for
every u ∈ V(G) \ {u}. Consequently, v is the unique universal node of G, as
stated.

The analogous study for networks with prescribed size, rather than order, is
quickly handled thanks to Proposition 5.5. For a positive integer m, let Gm be
the collection of all networks with m edges.

Corollary 5.6. If m is an integer greater than 1, then E∗1(Gm) =
m
2 and G∗m = {Sm}.

Proof. First, since the star with m + 1 nodes belongs to Gm, we know that
E∗1(Gm) > m

2 . Second, a network in G∗m is necessarily connected and, conse-
quently, it contains at most m + 1 nodes. We deduce that G∗m ⊆ ∪m+1

i=2 G ∗i . There-
fore Proposition 5.5 implies that E∗1(Gm) = m

2 and every network in G∗m is a
network of order m + 1 and size m with a (unique) universal node. It is there-
fore the star Sm with m + 1 nodes.

5.4 tree networks with prescribed order and maximum degree

As shown by Everett et al. [48], in the class of all trees (and, actually, of all
networks) with n nodes, the star Sn−1 maximizes the eccentricity centralization.
Considering this, we are interested in maximizing E1 over the class of trees
with n nodes and maximum degree ∆, for fixed positive integers n and ∆. More
precisely, let Tn,∆ be the collection of all trees with n nodes and maximum
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degree ∆. We assume throughout this subsection that ∆ < n, as otherwise
Tn,∆ = ∅. Our goal is to study

E∗1(Tn,∆) = max {E1(T, v) : T ∈ Tn,∆ and v ∈ V(T)} .

We characterize all optimal trees from Tn,∆ and provide an efficient (algo-
rithmic) way to build them all. We start with some preliminary remarks.

The situation is trivial for ∆ = 2, as the only trees with maximum degree 2

are paths. So we assume from now on that ∆ > 3. Moreover, there is only one
tree with maximum degree ∆ and ∆ + 1 nodes. Similarly, there is also only one
tree with maximum degree ∆ and ∆ + 2 nodes. So we assume from now on
that n > ∆ + 3.

A tree is ∆-regular if every node that has not degree ∆ is a leaf. If T is a
rooted tree with root r, then the depth of a node of T is its distance to r. The
depth of T is the maximum of the depth over all nodes of T; in other words, it
is eT(r). A ∆-regular rooted tree of depth k is full if every node of depth less
than k has degree exactly ∆. We let F∆,k be the full ∆-regular tree with depth k.

In particular, F∆,k contains η(∆, k) := 1 + ∆ (∆−1)k−1
∆−2 nodes. As explained below,

it is straightforward to obtain a (possibly tight) lower bound on the radius of
a tree in terms of its maximum degree and its number of nodes.

Lemma 5.7. Let k(n, ∆) be the smallest integer k such that Tn,∆ contains a tree with
radius k. Then

k(n, ∆) =
⌈

log∆−1

(
(n− 1) · ∆− 2

∆
+ 1
)⌉

.

Proof. Fix T ∈ Tn,∆ and let k be the radius of T. Rooting T at a median, one
sees that n is at most

1 + ∆ + ∆ (∆− 1) + · · ·+ ∆ (∆− 1)k−1 = 1 + ∆
(∆− 1)k − 1

∆− 2
.

So, (∆− 1)k > (n− 1) · ∆−2
∆ + 1, and hence

k > log∆−1

[
(n− 1) · ∆− 2

∆
+ 1
]

.

This shows that k(n, ∆) > dlog∆−1 ((n− 1)(∆− 2)/∆ + 1)e. The equality is
now straightforward.

Let T be a tree of diameter d and assume that v0, . . . , vd is a longest path of T.
Then by Lemma 5.2 the radius of T is k := dd/2e and every node is at distance
at most k from each of vbd/2c and vdd/2e. Consider now T to be rooted at vk. For
each i ∈ {1, . . . , k}, the layer i of T is defined to be the set Li(T) of all nodes v
of T with depth i, that is, such that dT(v, vk) = i. We set ni(T) := |Li(T)|. If uv
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is an edge such that u ∈ Li(T) and v ∈ Li+1(T), then u is the parent of v and v
is a child of u.

We shall demonstrate that, informally, every tree T in T ∗
n,∆ has diameter

2k(n, ∆) and, subject to this, the following structure: nk(T) is as large as pos-
sible, while ni(T) contains, almost always, just as many vertices as needed so
that every node in ni+1(T) can have a parent (recall that the maximum degree
cannot exceed ∆), for i ∈ {1, . . . , k− 1}.

Before being precise, let us note a straightforward fact: in any tree T rooted at
its median and with even diameter, if one “re-arranges” the subtrees rooted at
any fixed level so that neither the diameter nor the maximum degree changes,
then the eccentricity centralization of the tree does not change either. Specifi-
cally, this follows from the fact that if a tree T with n nodes and diameter 2k is
rooted at its median, then E1(T) = n−1

k −∑k
i=1

ni(T)
k+i . Let v ∈ Li+1(T) and define

T′ as the tree obtained from T by deleting the edge between v and its parent
and adding an edge between v and any node in Li(T) of degree less than ∆. If
T′ has the same diameter as T, then it follows that E1(T′) = E1(T). In this case,
the operation is said to be valid. Valid operations yield an equivalence relation
between trees: two trees are equivalent if one is obtained from the other by a
sequence of valid operations.

In the next subsection, we define a class F∆,k(n) of trees all having fixed
order n, maximum degree ∆ and (even) diameter 2k. As we shall see, this
class captures all trees with maximum eccentricity, in the sense that every tree
with n nodes, maximum degree ∆ and maximum eccentricity is a member of
F∆,k(n,∆)(n). To this end, we introduce S-enumerations of trees and prove a
couple of useful properties of these enumerations.

5.4.1 S-enumerations

We give an algorithmic procedure to label the vertices of a tree on n nodes all
differently with labels 0, 1, . . . , n− 1. Let T be a tree with n nodes and diameter
d:

• We start from a longest path of T and label its nodes consecutively with
0, . . . , d.

• We then consecutively label only those unlabeled nodes with a labeled
parent. To this end, the following loop is performed. For i from 1 to bd/2c,
do the following two loops, in order:

1. For each unlabeled child v of the node labeled i, label the nodes in
the subtree rooted at v according to a depth-first search algorithm.
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Figure 5.2: An S-enumeration of a tree with maximum degree 4, diameter 8 and 16
nodes.

2. For each unlabeled child v of the node labeled d− i, label the nodes
at v according to a depth-first search algorithm.

Note that the running time of the procedure is O (|V(T)|). Besides, the la-
beling is not uniquely defined, as it depends on the longest path chosen as
well as the order in which the nodes are considered in each depth-first search
procedure. Any labeling of the nodes of a tree T that can be obtained by the
above procedure is called an S-enumeration of T. The longest path used in the
S-enumeration is called the root-path. Figure 5.2 provides an example of an
S-enumeration of a tree with maximum degree 4, diameter 8 and 16 nodes.

For positive integers ∆, k and n with n > max{∆ + 1, 2k}, let F∆,k(n) be the
(unique) subtree of an S-enumeration of the full tree F∆,k induced by the nodes
with labels in {0, . . . , n − 1}. Thus F∆,k(n) has n nodes, maximum degree ∆,
radius k and diameter 2k. The tree F4,4(16) is depicted in Figure 5.3. Let F∆,k(n)
be the collection of all trees that are equivalent to F∆,k(n).

The tree given in Figure 5.2 does not belong to F4,4(16). Indeed, this tree
contains two nodes on its root-path (namely 2 and 3) such that both have non-
trivial subtrees, and the one further to the median is not full. In particular,
consider a tree T in F∆,k(n) with one of its S-enumerations: if u and v are two
nodes on the root-path such that the level of u is smaller than that of v, then
the degree of u cannot be greater than that of v.

We are now in a position to state the characterization of trees with maximum
eccentricity.

Theorem 5.8. Let ∆ and n be integers such that 3 6 ∆ 6 n − 3. It holds that
T ∗

n,∆ = F∆,k(n,∆)(n).
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Figure 5.3: An S-enumeration of the tree F4,4(16).

To prove Theorem 5.8, we first establish that F∆,k(n) admits a particular par-
tition of its nodes, which turns out to be useful to us. A path P of a tree T is
monotone if P does not contain more than one node of each possible depth. In
addition, let us define a D-tree of depth k to be a rooted tree in which every node
of depth less than k has exactly D children. It will be useful to note that such
a tree contains exactly Di nodes of depth i for i ∈ {0, . . . , k}, and consequently
precisely ν(D, k) := Dk+1−1

D−1 nodes in total. The partition defined in the next
lemma is maybe better digested when read along with the example given after
the proof of that lemma.

Lemma 5.9. Define t to be the number of leaves of F := F∆,k(n). There exists a
partition of the nodes of T into t sets V1, . . . , Vt such that

1. for each i ∈ {1, . . . , t}, the nodes in Vi induce a monotone path in F;

2. |V1| = k and |Vi| ∈ {1, . . . , k− 1} if 2 6 i 6 t;

3. each set Vi contains exactly one leaf of F and, if i < t, then this leaf has depth k;
and

4. for every ` ∈ {1, . . . , k− 1}, if F contains (j + 2) nodes of depth ` for a positive
integer j, then the number of (∆− 1)-trees of depth k− ` in F is at least j + 1;
moreover, (j + 1)(∆ − 1)k−`−1 · (∆ − 2) sets among (Vi)06i6t+1 have order
exactly 1 and are composed of a single leaf of depth k.

Proof. The sought partition can be built as follows. Start from an S-enumeration
of Fδ,k such that F is the subtree induced by the nodes with labels in {0, . . . , n−
1}. Let L be the set of nodes of F of depth k. Observe that |L| ∈ {t− 1, t}. Let
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v1, . . . , v|L| be the elements of L increasingly ordered with respect to their label
in the enumeration, so the label of v1 is 0 and that of v2 is 2k. For convenience,
set V0 := ∅. For each index i from 1 up to |L|, let Vi be the set of nodes of
the longest monotone path containing vi in the network F−∪06j<iVj. Observe
that if |L| = t, that is, all leaves of F have depth k, then (Vi)16i6t is a partition
of V(F) into non-empty parts. If |L| = t − 1, then we further define the set
Vt to be V(F) \ ∪16j6t−1Vj. Note that Vt contains a leaf (of depth less than k)
and induces a monotone path. Either way, (Vi)16i6t is a partition of V(F) into
t non-empty parts.

The partition (Vi)16i6t of the nodes of F readily satisfies properties 1, 2 and 3.
It remains to prove that property 4 is satisfied. To this end, let x1, . . . , xj+2 be
the nodes of F of depth ` ordered increasingly with respect to their labels,
so x1 is the node labeled k − ` and x2 the node labeled k + `. Assume that
j > 1. Then the definition of F implies that the subtree rooted at xi is a (∆− 1)-
tree of depth k− ` whenever 1 6 i 6 j + 1, which implies the first statement.
Moreover, our construction of the partition implies that for each node v of
depth k − ` − 1 in such a tree, exactly ∆ − 2 children of v are contained in
a part of order 1. Therefore, in total, the partition (Vi)16i6t contains at least
(j + 1)(∆− 1)k−`−1 · (∆− 2) parts of order 1.

We use the following convention: when we build a partition of the nodes
of F∆,k(n), we use the procedure given in the preceding proof and the leaves
of F∆,k(n) are considered in increasing order with respect to their labels in the
S-enumeration.

Example 5.10. The partition obtained for the tree depicted in Figure 5.3 is V0 :=
{0, 1, 2, 3, 4}, V1 := {8, 7, 6, 5}, V2 := {9}, V3 := {10}, V4 := {11}, V5 := {12},
V6 := {14, 13} and V7 := {15}. As stated by Lemma 5.9 (because T has more
than two nodes of depth 3), this partition contains at least 2(∆− 1)k−3−1 · (∆−
2) = 4 singletons.

Eccentricity relates to S-enumerations of full regular trees as indicated in the
next lemma.

Lemma 5.11. If T is a tree in Tn,∆ with diameter 2k, then E1(T′) > E1(T) for every
T′ ∈ F∆,k(n).

To prove Lemma 5.11 we first recall that (5.1) ensures that if T is a tree with
n nodes and diameter 2k rooted at its median, then E1(T) = n−1

k − ∑k
i=1

ni(T)
k+i .

Moreover, if T has maximum degree ∆, then we know that n1(T) 6 ∆ and
ni+1(T) 6 ni(T)(∆ − 1) if 1 6 i < k. This motivates the introduction of the
following (more general) integer program.
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Definition 5.12. Let k, ∆ and n be positive integers such that max{2k− 1, ∆} <
n < η(∆, k) and ∆ > 2. Let α1, . . . , αk be a decreasing sequence of positive
rational numbers. The integer program (P) with parameters k, ∆, n and (αi)

k
i=1

is

min
k

∑
i=1

αi · ni (5.2)

s.t.
k

∑
i=1

ni = n (5.3)

n1 6 ∆ (5.4)

ni+1 6 ni(∆− 1) if i ∈ {1, . . . , k− 1} (5.5)

ni ∈ N \ {0, 1} if i ∈ {1, . . . , k} (5.6)

It turns out that the optimal solutions of (P) can be determined and they
correspond to the sizes of the layers in specific trees with n nodes, diameter 2k
and maximum degree ∆. Our strategy to prove Theorem 5.8 is to reduce the
problem to the program (P) with some well-chosen parameters. In particular,
in the proof of Theorem 5.8, the program (P) will be considered with parameter
n− 1 instead of n.

We solve the program (P) in the next proposition. Recall that η(∆, k) is 1 +

∆ (∆−1)k−1
∆−2 , the number of nodes in the full ∆-regular tree of depth k, while

ν(D, k) is Dk+1−1
D−1 , the number of nodes in the D-tree of depth k. We shall often

use that η(∆, k) = 1 + ∆ · ν(∆− 1, k− 1).

Proposition 5.13. Let k, ∆ and n be positive integers such that 2k + ∆− 1 6 n <

η(∆, k), and ∆ > 3. Let α1, . . . , αk be a (strictly) decreasing sequence of positive
rational numbers. The optimal value of the integer program (P) with parameters k,
∆, n and (αi)

k
i=1 is attained only by the feasible solution obtained in the following

inductive way. Setting n0 := 0, we define ni, for each i ∈ {1, . . . , k − 1}, to be the
least integer s > 2 such that s · ν(∆− 1, k− i) > n−∑i−1

j=0 nj. Finally, nk is defined

to be n−∑k−1
j=0 nj.

Proof. For convenience, we set σi := ∑i
j=0 nj for i ∈ {0, . . . , k}. First, we need

to prove that the obtained solution (n1, . . . , nk) is feasible. As a preliminary
remark, we note that nk > 0 since ν(∆ − 1, k − i) > (∆−1)2−1

∆−2 > 3 whenever
1 6 i 6 k− 1, since ∆ > 3. Now, notice that (5.3) is satisfied since nk is defined
to be n− σk−1. Moreover, n1 6 ∆ since ∆ · ν(∆− 1, k− 1) = η(∆, k)− 1 > n.
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We now prove that (5.5) is satisfied. Let i ∈ {1, . . . , k − 1}. Since ni · ν(∆−
1, k− i) > n− σi−1, we deduce that

n− σi = (n− σi−1)− ni

6 ni(ν(∆− 1, k− i)− 1)

= ni

(
(∆− 1)k−i+1 − (∆− 1)

∆− 2

)
= ni(∆− 1) · ν(∆− 1, k− (i + 1)),

and hence ni+1 6 ni(∆− 1).
It remains to prove that nk > 2. If ni = 2 for every i ∈ {1, . . . , k − 1}, then

nk > 2 since n > 2k. Otherwise, let i be the largest integer such that ni > 3
and let us prove that nk > 2. First, the definition of ni implies that n > σi−1 +

(ni − 1)ν(∆ − 1, k − i) + 1. Moreover, σk−1 = σi−1 + ni + 2(k − 1 − i). Since
nk = n− σk−1, it follows that

nk − 3 > ni(ν(∆− 1, k− i)− 1)− ν(∆− 1, k− i)− 2k + 2i. (5.7)

It therefore suffices to prove that

ni(ν(∆− 1, k− i)− 1)− ν(∆− 1, k− i)− 2k + 2i > −1. (5.8)

Since ni > 3 and ν(∆− 1, k− i) > 3, it thus suffices to prove that 2ν(∆− 1, k−
i)− 2(k + 1− i) > 0. This holds because ν(∆− 1, k− i) > 2k−i+1− 1 > k + 1− i
as i ∈ {1, . . . , k− 1} and ∆ > 3. Since all constraints from Definition 5.12 are
verified, (n1, . . . , nk) is feasible.

The optimality of (n1, . . . , nk) follows from the fact that (αi)
k
i=0 is a (strictly)

decreasing sequence of positive numbers. Let (n′1, . . . , n′k) be a feasible solution.
Since ∑k

i=0 αi · ni 6 ∑k
i=0 αi · n′i, we may assume that n′i < ni for some index

i ∈ {1, . . . , k}. Let i be the least positive integer such that n′i < ni. Observe
that i > 1. Indeed, if n′1 < n1, then as n′1 > 2 the definition of n1 implies
that n′1ν(∆− 1, k− 1) < n. On the other hand, since n′j+1 6 n′j(∆− 1) for each
j ∈ {1, . . . , k− 1} by (5.5), we deduce that

k

∑
j=1

n′j 6 n′1
k

∑
j=1

(∆− 1)j−1 = n′1ν(∆− 1, k− 1) < n,

contrary to (5.4). This contradiction ensures that i > 1.
We assert that n′j = nj for each j ∈ {1, . . . , i− 1}. Otherwise, let ` ∈ {1, . . . , i−

1} such that n′` > n` and n′j = nj if ` < j < i. Let x = (x1, . . . , xk) be defined by

xj :=


n′` − 1 if j = `

n′i + 1 if j = i

n′j otherwise.
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Then ∑k
j=1 αj · xj = ∑k

j=1 αj · n′j + (αi − α`) < ∑k
j=1 αj · n′j, which shows that if x

is feasible, then (n′1, . . . , n′k) is not optimal. Thus it remains to prove that x is
feasible to conclude the proof of our assertion.

Note that ∑k
j=1 xj = n by the definition. Moreover, x` = n′` − 1 > n` > 2 and

xi > n′i > 2. Surely, xj+1 6 xj(∆− 1) if j /∈ {`, i− 1}. It remains to prove that
x`+1 6 x`(∆− 1) and xi 6 xi−1(∆− 1). (These two inequalities are the same if
` = i− 1.) For the sake of clarity, assume first that ` 6= i− 1. Then, the former
inequality holds because

x`+1 = n′`+1 = n`+1 6 n`(∆− 1) 6 (n′` − 1)(∆− 1) = x`(∆− 1),

while the latter inequality holds because

xi = n′i + 1 6 ni 6 ni−1(∆− 1) = n′i−1(∆− 1) = xi−1(∆− 1).

If ` = i− 1, then

xi = n′i + 1 6 ni 6 ni−1(∆− 1) 6 (n′i−1 − 1)(∆− 1) = xi−1(∆− 1).

Therefore, x is feasible if n′j > nj for some j ∈ {1, . . . , i− 1}. We conclude that
n′j = nj if j < i.

However, this leads to a contradiction. Indeed, since 2 6 n′i < ni, the defini-
tion of ni implies that n′i · ν(∆− 1, k− i) < n− σi−1. Moreover, σi−1 = ∑i−1

j=1 n′j
by what precedes. But

k

∑
j=i

n′j 6 n′i ·
k

∑
j=i

(∆− 1)j−i = n′i · ν(∆− 1, k− i),

which implies that ∑k
j=1 n′j 6 σi−1 + n′i · ν(∆− 1, k− 1) < n, a contradiction.

A key consequence of Proposition 5.13 is that if a tree T belongs to F∆,k(n),
then the vector (n1(T), . . . , nk(T)) is the optimal solution of the program (P)
with parameters k, n− 1, ∆ and αi := 1

k+i for i ∈ {1, . . . , k}. Lemma 5.11 follows
from this observation.

Proof of Lemma 5.11. Let T be a tree in Tn,∆ with diameter 2k. Set n := |V(T)|
and let T′ ∈ F∆,k(n). The vector (n1(T), . . . , nk(T)) is a feasible solution of
the program (P) with parameters k, n − 1, ∆ and αi := 1

k+i for i ∈ {1, . . . , k}.
Therefore ∑k

i=1
ni(T)
k+i > ∑k

i=1
ni(T′)

k+i by the remark above. Consequently n−1
k −

∑k
i=1

ni(T)
k+i is at most n−1

k − ∑k
i=1

ni(T′)
k+i , which is to say that E1(T) is at most

E1(T′).

We are now ready to establish Theorem 5.8.
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5.4.2 The Proof of Theorem 5.8

Let T be a tree in T ∗
n,∆ and let d be the diameter of T. So n > d + ∆− 1 > d + 2,

as ∆ > 3. Clearly, the conclusion holds for networks with diameter less than 3,
so we assume that d is at least 3. Our first aim is to show that the diameter d of
T is 2k(n, ∆). (Recall that k(n, ∆) is defined in Lemma 5.7.) We set k0 := k(n, ∆)
for convenience and proceed in two steps: we establish that d is even and, next,
we prove that if d > 2k0 + 2, then there exists a network T′ of diameter d− 2
with n nodes and maximum degree ∆ such that E1(T′) > E1(T).

Suppose, for a contradiction, that d = 2s + 1 for some positive integer s.
Then the number n of nodes of T is at least 2s + 3. In addition, T must contain
a longest path P = v0, . . . , vd and a leaf that does not belong to P. Suppose first
that there exists a leaf u not on P such that T − u still has maximum degree ∆.
Then let T′ be the network obtained from T by deleting the edge incident to u
and adding the edge {u, vd}. The network T′ is a tree of diameter d+ 1 = 2s+ 2
with n nodes and maximum degree ∆. Moreover, as eT′(v) > eT(v) for every
node v with strict inequality for (exactly) one of vs and vs+1, it follows that
E1(T′) > E1(T), which is a contradiction. Thus we may in particular assume
that T has a unique node v of degree ∆, all leaves of T not on P are adjacent to
v and there are at least ∆− 2 of them. In addition, note that exactly one node
vi of P has degree greater than 2. Without loss of generality, we may assume
that i 6 s + 1.

If vi = v, that is, vi is the unique node of T with degree ∆, then n = d+∆− 1
and T is composed of the path P and ∆− 2 leaves attached to vi. In this case,
a straightforward check ensures E1(T) is maximized only if i = 1 (recalling
that i 6 s + 1). Let T′ be the tree obtained by deleting the edge incident to vd
and next adding an edge between vd and vd−2. The tree T′ has n nodes and
maximum degree ∆. Moreover, one sees that

E1(T′) = E1(T′, vs) =
n− 1

s
− 2

s−1

∑
i=1

(s + i)−1 − ∆ + 1
2s

.

As

E1(T) = E1(T, vs+1) =
n

s + 1
− 2

s

∑
i=1

(s + i)−1 − ∆
2s + 1

,

we deduce that

E1(T′)− E1(T) =
n− s− 1
s(s + 1)

+
2s + 1− ∆
2s(2s + 1)

=
s(4n− 2s− 3− ∆) + 2n− 1− ∆

2s(s + 1)(2s + 1)

=
s(3n− 3) + n + 2s− 1

2s(s + 1)(2s + 1)
> 0,
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where the last line uses that n = d + ∆− 1 = 2s + ∆ > 1.
We conclude that v is not on P. In this case, v is adjacent to exactly ∆ − 1

leaves u1, . . . , u∆−1. For each i ∈ {1, . . . , ∆ − 1}, we delete the edge {v, ui}
and add the edge {vd, ui}. It follows that T′ has maximum degree ∆, order n,
diameter d + 1 and E1(T′) > E1(T), a contradiction. This contradiction shows
that d must be even.

Suppose now that d = 2k + 2 with k > k(n, ∆). In particular, k > 2 since
d > 4. Our goal is to obtain a contradiction by showing the existence of a tree
T′ with n nodes, maximum degree ∆ and diameter 2k such that E1(T′) > E1(T).
Since d is even, Lemma 5.11 allows us to assume that T belongs to F∆,k+1(n).
Recall that n 6 η(∆, k(n, ∆)) 6 η(∆, k).

Notice that the median of T, which is the node labeled k + 1 by Lemma 5.2,
has degree 2 in T. Indeed, if it had degree more than 2, then as T belongs to
F∆,k+1(n), we infer that the subtrees of T rooted at the nodes labeled k and
k + 2 are both (∆− 1)-trees of depth k by Lemma 5.9(4). Consequently, each of
these trees contains ν(∆− 1, k) nodes. Therefore, the total number of nodes of
T would be greater than 2 · ν(∆− 1, k), which is at least η(∆, k) as ∆ > 3 and
k > 2, a contradiction.

In other words, T contains exactly two nodes of depth 1. A similar counting
argument allows us to establish that T contains at most ∆ nodes of depth 2.
Indeed, let x be the number of nodes of T of depth 2, hence 2 6 x 6 2∆− 2.
Since T ∈ F∆,k+1(n), if x > 2 then all but at most one of the x subtrees of T
rooted at the nodes of depth 2 are (∆− 1)-trees of depth k− 1. Consequently,
T contains more than 1 + (x− 1) · ν(∆− 1, k− 1) nodes. Therefore,

1 + (x− 1) · ν(∆− 1, k− 1) < n 6 η(∆, k) = 1 + ∆ · ν(∆− 1, k− 1),

which implies that x− 1 < ∆, that is, x 6 ∆ as asserted.
We now define a new tree T′. (An example of the construction is given in

Figure 5.4.) Let P = v0, . . . , vd be the root-path of T, that is, the path induced by
nodes with labels in {0, . . . , d}. For each node v in P, let S(v) be the collection
of all neighbors of v in T that do not belong to P. To obtain T′, we start from a
path v′1, . . . , v′d−1, so, in particular, T′ will have diameter at least (and, actually,
exactly) d− 2. For each i from 1 to d− 1 and for each node v in S(vi), we define
Tv to be the subtree of T rooted at v. We add to T′ a copy of Tv and join its root
to the node v′j of T′ with

j :=

i + 1 if i ∈ {1, . . . , k} and

i− 1 if i ∈ {k + 2, . . . , d− 1}.

Note that, as we proved earlier, the node labeled k + 1 in T has exactly two
children, which both belong to P. Hence the tree T′ is well defined and so far
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v′4

v′3

v′2

v′1 v′9 v′10

v′13

v′14 v′15 v′0

v′8

v′5

v′6

v′11 v′12 v′7

Figure 5.4: The tree T′ obtained if T is F4,4(16), the tree of Figure 5.3.

it contains exactly n− 2 nodes. Moreover, as proved earlier, T contains at most
∆ nodes of depth 2. Consequently, the degree of vd/2 in T′ is at most ∆. In total,
the maximum degree of T is hence exactly ∆. Last, the radius of T′ is k since
each node is at distance at most k from vd/2 by the construction.

We finish the construction of T′ by doing twice the following: among all
nodes of degree less than ∆ and depth less than k, we choose a node v with the
largest possible depth and we add a new neighbor to v. These last two steps

are always possible, since n 6 1 + ∆ (∆−1)k−1
∆−2 . In case there are more than one

such node, we choose the one corresponding to the node of T with the smallest
label. Let v′0 and v′d be these two added nodes.

Observe that T′ ∈ F∆,k(n), with root-path {v′1, . . . , v′d−1}. Notice also that
there is a natural one-to-one correspondence between the nodes of T and T′,
with v′0 and v′d corresponding to v0 and vd. Consequently, we shall make no
distinction between nodes of T and T′ in what follows, and we call V the
common set of nodes of T and T′.

It remains to show that E1(T′) > E1(T). To this end, we set for convenience
µ′(v) := ET′(vk+1)− ET′(v) and µ(v) := ET(vk+1)− ET(v) for every node v ∈ V.
We consider partitions (Vi)16i6t and (V ′i )16i6t′ of the nodes of T and T′ given
by Lemma 5.9, respectively. Notice that t′ ∈ {t, t + 1, t + 2}, depending on
whether v′0 was joined to a node of degree ∆ − 1 or not and of depth k − 1
or less (recall that v′0 is the last but one node added to T′ in the construction
process). Hence

E1(T′)− E1(T) >
t

∑
i=1

(
∑

v∈V′i

µ′(v)− ∑
v∈Vi

µ(v)
)

.

We shall now establish that E1(T′)− E1(T) > 0 by proving that ∑v∈V′i
µ′(v)−

∑v∈Vi
µ(v) > 0 for each i ∈ {1, . . . , t}, with strict inequality for at least one

index.
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The set V1 is composed of v0, . . . , vk+1 and the set V2 of vk+2, . . . , v2k+2. The
set V ′1 is composed of v1, . . . , vk+1 and the set V ′2 of vk+2, . . . , v2k+1. Since µ′(vk+1) =

0 = µ(vk+1), we deduce that ∑v∈V1
µ(v) = ∑v∈V2

µ(v) and ∑v∈V′1
µ′(v) =

∑v∈V′2
µ′(v). Hence, it follows that for each i ∈ {1, 2},

∑
v∈V′i

µ′(v)− ∑
v∈Vi

µ(v) =
(k−1

∑
j=0

1
k
− 1

2k− j

)
−
( k

∑
j=0

1
k + 1

− 1
2k + 2− j

)
=

1
2k + 2

+
1

2k + 1
− 1

k + 1
=

1
2k + 1

− 1
2k + 2

> 0.

Now, fix i ∈ {3, . . . , t− 1}. Since T ∈ F∆,k+1(n), there is at most one leaf of T
with depth less than k + 1, which necessarily belongs to Vt. Thus the monotone
path Pi induced by Vi in T starts from a leaf of depth k + 1. Similarly, the
monotone path P′i induced by V ′i in T′ starts from a leaf of depth k. Observe
that |Vi| = |V ′i | ∈ {1, . . . , k}. Consequently, setting ` := |Vi|, we deduce that

∑
v∈V′i

µ′(v)− ∑
v∈Vi

µ(v) =
(
`

k
−

`−1

∑
j=0

1
2k− j

)
−
(

`

k + 1
−

`−1

∑
j=0

1
2k + 2− j

)

=
`

k(k + 1)
−

`−1

∑
j=0

1
2k− j

+
`−3

∑
j=−2

1
2k− j

=
`

k(k + 1)
− 1

2k + 1− `
− 1

2k + 2− `
+

1
2k + 2

+
1

2k + 1

=
` · f (k, `)

2k(k + 1)(2k + 1)(2k + 1− `)(2k + 2− `)
,

where f (k, `) := 8k3 − k2(12` − 20) + k(4`2 − 17` + 15) + 2`2 − 6` + 4. As a
function of ` ∈ [1, k], we see that f (k, `) is decreasing so f (k, `) > f (k, k) =

5k2 + 9k + 4, which is positive.
It remains to consider the sets Vt and V ′t . Note that Vt ⊆ V ′t . Therefore,

the exact same reasoning as above applies, using |Vt| for ` and ignoring the
nodes in V ′t \Vt, which is possible as µ′(v) > 0 for every node v. Consequently,
E1(T′) > E1(T), which is a contradiction. We conclude that T is a tree of
diameter 2k0.

Now if n = ν(∆, k0), then T is the full ∆-regular tree F∆,k0 , which is the
unique element of T∆,k0(n). Otherwise, n < ν(∆, k0) and, in particular, the
vector (n1(T), . . . , nk0(T)) must be an optimal solution to the problem (P) with
parameters k0, n − 1, ∆ and αi := 1

k0+i for i ∈ {1, . . . , k0}. Proposition 5.13

thus implies that (n1(T), . . . , nk0(T)) is uniquely defined and corresponds to
the sizes of the layers of a tree in F∆,k0(n). We infer that T belongs to F∆,k0(n),
which finishes the proof of Theorem 5.8.
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We conclude by pointing out that valid operations provide an efficient al-
gorithmic way of building all possible networks in T ∗

n,∆. We also notice that
medians in tree networks with fixed maximum degree ∆ need not have degree
∆.





6
C E N T R A L I Z AT I O N O F T R A N S M I S S I O N I N N E T W O R K S

In graph theory, centrality refers to indices which identify the most important
(the most central) vertices within a graph. Those most commonly used mea-
sures are betweenness centrality, closeness centrality, degree and eccentricity
(for more discussion see Section 3.3 on page 21). The centralization of a graph is
a measure of how central its most central vertex is with respect to how central
all the other vertices are (see Section 3.3.2 on page 24 for more discussion).

Transmission of a particular vertex v ∈ V(G) (in some literature also called
farness or vertex-Wiener index) is defined as a sum of the lengths of all shortest
paths between chosen vertex and all other vertices in G (see Section 3.4.5 on
page 30). In this chapter we focus to the centralization of transmission.

6.1 basic notions

Let us restate the core definitions, relevant to what follows. The transmission
W(v) of a vertex v ∈ V(G) is defined as

W(v) = ∑
u∈V(G)

dG(u, v).

Transmission centralization of a vertex v ∈ V(G) is obtained by applying Free-
man’s notion of the centralization to the transmission, formally

W1(v) = ∑
u∈V(G)\{v}

(W(v)−W(u)) = n ·W(v)− 2W(G), (6.1)

where W(G) is the Wiener index of a graph G. In order to compare central-
ization values of graphs with different sizes, Freeman in the definition of cen-
tralization originally used a normalized formula, dividing expression (6.1) by
the theoretically largest such sum of differences in any graph from the given
class of graphs [52]. Since throughout this chapter the size of our graph is of
constant size, we omit the normalizing denominators.

Several aspects of correlation between Wiener index and betweenness cen-
trality are presented in the paper of Caporossi et al. [29], where authors assign
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betweenness-related weights to edges of a graph that sum up to its Wiener in-
dex. For graphs with fixed order they also find extremal graphs for lower and
upper bounds of betweenness centrality. A theorem of Wiener [142], shows
how the Wiener index of a tree is decomposed into (easily calculable) edge
contributions. In [130], authors introduce a vertex-version of this theorem for
general graphs by using the correlation of Wiener index to betweenness cen-
trality.

Among all graphs on n vertices Gn, those that achieve maximum or mini-
mum Wiener centralization value will be called extremal graphs. Throughout
the chapter we assume that n > 1. Instead of W(v) and W1(v) we will some-
times also write W(v, G) and W1(v, G), to emphasize the underlying graph we
are dealing with. The eccentricity of a vertex w is defined as maxv∈V(G) dG(w, v).

The chapter is structured as follows. In section two, we present the structure
of graphs that attain maximal Wiener centralization while in section three we
focus on the lower bound. In the concluding chapter we give some ideas for
possible future work.

6.2 upper bound of transmission centralization

In lemmas that follow, we assume that G is a connected graph on n vertices
that maximizes transmission centralization among all graphs in Gn. Also, let
w ∈ V(G) be a vertex at which transmission centralization is maximized and
let d be the eccentricity of the vertex w. By the choice of w, it is easy to see that
for any t ∈ V(G) we have

W(w, G) > W(t, G) and W1(w, G) > 0. (6.2)

Let Li := {v ∈ G; dG(v, w) = i} be the set of vertices at distance i from w in G,
and let li = |Li|. We say that Li is the i-th layer from w. Note that L0 = {w}.

Lemma 6.1. Let i be a non-negative integer. Then vertices in Li and Li+1 induce a
complete graph.

Proof. Assume that there exist two non-connected vertices u, v ∈ Li ∪ Li+1 that
violate the claim of this lemma. It is easy to see that adding an edge uv does
not affect the value of W(w). On the other hand, introducing the edge uv (or
any new edge) always decreases Wiener index of the whole graph. Therefore,
introducing the edge uv increases expression (6.1), a contradiction.

A layer is trivial if it is comprised of one vertex.

Lemma 6.2. Layers L1, L2, . . . , Lbn/2c−1 are trivial.
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Proof. Let s =
⌊ n

2

⌋
. We proceed with contradiction assuming that some of these

layers in G is non-trivial. We prove the claim by introducing an operation that
iteratively transform nearest s − 1 vertices from w into a path, increasing its
transmission centralization at each step.

We now describe the operation. Let i 6 s − 1 be the smallest integer such
that Li is a non-trivial layer, and let v ∈ Li. We construct a new graph G′ from
G by removing the vertex v and attaching it to the vertex w. Since v is a leaf
in G, graph G′ clearly remains connected. We prove the claim by showing that
W1(v, G′) > W1(w, G). First notice that

W(G′)−W(G) = W(v, G′)−W(v, G) < (i + 1) · (n− i− 1).

Centralization measures calculate the sum of differences in centrality between
the most central vertex in a graph and all other vertices, thus every centrality
measure can have its own centralization measure Furthermore, it is important
to note that W(w, G′) = W(w, G) − i + 1 and W(v, G′) = W(w, G′) + n − 2,
therefore

W(v, G′) = W(w, G) + n− i− 1.

With help of the above inequalities we now estimate the difference of transmis-
sion centralization of optimal vertices of G and G′. Indeed

W1(v, G′)−W1(w, G) = n ·
(
W(v, G′)−W(w, G)

)
− 2

(
W(G′)−W(G)

)
> n · (n− i− 1)− 2 · (n− i− 1) · (i + 1)

= (n− i− 1) · (n− 2i− 2) > 0,

where in the final inequality we used the fact that i 6 s− 1. Described oper-
ation clearly improves transmission centralization and repeating this process
yields the result of the lemma.

In the next lemma, we show that somewhere “far” from w, there exists Kdn/2e
as a subgraph of G.

Lemma 6.3. If n > 4, then the last two layers from w together contain at least dn/2e
vertices.

Proof. By Lemma 6.2, layers L0 and L1 are trivial, implying d > 2. Suppose
that the claim is false, i.e. ld−1 + ld 6

⌈ n
2

⌉
− 1, let v ∈ Ld and let G′ be a graph

obtained from G by introducing edges from v to all vertices in Ld−2; in other
words, we move the vertex v from Ld to Ld−1. We derive the contradiction by
showing that W1(w, G′) > W1(w, G).

Notice that W(w, G′)−W(w, G) = −1 and

W(G)−W(G′) = W(G, v)−W(G′, v) = n− ld−1 − ld.
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Now, from (6.1) it clearly follows

W1(w, G′)−W1(w, G) = n ·
(
W(w, G′)−W(w, G)

)
+ 2

(
W(G)−W(G′)

)
= n− 2(ld−1 + ld) > n− 2 ·

⌈n
2

⌉
+ 2 > 0,

a contradiction.

The result from Lemma 6.3 can be slightly improved if n is odd. We do that
in the next lemma.

Lemma 6.4. If n > 5 is odd, then Ld contains at least
⌈ n

2

⌉
− 1 vertices, and Ld−1 is

trivial.

Proof. Define s such that n = 2s + 1. By Lemma 6.3 we may assume that
∑d−2

i=0 li 6 s. Suppose that the layer Ld−1 is not trivial and consider the following
operation: Construct a graph G′ from G by moving an arbitrary vertex v ∈ Ld−1
to Ld (i.e. removing all edges from v to its neighbours in Ld−2). Observe that
W(w, G′)−W(w, G) = 1 and note that

W(G′)−W(G) = W(v, G′)−W(v, G) =
d−2

∑
i=0

li 6 s,

therefore by (6.1) and by the fact that n is odd, it holds

W1(w, G′)−W1(w, G) = n ·
(
W(w, G′)−W(w, G)

)
− 2

(
W(G′)−W(G)

)
> n− 2 · s > 0.

Clearly, this operation improves transmission centralization of the vertex w,
contradicting the choice of G and w.

The reader might notice that by the above lemmas we are close to describing
extremal graphs for transmission centralization. Indeed, almost half of vertices
closest to w must form a path. On the other hand, last half of vertices must
lie in the last two layers. In what follows we fully characterize the structure of
extremal graphs in terms of transmission centralization, but first let us define
a notation that will be useful for describing them.

Definition 6.5. For positive integers a, b and c 6 b, let PK(a, b, c) be a connected
graph on a + b vertices comprised from a path Pa and a clique Kb such that
one of the end-vertices of Pa is connected to c vertices of Kb. Thus, PK(a, b, c)
contains a− 1 + (b

2) + c edges. Few examples are depicted in Figure 6.1.

The following lemma characterizes the structure of extremal graphs for odd
n.
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Lemma 6.6. If n is odd, then G is isomorphic to PK
(⌊ n

2

⌋
,
⌈ n

2

⌉
, 1
)
.

Proof. If n = 3, the claim is easy to verify. Among two members of G3, namely
K3 and P3, centralization is maximized at P3, which is isomorphic to PK (1, 2, 1).
Suppose again that n = 2s + 1 for some integer s > 2. In this case, Lemmas 6.2,
6.3 and 6.4 determine that first s layers are trivial and the last layer contains
at least s vertices. So G could be one of the graphs PK(s, s + 1, 1) and PK(s, s +
1, s + 1). We now calculate the transmission centralization for each of them
separately. In both cases we consider the distances of all pairs by partitioning
the vertex set to two sets. The first set is consisted of the layers inducing a
path while the remaining two layers are in the second set (inducing a complete
graph). First consider the maximum transmission centrality and Wiener index
of PK(s, s + 1, s + 1)

W (w, PK(s, s + 1, s + 1)) =

(
s
2

)
+ s (s + 1) =

3
2

s2 +
1
2

s, and

W (PK(s, s + 1, s + 1)) = W(Ps) + W(Ks+1) + (s + 1) ·
(

s + 1
2

)
=

2s3

3
+

3s2

2
+

5s
6

,

from which we derive its transmission centralization

W1 (w, PK(s, s + 1, s + 1)) = (2s + 1) ·
(

3
2

s2 +
1
2

s
)
− 2 ·

(
2
3

s3 +
3
2

s2 +
5
6

s
)

=
5
3

s3 − 1
2

s2 − 7
6

s.

Finally, consider the maximum transmission centrality and Wiener index of
graph PK(s, s + 1, 1);

W (w, PK(s, s + 1, 1)) =

(
s + 1

2

)
+ (s + 1) s =

3
2

s2 +
3
2

s;

W (PK(s, s + 1, 1)) = W(Ps+1) + W(Ks) + s ·
(

s + 2
2

)
=

2s3

3
+

5s2

2
+

5s
6

,

from where we obtain

W1 (w, PK(s, s + 1, 1)) =
5
3

s3 − 1
2

s2 − 1
6

s > W1 (w, PK(s + 1, s, 1)) ,

which concludes the proof.

We now proceed with a lemma that characterizes the structure of extremal
graphs for even n.
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PK(2, 2, 1) PK(2, 2, 2)

Figure 6.1: The only connected members of G4 that are consistent with Lemma 6.1.

Lemma 6.7. If n is even, then G is isomorphic to PK
( n

2 , n
2 , i
)

for some i ∈
[
1, n

2

]
.

Proof. Again we start the proof by verifying some small non-trivial graphs. For
n = 2, graph PK(1, 1, 1) is the only connected graph on 2 vertices. In G4, there
are two connected graphs that are consistent with Lemmas 6.1 and 6.2. These
are depicted in Figure 6.1. By easy calculation one can indeed verify that both
PK(2, 2, 1) and PK(2, 2, 2) attain maximal transmission centralization. Let us
assume now that n = 2s for some integer s > 3 and note that graphs PK(s, s, i)
have layers from w of sizes 1, 1, . . . , 1, i, j, with i+ j = s. By Lemmas 6.1–6.3, it is
enough to show that all such graphs have the same transmission centralization
values. First consider the value of W (w, PK(s, s, i)). By definition,

W (w, PK(s, s, i)) = 1 + 2 + · · ·+ (s− 1) + s · i + (s + 1) · j
=

3
8

n2 − 1
4

n + j. (6.3)

Let us now calculate Wiener index of PK(s, s, i). Using similar approach as in
previous lemma, observe that

W (PK(s, s, i)) = W(Ps) + W(Ks) + i · s · (s + 1)
2

+ j · (s + 1) · (s + 2)
2

− j

=

(
s + 1

3

)
+

(
s
2

)
+ s ·

(
s + 1

2

)
+ j · s

=
j · n

2
+

n3

12
+

n2

4
− n

3
. (6.4)

Combining (6.3) and (6.4), it follows that the transmission centralization value
of these graphs equals to

W1 (w, PK(s, s, i)) = nW
(

w, Ui,j
n

)
− 2W

(
Ui,j

n

)
=

5n3

24
− 3n2

4
+

2n
3

,

which is independent on the distribution of i and j.

By Lemmas 6.1, 6.6 and 6.7, we obtain the main theorem of this chapter.
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Parity G W1(w, G)

Odd PK
(⌊ n

2

⌋
,
⌈ n

2

⌉
, 1
) 5

24 n3 − 3
4 n2 + 19

24 n− 1
4

Even PK
( n

2 , n
2 , i
) 5

24 n3 − 3
4 n2 + 2

3 n

Table 6.1: Values of transmission centralization for extremal graphs on odd and even
number of vertices.

Theorem 6.8. In the family of Gn, graph that maximizes transmission centralization
is isomorphic to

• PK
( n

2 , n
2 , i
)

for some i ∈
[
1, n

2

]
for even n, and

• PK
(⌊ n

2

⌋
,
⌈ n

2

⌉
, 1
)

for odd n.

The summary of optimal transmission centralization values is shown in Ta-
ble 6.1.

6.3 lower bound of transmission centralization

In this section, we characterize the graphs in Gn that attain minimum value of
transmission centralization. Henceforth we assume that G achieves minimum
transmission centralization among all graphs in Gn. Also, let w ∈ V(G) be a
vertex at which transmission centralization is minimized. Let us first start with
a simple lemma, which shows that G is acyclic.

Lemma 6.9. Graph G is a tree.

Proof. Suppose that G is not a tree and let T be a breadth-first search tree of
G rooted at w. Note that removing an edge from a simple graph increases its
Wiener index, therefore W(T) > W(G). By the fact that W(w, T) = W(w, G),
the claim follows from

W1(w, T)−W1(w, G)

= n · (W(w, T)−W(w, G))− 2 · (W(T)−W(G))

= −2 · (W(T)−W(G)) < 0.

To proceed with the proof of the lower bound, we will need some additional
notations. From now on we will consider G as a tree, rooted at vertex w. For
any x ∈ V(G), let Tx be the subtree of G rooted at x, and let tx := |V(Tx)|. We
continue with a lemma stating that G is a subdivision of a star.

Lemma 6.10. Every vertex of G, distinct from w, has degree less or equal to 2.
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w

v

b a

Tb Ta
T ∗

u

Figure 6.2: Notations around a vertex v. Dashed edge is removed in G′, and one of the
dotted edges is added.

Proof. Suppose that there exists a vertex v that violates the claim, and let u be
its parent node. Since deg(v) > 3, there exist at least two additional neighbors
of v, namely a and b. Let T∗ be a subtree in G, induced by vertices V(Tv) \
(V(Ta) ∪V(Tb)) and let t∗ = |V(T∗)|. Note that T∗ is possibly comprised only
of v. For better illustration, see Figure 6.2. Note that parameters ta, tb and t∗

are strictly positive and, depending on those values, we derive a contradiction
by reattaching Ta to b or u.

Suppose first that n > 4tb + 2ta. In this case, let G′ be a graph obtained
from G by disconnecting a from v and connecting it to the vertex b. We will
now compare Wiener indices of both graphs and conclude by showing that
W1(w, G) > W1(w, G′). First notice that

dG′(w, z)− dG(w, z) =

1 if z ∈ Ta

0 otherwise,

therefore it is clear that W(w, G′)−W(w, G) = ta. By similar argument it is easy
to see that the distance between any two vertices changes only when precisely
one of them is a member of Ta. We can therefore conclude

W(G′)−W(G) = ∑
c∈V(Ta)

[(
∑

d∈A
1

)
+

(
∑

d∈V(Tb)

−1

)]
= ta · (n− ta − 2tb) ,
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where A = V(G) \ (V(Ta) ∪V(Tb)). We now calculate the change of the trans-
mission centralization of the vertex w

W1(w, G′)−W1(w, G) = n · ta − 2 · ta (n− ta − 2tb)

= ta · (2ta + 4tb − n),

which by our assumption implies the claim for this case.
Consider now that n 6 4tb + 2ta. In this case, let G′ be a graph obtained from

G by disconnecting a from v and connecting it to the vertex u. We will again
compare both graphs and conclude by showing that W1(w, G) > W1(w, G′).
First notice that

dG′(w, z)− dG(w, z) =

−1 if z ∈ Ta

0 otherwise,

and hence W(w, G′) −W(w, G) = −ta. Again, the distance between any two
vertices changes only when one of them is a member of Ta. We can therefore
conclude

W(G′)−W(G) = ∑
c∈V(Ta)

[(
∑

d∈A
1

)
+

(
∑
d∈B
−1

)]
= ta · (t∗ + tb)− ta · (n− ta − tb − t∗)

= ta · (2t∗ + 2tb − n + ta),

where A = V(T∗) ∪ V(Tb) and B = V(G) \ (V(T∗) ∪V(Tb) ∪V(Ta)). From
these facts, we can now calculate the change of the transmission centralization
at the vertex w

W1(w, G′)−W1(w, G) = ta · (n− 4t∗ − 4tb − 2ta) < ta · (n− 4tb − 2ta)

which concludes the proof of the claim.

By the above lemma, G is a subdivision of a k-star, and therefore we intro-
duce the following definition. For some non-decreasing sequence of positive
integers α1, α2, . . . , αk let P(α1, α2, . . . , αk) be a tree on 1 + ∑k

i=1 αi vertices com-
prised from k paths Pα1 , Pα2 , . . . , Pαk such that one of the end-vertices of each
path is connected to the additional vertex of degree k. We label this vertex with
w. The next claim will help us calculate its transmission centralization.

Lemma 6.11. The transmission centralization of the graph P(α1, α2, . . . , αk) equals

1
6
·

k

∑
i=1

[
4α3

i + (6− 3n) α2
i + (2− 3n) αi

]
. (6.5)
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Proof. It is easy to sum all distances from w to all other vertices. Indeed,

W (w, P(α1, α2, . . . , αk)) =
k

∑
i=1

(
αi + 1

2

)
.

The Wiener index of P(α1, α2, . . . , αk) is comprised of two types

• distances where both ends are from the same path Pαi , these sum up to
Wiener index of a path of length αi,

• distances between u ∈ Pαi and v /∈ Pαi for some i; to avoid multiple
counting here we count at i only contributions made on the path Pαi .

Hence, the Wiener index of the graph P(α1, α2, . . . , αk) equals

W (P(α1, α2, . . . , αk)) =
k

∑
i=1

W (Pαi) + ∑
v∈Pαi

∑
v′/∈Pαi

d(w, v)


=

k

∑
i=1

[(
αi + 1

3

)
+ (n− αi) ·

(
αi + 1

2

)]
.

Plugging both expressions to (6.1) leads to the result of the claim.

What remains to be done is to find k and appropriate values of α1, . . . , αk,
such that the expression (6.5) is minimized.

Let G = P(α1, . . . , αk) be a graph on at least six vertices and define graph
G′ from G by changing αi → αi − 1 and αj → αj + 1. Using Lemma 6.11 it
is easy to conclude that the difference of transmission centralization between
these two graphs is

W1(w, G′)−W1(w, G) = (αi − αj − 1)(n− 2αi − 2αj − 2). (6.6)

Note that the expression also holds if αj = 0, which corresponds to introducing
a new branch of length one by removing one vertex from a branch of length αi.
Let us derive some properties of G by use of expression (6.6).

Claim 1. If n > 4, then αk 6
n−2

2 .

Proof. Observe that in case αk = 1, the claim is trivially satisfied, so we assume
that αk > 2. Suppose that αk >

n−2
2 . Now, change αk → αk − 1 and introduce a

new branch to w by attaching a new leaf to w. From (6.6) it clearly follows that

W1(w, G′)−W1(w, G) = (αk − 1)(n− 2αk − 2),

with i = k and αj = 0. By our assumption, the resulting graph has smaller
transmission centralization value, which contradicts the choice of G.
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Thus, by the above claim it follows that n > 4 implies k > 3.

Claim 2. α1 + α2 > n−2
2 .

Proof. Indeed, if α1 + α2 < n−2
2 , replace α1 and α2 by α1 − 1 and α2 + 1, respec-

tively. By our assumption, n− 2α1 − 2α2 − 2 is positive, whereas α1 − α2 − 1 is
negative. Hence, (6.6) is negative and the obtained graph contradicts the choice
of G.

It follows that
⌈ n−2

4

⌉
6 α2 6 . . . 6 αk, and that n > 7 implies 3 6 k 6 4.

Indeed, if k > 5 then

n− 1 >
5

∑
i=1

αi >
⌈

5n− 10
4

⌉
,

which is a contraction whenever n > 6. Finally, we have the third property
which shows that all branches are of approximately the same length.

Claim 3. αk − α1 6 1.

Proof. Suppose otherwise and observe the same operation as in the expres-
sion (6.6) with α1 → α1 + 1 and αk → αk − 1. By Claim 2 we have α1 + αk >
α1 + α2 > n−2

2 , therefore n − 2αk − 2α1 − 2 is strictly negative. Furthermore,
by our assumption αk − α1 − 1 is positive. Hence, (6.6) is negative, which is a
contradiction with the choice of G. 1

It remains to decide for each value of n, whether k = 3 or k = 4. We deal
with most of the cases in the following claim.

Claim 4. If n > 9, then k = 3.

Proof. For i ∈ {3, 4}, let Gi be a graph with k = i that minimizes transmis-
sion centralization in its minimizing vertex w. For easier notation, let f (x) =

4x3 +(6− 3n) x2 +(2− 3n) x. Observe that for W1(w, G4) =
1
6 · ( f (α1)+ f (α2)+

f (α3) + f (α4)), depending on the value of n (mod 4), we have four possibili-
ties for α1, α2, α3, α4. Similarly, for W1(w, G3) =

1
6 · ( f (α1) + f (α2) + f (α3)), we

1 The authors would like to thank prof. Brendan McKay for providing a useful response [102]
that simplified the proof of Claim 3.
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k n (mod k) 6 ·W1(w, Gk)

3
0 f

( n−3
3

)
+ 2 · f

( n
3

)
= − 5

9 n3 − 1
3 n2 + 2 n

1 3 · f
( n−1

3

)
= − 5

9 n3 − 1
3 n2 + 4

3 n− 4
9

2 2 · f
( n−2

3

)
+ f

( n+1
3

)
= − 5

9 n3 − 1
3 n2 + 2 n + 16

9

4

0 f
( n−4

4

)
+ 3 · f

( n
4

)
= − 1

2 n3 − 3
4 n2 + 2 n

1 4 · f
( n−1

4

)
= − 1

2 n3 − 3
4 n2 + 2 n− 3

4

2 2 · f
( n−3

4

)
+ 2 · f

( n+1
4

)
= − 1

2 n3 − 3
4 n2 + 2 n + 9

4

3 3 · f
( n−2

4

)
+ f

( n+2
4

)
= − 1

2 n3 − 3
4 n2 + 2 n + 3

Table 6.2: All possibilities for W1(w, G4) and W1(w, G3) depending on the value of
n (mod 4) and the value of n (mod 3).

have three possibilities for α1, α2, α3. All combinations are listed in Table 6.2.
Observing Table 6.2, it is clear that

W1(w, G4) > − 1
12

n3 − 1
8

n2 +
1
3

n− 1
8

and

W1(w, G3) 6 − 5
54

n3 − 1
18

n2 +
1
3

n +
8

27
.

Setting n > 9, the claim immediately follows.

From the statements above follows the main theorem of this section.

Theorem 6.12. Let n > 9 and let α1 6 α2 6 α3 be positive integers, such that
α1 + α2 + α3 = n − 1 and α3 − α1 6 1. Than, in the family of Gn, graph that
minimizes transmission centralization is isomorphic to P (α1, α2, α3).

By Lemma 6.10 and Claim 3, we can easily determine the rest of extremal
graphs (on less than 9 nodes) that minimize transmission centralization by
hand. All these minimizing graphs are listed on Figure 6.3. Let us note that for
cases n ∈ {6, 8}, the minimizing tree is not unique.

We conclude with the following corollary.

Corollary 6.13. Let H ∈ Gn and v ∈ V(H). Then

− 5
54

n3 + O
(
n2) 6 W1(v) 6

5
24

n3 + O
(
n2) .
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(a) n = 3 (b) n = 4 (c) n = 5 (d) n = 7

(e) n = 6

(f) n = 8

Figure 6.3: The list of extremal graphs with 3 6 n 6 8 that minimize transmission
centralization.

6.4 concluding remarks and future work

Finding extremal graphs with respect to the centralization measures was previ-
ously studied by Butts [28], Everett et al. [48] and Freeman [52]. For most com-
mon centrality indices (degree, betweenness, closeness, eccentricity), a graph
with maximal centralization is a star. In sections 2 and 3, we presented ex-
tremal graphs for transmission centralization, and to our surprise the result
was a mixture between a clique and a path or a collection of three paths of
almost the same length, glued together in one end-vertex.

It would be interesting to study further

• the extremal graphs for transmission centralization on some other rele-
vant classes of graphs such as trees or graphs with bounded-degree,

• the centralization for other chemical indices.





7
G R O U P C E N T R A L I Z AT I O N O F N E T W O R K I N D I C E S

For many decades in social science research, social networks have been the
subject of study. A social network is typically represented as a graph, where
individual persons or nodes are represented as vertices, and the relationships
between pairs of individuals as edges. Centrality is an important concept in
studying social networks that provides us with an information how central
is the position of an individual (or a small group) within a network. Various
vertex-based measures of the centrality have been proposed to determine the
relative importance of a vertex within the graph. Among most used central-
ity indices in network analysis are: degree centrality, betweenness centrality,
closeness centrality, eccentricity centrality, Google PageRank, eigenvector cen-
trality and others. In his study, Freeman [52] realized that despite all defined
vertex-centrality indices, there was a need for graph centrality measure based
on differences in point centrality. He defined a centralization index that can
be used in combination with any vertex-centrality to determine to what extent
some vertex in network stands out from others in terms of given centrality
index. For more discussion on networks, centrality or Freeman centralization
see Chapter 3 on page 13, Section 3.3 on page 21 or Section 3.3.2 on page 24,
respectively.

In this chapter we determine some graphs that maximize group centraliza-
tion with respect to eccentricity, degree and betweenness centrality measures.
Let us first present some historical discussion surrounding our work.

7.1 background

To find an extremal graph G and maximizing subset S ⊂ V(G) inside from al-
gorithmic point of view can be a time consuming problem. In 2001 Brandes [23]
improved the algorithm for calculating betweenness centrality to O (|V(G)| · |E(G)|).
Later in 2008 [24], he extended his algorithm to group betweenness and other
similar centralities. There are also some efficient heuristics and greedy ap-
proaches that can find vertices or groups that are sub-optimal in terms of
various centrality measures, see Puzis et al. [121], Dolev et al. [40].

89
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In 1999, Everett and Borgatti [46] introduced the concept of group central-
ity which enables researchers to answer questions such as “how central is the
engineering department in the informal influence network of this company?”
or “among middle managers in a given organization, which are more central,
the men or the women?” With these measures we can also solve the inverse
problem: given the network of ties among organization members, how can we
form a team that is maximally central? In [46], the authors introduced group
centrality for measures of degree, closeness and betweenness centrality, which
we use in the thesis. In 2006, Borgatti introduced important group centrality
measure (usually called KPP) that is motivated by key players problem (see [20]).
In his paper he focused on finding a set of vertices for the purpose of opti-
mally diffusing something through the network by using selected vertices as
seeds, or for maximally fragmenting the network by removing the key nodes.
Interestingly, Borgatti claims that previously mentioned group closeness and
betweenness are not proper tools to define KPP centrality. He therefore used
tools like graph fragmentation and information entropy to define KPP central-
ity.

Several more concepts of vertex centrality with respect to some subset of ver-
tices have been introduced throughout last decade. In 2003, Smith and White
[141] introduced a measure called personalization that shows, how central an
individual is according to given subset R (group of important people) in given
social network. In 2005, subgraph centrality has been introduced by Estrada and
Rodríguez-Velázquez [45], and characterizes the participation of each node in
all subgraphs in a network, which is calculated from the spectra of the adja-
cency matrix of the network. In the same year Everett and Borgatti [47] intro-
duced another measure (i.e. core centrality), where they evaluate the extent to
which a network revolves around a core group of nodes. Finally, very recently
Bell [17] introduced the concept called subgroup centrality, where centrality (of
one vertex) is calculated only on restricted set of vertices. Let us remark that all
four mentioned centralities in principle measure importance of an individual
vertex (with respect to some conditions) and are different from group centrality,
proposed in [46].

Knowing all those group centrality measures it is natural to ask how much
some choice of central group stands out from all other groups of the same
cardinality (with respect to given group centrality index). Following Freeman’s
approach, we define group centralization notion in Definition 7.1 on the facing
page and discuss it further in later chapters.

In the sequel, we will use the following notion. Denote by Gn the family of
non-isomorphic connected graphs on n vertices. Notice that when we consider
a graph G, we usually assume G ∈ Gn. A star graph Sn is a tree on n + 1
vertices, with one vertex of degree n and n leaves. We will use N(v) as a set
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of vertices in the neighborhood of v. As we deal with group centralization, by
C ⊆ V(G) we always denote the group we consider, and in addition we assume
c is the size of C, i.e. c = |C|. Since C = V(G) always trivially produces zero
centrality (and therefore centralization), we will always assume c < n. At last,
the distance from a vertex x ∈ V(G) to a set of vertices C ⊆ V(G) is defined by
d(x, C) = minx∈C {d(x, c)}.

The chapter is structured as follows. In Section 7.2 we introduce group cen-
tralization notion for arbitrary centrality index, and briefly describe its ori-
gin. In Section 7.3, we consider degree group centralization, and characterize
extremal-pairs for graph family Gn. In Section 7.4 we deal with eccentricity
group centralization in the same graph family for groups of size 2 and describe
the corresponding extremal graphs. In Section 7.5, we then do similar for be-
tweenness group centralization. We conclude with posing few open problems
in Section 7.6.

7.2 group centralization

In many real life networks, it is intuitively clear that some nodes are more
important than others. Also some graphs are more depending on the most
central vertices than others. While centrality measures compare the importance
of a node within graph, the associated notion of centralization, as introduced
by Freeman [52] allows us to compare the relative importance of nodes within
their respective graphs. He proposed a very general approach with which the
centralization of a graph G can be calculated. A clique where every vertex is
connected to every other vertex is clearly not very centralized; on the other
hand, the star topology, in which only one vertex v is connected to all others
and all other vertices are only connected to v is a centralized graph. Thus, one
would expect a star to have greater centralization than clique. In a network G,
given a centrality index X : V(G) → R, the centralization of a node v is given
by

X1(G, v) = ∑
u∈V(G)

(X(v)− X(u)) . (7.1)

Following Freeman’s idea, group centralization can be naturally generalized
as a measure of how central its most central set of size c is in relation to how
central all the other sets of the same cardinality are. Now we state this formally.

Definition 7.1 (Group centralization). Let G be a graph, C ⊆ V(G), c := |C| and
let X be a given group centrality measure. The group centralization is defined as

GX1(G, C) = ∑
S∈(V(G)

c )

(X(C)− X(S)) . (7.2)
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Let c, n be fixed integers with c < n. Given centrality measure X, a pair
(G, C) is called an extremal-pair, if C maximizes the group centralization in G
among all possible choices of G and C with |V(G)| = n and |C| = c, in other
words, if

GX1(G, C) = max
G′∈Gn

max
C′∈(V(G′)

c )

GX1(G′, C′).

In the definition of centralization, Freeman used a normalized formula, di-
viding expression (7.1) by the maximum possible sum of differences in point
centrality for a graph of n points, resulting

X1(G, v) =
X1(G, v)

maxG′∈Gn maxv′∈V(G′) X1(G′, v′)
. (7.3)

In the same way, we can normalize expression (7.2). For an extremal-pair
(G∗, C∗), we have

GX1(G, C) =
GX1(G, C)

GX1(G∗, C∗)
. (7.4)

This is useful for comparing centralization scores of networks with different
group sizes. Since in this chapter, we only work with constant group size, we
omit the normalizing denominators.

7.3 group degree centralization

For a graph G and a subset of vertices C ⊆ V(G), Everett and Borgatti [46]
introduced group degree (i.e. group degree centrality) as follows:

GD(C) =

∣∣∣∣∣⋃
v∈C

N(v) \ C

∣∣∣∣∣ .

For a given graph G, finding a set C of given cardinality k that maximizes
GD(C) is NP-hard (see Miyano and Ono [107]). In the next theorem we char-
acterize extremal-pairs of group degree centralization.

Theorem 7.2. Let (G, C) be an extremal-pair for group degree centralization in Gn.
Then, (Sn−1, C) is an extremal-pair for group degree centralization in Gn (for some
appropriate C ⊆ V(Sn−1)).

Proof. For graphs on two vertices, the claim trivially holds, therefore we as-
sume n > 3. For each vertex v ∈ V(G), define its contribution gk(v) to be the
number of k-sets that dominates v, i.e.

gk(v) =

∣∣∣∣{X ∈
(

V(G)− v
k

)
; X ∩ N(v) 6= ∅

}∣∣∣∣
=

(
n− 1

k

)
−
(

n− deg(v)− 1
k

)
.
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It follows that

∑
C′∈(V(G)

k )

GD(C′, G) = ∑
v∈V(G)

gk(v) = n ·
(

n− 1
k

)
− ∑

v∈V(G)

(
n− deg(v)− 1

k

)
,

which implies

GD1(C, G) =

(
n
k

)
·GD(C, G) + ∑

v∈V(G)

(
n− deg(v)− 1

k

)
− n ·

(
n− 1

k

)
. (7.5)

From (7.5) one can observe that the value of GD1(C, G) depends only on
GD(C, G) and on the degree distribution of G. To maximize (7.5), we first max-
imize ∑v∈V(G) (

n−deg(v)−1
k ) independently, and then show that the maximizing

graph also maximize the value of GD(C, G) (with properly chosen set C).
It is easy to see that ∑v∈V(G) (

n−deg(v)−1
k ) is maximized when the total number

of edges in G is minimized. Since G must remain connected, we conclude that
∑v∈V(G) deg(v) = 2n− 2, i.e. G is a tree. Furthermore, since (n−x−1

k ) is a convex
decreasing function on x ∈ [1, n− 1], the mentioned sum is maximized if and
only if there exists v ∈ V(G) such that degG(v) = n − 1 and degG(u) = 1
whenever u ∈ V(G) \ {v}. This happens if and only if G is isomorphic to a star
Sn−1.

It remains to observe that GD(C, G) 6 n− k, where equality is attained if and
only if C is a dominating set in G. Note that in Sn−1 any set C containing the
star center dominates the whole graph, hence the the maximum of GD(C, G)

can always be attained in the star on n vertices.

7.4 group eccentricity

Given a graph G, the eccentricity of a vertex v ∈ V(G) is the maximum dis-
tance from v to any other vertex. In social networks, Hage and Harary [63]
introduced the inverse of eccentricity as a centrality measure. Based on this,
one can naturally define the group eccentricity of a set C ⊂ V(G) as maximum
distance from any vertex from V(G) \ C to closest member of C. Formally, for
any set C ⊂ V(G), let

GE(G, C) =
1

maxx∈V(G)\C d(x, C)
.

Remark 7.3. Note that GE(G, C) = 1 if and only if C is a dominating set of G.

Proposition 7.4. There exists an extremal-pair (T, C) for eccentricity such that T is
a tree.
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Proof. Suppose that (G, C) is an extremal pair and build a tree T from the
graph G according to the following procedure. Assume all edges of G are
initially colored black.

1. First introduce a new vertex r in G, and connect it to every vertex of C.

2. Next color all edges of a breadth-first search tree of G + r rooted at r with
blue color.

3. Remove r and observe that the remaining blue graph is in fact a forest F
with c components.

4. Color c− 1 black edges into blue in order to form a tree T, induced on
blue edges.

Clearly all distances dG(C, v) = dT(C, v) for v ∈ V(G) \ C, therefore group
eccentricity for C remains the same, on the other hand, for all other C′ ∈
(V(G)
|C| ) \ C, group eccentricity may decrease or remain the same. Therefore

GE1(C, G) 6 GE1(C, T), implying that (T, C) is also an extremal pair, which
concludes our argument.

Let D(n, l) be the Dandelion graph on n vertices, consisted of a star Sn−l and a
path Pl , on vertices p0, p1, . . . , pl−1, where p0 is identified with a star center. An
example of D(17, 8) is shown in Fig. 7.1. In order to use the Dandelion graph
family as lower bound on group eccentricity centralization, now we give a
lower bound of GE1 (D(n, l), C), for a chosen set C.

p0 p3 p6

Figure 7.1: A Dandelion graph D(17, 8) with vertices of C enlarged.

Proposition 7.5. Let l = 3c− 1 and n > l. Then, it holds

GE1 (D(n, l), C) >
(n

c)− 1
2

,

where C = {p0, p3, . . . , pl−1}.
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Proof. For the sake of simplicity, let D := D(n, l). Since every vertex of D is
adjacent or belongs to C, we have that GE(D, C) = 1. From other side, for any
other c-set C′ distinct from C, there is always a vertex of D on distance > 2
from C′. This implies that GE(D, C′) 6 1

2 . Hence

GE1(D, C) = ∑
C′∈(V(D)

c )

(
GE(D, C)−GE(D, C′)

)
>

(n
c)− 1

2
.

From this result, the following corollary clearly holds.

Corollary 7.6. Let G be a connected graph on n vertices, and let n > 3c− 1. For any
extremal-pair (G, C), it holds GE(G, C) = 1, i.e. C dominates G.

From now on, we will focus on extremal-pairs in the family of trees on n
vertices Tn, with c = 2, where we denote C = {x, y}. We analyze the distance
between x and y in the following lemma.

Lemma 7.7. Let (G, C) be an extremal-pair with C = {x, y} and n > 6. Then
dG(x, y) = 3.

Proof. It is easy to see that d 6 3, otherwise on the (x, y)-path there would exist
a vertex v such that d(v, C) > 1, which is contradiction to Corollary 7.6. Now
we prove that d > 3 by considering all three remaining cases, depending on
d(x, y), see Fig. 7.2. In all three cases, the graph from Fig. 7.2 is fully defined by
the number of leaves attached at x and y, denoted with a and b, respectively,
as shown in Fig. 7.2. Without loss of generality we will assume that a > b.

yx

ba

yx

yx

G1 G2

G3

ba

ba

Figure 7.2: The three possible cases regarding d(y, x).

Case d(x, y) = 1: Since a + b > 4, observe the value of GE1 (Ga, C) in the
following table.
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condition : value of GE1 (Ga , C) :

if a > 2 and b > 2:
(
( a

2) + (b
2)
)
· 2

3 + (ab + 2a + 2b) · 1
2

if a > 3 and b = 1: ( a
2) · 2

3 + (3a + 1) · 1
2

if a > 4 and b = 0: 1
2 · ( a+1

2 )

Since the case a > 2, b > 2 always results in bigger group eccentricity, we can
assume

GE1 (Ga, C) =
((

a
2

)
+

(
b
2

))
· 2

3
+ (ab + 2a + 2b) · 1

2
.

Since a + b = n − 2 is fixed, after some calculations, the expression can be
simplified to

GE1(Ga, C) =
n2

3
− 2n

3
− ab

6
.

Clearly, the expression above is maximized, when a = n− 4 and b = 2, so, we
have

GE1(Ga, C) =
1
3

n2 − n +
4
3

.

Case d(x, y) = 2: Observe the value of GE1 (Gb, C) in the following table.

condition : value of GE1 (Gb , C) :

if a > 2 and b > 2:

(
( a

2) + (b
2)
)
· 3

4 + (a + b) · 2
3

+ (ab + a + b + n − 1) · 1
2

if a > 2 and b = 1: ( a
2) · 3

4 + (a + 1) · 2
3 + (2a + n − 1) · 1

2

if a > 3 and b = 0: ( a
2) · 2

3 + (3a + 1) · 1
2

Again, the case a > 2, b > 2 always results in bigger group eccentricity and
we assume

GE1 (Gb , C) =

((
a
2

)
+

(
b
2

))
· 3

4
+ (a + b) · 2

3

+ (ab + a + b + n − 1) · 1
2

.
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Since a + b = n − 3, after some calculations, the expression can be simplified
to

GE1 (Gb , C) =
3
8

(
a2 +

4
3

ab + b2
)
+

31
24

n − 23
8

= − ab
4

+
3
8

n2 − 9
4

n +
27
8

+
31
24

n − 23
8

= − ab
4

+
3
8

n2 − 23
24

n +
1
2

.

Maximizing the expression, it is clear that a = n− 5 and b = 2, so we have

GE1(Gb, C) =
3
8

n2 − 35
24

n + 3.

Case d(x, y) = 3: Observe the value of GE1 (Gc, C) in the following table.

condition : value of GE1 (Gc , C) :

if b > 1:

(
( a

2) + (b
2)
)
· 4

5 + (a + b) · 3
4

+ (a + b + 2) · 2
3 + (ab + 2a + 2b + 3) · 1

2

if b = 0: ( a
2) · 3

4 + (a + 1) · 2
3 + (3a + 3) · 1

2

Clearly, the case with b > 1 (and therefore a > 1) always results in bigger
group eccentricity, so we assume:

GE1 (Gc , C) =

((
a
2

)
+

(
b
2

))
· 4

5
+ (a + b) · 3

4

+ (a + b + 2) · 2
3
+ (ab + 2a + 2b + 3) · 1

2
.

Since a + b = n − 4 is fixed, after some calculations, the expression can be
simplified to:

GE1 (Gc , C) =

(
a2 + b2

2
− n − 4

2

)
· 4

5
+ (n − 4) · 3

4

+ (n − 2) · 2
3
+ (ab + 2n − 5) · 1

2

=
2
5

(
a2 +

5
4

ab + b2
)
+ n ·

(
1 +

2
3
+

3
4
− 2

5

)
−
(

5
2
+

4
3
+ 3 − 8

5

)
=

2
5

(
(n − 4)2 − 3

4
ab
)
+

121
60
· n − 157

30

=
2
5

n2 − 71
60

n +
7
6
− 3

10
ab .
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From maximized expression it clearly follows a = n − 5 and b = 1, so we
have

GE1 (Gc , C) =

(
(n − 5) (n − 6)

2
+ 0

)
· 4

5
+ (n − 4) · 3

4

+ (n − 2) · 2
3
+ (3n − 10) · 1

2

=
2
5

n2 − 89
60

n +
8
3

.

By comparing the values from all three cases above

max
(

1
3

n2 − n +
4
3

,
3
8

n2 − 35
24

n + 3,
2
5

n2 − 89
60

n +
8
3

)
we can conclude that Case 3, corresponding to the rightmost graph in Fig. 7.2
is always the biggest for n > 6, which concludes our proof.

We are now ready to state the following theorem.

Theorem 7.8. For the family Gn and |C| = 2, the following pairs (G, C) are extremal:

• if n = 3, then G = P3 with any choice of C;

• if n = 4, then G = S3 where the center of the star is in C;

• if n = 5, then G = D (5, 3) whenever C dominates G;

• if n > 6, then G = D(n, 5) with C = {p0, p3}.
Proof. In order to find an extremal pair in Gn, it is by Lemma 7.4 enough to
consider members of Tn only. We start with the small values of n. Since n > c,
we start with n = 3, where the only tree to consider is P3. It holds GE1(G, C) =
0 with any selection of C. For n = 4, we have two possible trees (see two
leftmost figures in Fig. 7.3). In the left case, GE1(S3, C) = 3

2 and in the right
case, GE1(P4, C) = 1, making S3 the only extremal graph on four vertices.

For n = 5, we have three possible trees (see three rightmost figures in Fig.
7.3). In the left case, GE1(S4, C) = 3, in the middle graph D(5, 3), we have
GE1(D(5, 3), C) = 25

6 and in the right case, it holds GE1(P5, C) = 23
6 , making

D(5, 3) the only extremal graph on five vertices.
Now assume that n > 6. We will denote C = {x, y} as maximizing pair

of vertices in a graph and let d := d(x, y). By Lemma 7.7, we can assume
that d(x, y) = 3. As stated in the same lemma, Case d(x, y) = 3, maximum
with eccentricity centralization equal to 2

5 n2− 89
60 n + 8

3 is obtained by the graph
D(n, 5).

Table 7.1 shows extremal values of group eccentricity for c = 2, and the
corresponding graphs from Tn (depending on the number of vertices n).
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S4 D(5, 3) P5

S3
P4

Figure 7.3: Two possible non-isomorphic trees on four vertices (top row) and three
possible non-isomorphic trees on five vertices (bottom row). Members of C
are emphasized.

graph size

an extremal

graph G

maximum

group

eccentricity

3 P3 0

4 S3 3/2

5 D(5, 3) 25/6

n > 6 D(n , 5) 2
5 n2 − 89

60 n + 8
3

Table 7.1: Extremal values of group eccentricity for c = 2, and the corresponding
graphs from Tn.
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Note that Theorem 7.8 does not characterize all the extremal graphs from Gn,
but only lists these from Tn.

7.5 group betweenness centralization

Everett and Borgatti [46] introduced group betweenness in the following way.
Let G be a graph and C ⊆ V(G). Let σu,v be the number of geodesics connect-
ing u to v and σu,v(C) be the number of geodesics connecting u to v passing
through some vertex of C. Then, the group betweenness centrality of C is given
by

GB(G, C) = ∑
{u,v}⊆V(G)\C

σu,v(C)
σu,v

.

For easier notation, we will sometimes write GB(C) instead of GB(G, C) (where
G is fixed) and GB(G) instead of GB(G, C) (where we assume that C is the
maximizing set among (V(G)

c ), for fixed size of group c). Note that it always
holds

max
v∈C

GB({v}) 6 GB(C) 6 ∑
v∈C

GB({v}). (7.6)

In this section, we extend group betweenness with the notion of group be-
tweenness centralization, defined in [52] and observe some of extremal-pairs,
given fixed network and group sizes.

Consider the star Sn−1 on n vertices, and let the vertex v be its center. The
betweenness centrality of any leaf is zero, therefore by (7.6) group centrality of
any C ⊂ Sn−1 is given by:

GB(Sn−1, C) =

(n−c
2 ) v ∈ C;

0 v /∈ C.
(7.7)

We will now calculate the group betweenness centralization for the group C
in the graph Sn−1. Observe, that

GB1(Sn−1) =

(
n
c

)
·
(

n− c
2

)
−
(

n− 1
c− 1

)
·
(

n− c
2

)
=

(
n− c

2

)
·
(

n− 1
c

)
. (7.8)

Clearly, the expression above is a lower bound on maximum group between-
ness centralization in Gn for given c. As we will see below, this bound is not
the best.

Definition 7.9. Let Sn,i be a graph on n vertices defined in the following way.
Consider a graph Kn−i,i, and denote a bipartition of size i with I. Then

V(Sn,i) = V(Ki,n−i) and E(Sn,i) = E(Ki,n−i) ∪ {uv | u, v ∈ I} .
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u v

Figure 7.4: Graph S6,2.

An example of Sn,i is shown in Fig. 7.4. Later we will calculate that for such a
graph there exists a group with higher group betweenness centralization than
any group in a star graph of the same size.

Proposition 7.10. The group betweenness centralization of Sn,c is given by

GB1(Sn,c) =

(
n
c

)(
n− c

2

)
−

c

∑
j=0

(
c− 1

j

)(
n− c

j

)(
n− c− j

2

)
.

Proof. For simplicity, let G := Sn,c, let C be the largest independent set in V(G),
and let C := V(Sn,c) \ C. By definition, it holds

GB1(G, C) =
(

n
c

)
GB(G, C)− ∑

C′∈(V(G)
c )

GB(G, C′)

=

(
n
c

)(
n− c

2

)
− ∑

C′∈(V(G)
c )

GB(G, C′).

Any C′ ∈ (V(G)
c ) may have some members in C, and others in C. Let j := |C′∩C|

and so c − j = |C′ ∩ C|. We will calculate GB(G, C′). Notice that (a, b)-paths,
with ab ∈ E(G) are trivial, and do not visit any vertex along the way, therefore
it is enough to consider only all (a, b)-paths for a, b ∈ C. For every chosen pair
a, b, we have σa,b = c and σa,b(C′) = c− j. Since there is precisely (n−c−j

2 ) such
pairs, we may conclude

GB(G, C′) =
(

n− c− j
2

)
· c− j

c
.

Since there are (n−c
j ) choices for a j-subset in C and ( c

c−j) choices for a (c− j)-
subset in C, we have

GB1(G, C) =
(

n
c

)(
n− c

2

)
−

c

∑
j=0

(
c

c− j

)(
n− c

j

)(
n− c− j

2

)
· c− j

c

=

(
n
c

)(
n− c

2

)
−

c

∑
j=0

(
c− 1

j

)(
n− c

j

)(
n− c− j

2

)
,

concluding our proof.
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Before we move on to the main theorem, we introduce the following triangle-
like property.

Proposition 7.11. Let G be any fixed graph on n vertices. For any three vertices
x, y, z ∈ V(G), the following bound holds

GB({x, z}) + GB({z, y}) > GB({x, y})− n + 3. (7.9)

Proof. We show that X > 0 where X := GB({x, z}) + GB({z, y}) + n − 3 −
GB({x, y}). Notice that

X = ∑
a,b∈V(G)\{x,y,z}

σa,b(x, z) + σa,b(z, y)− σa,b(x, y)
σa,b

+ ∑
a∈V(G)\{x,z}

σa,y(x, z)
σa,y

+ ∑
a∈V(G)\{z,y}

σa,x(z, y)
σa,x

+ n− 3− ∑
a∈V(G)\{x,y}

σa,z(x, y)
σa,z

> ∑
a,b∈V(G)\{x,y,z}

σa,b(x, z) + σa,b(z, y)− σa,b(x, y)
σa,b

+ n− 3− ∑
a∈V(G)\{x,y}

σa,z(x, y)
σa,z

.

Clearly, σa,b(x, z) + σa,b(z, y)− σa,b(x, y) is always positive for any distinct ver-
tices a, b, x, y, z, therefore first sum is always positive. The rightmost sum is at
most n− 3, since

∑
a∈V(G)\{x,y,z}

σa,z(x, y)
σa,z

6 ∑
a∈V(G)\{x,y,z}

1 6 n− 3.

Putting everything together, we can conclude

X = ∑
a,b∈V(G)\{x,y,z}

σa,b(x, z) + σa,b(z, y)− σa,b(x, y)
σa,b

+ ∑
a∈V(G)\{xzy}

(
σa,x(z, y)

σa,x
+

σa,y(x, z)
σa,y

)
+ n− 3− ∑

a∈V(G)\{zxy}

σa,z(x, y)
σa,z

> 0 + ∑
a∈V(G)\{x,y,z}

(
σa,x(z, y)

σa,x
+

σa,y(x, z)
σa,y

)
+ 0

> 0.
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Kn−3

x y

z

. . .

Figure 7.5: By easy observation, it holds GB ({x, y}) = n − 3 and GB ({x, z}) =
GB ({z, y}) = 0. Therefore GB ({x, y}) = GB ({x, z}) + GB ({z, y}) + n− 3.
The bound from Lemma 7.11 is tight.

To show that the bound from Proposition 7.11 is tight, we give an example of
a graph on n vertices obtained as follows. Start with the complete graph Kn−1

and denote two of its vertices by x, y. Add a new vertex z to a graph, connecting
it to x and y (see Fig. 7.5). In such an arrangement, it holds GB ({x, y}) =

n− 3 and GB ({x, z}) = GB ({z, y}) = 0. Therefore GB ({x, y}) = GB ({x, z}) +
GB ({z, y}) + n− 3 and the bound from Proposition 7.11 is tight.

Now, we are ready to give the main theorem for the group betweenness
centralization.

Theorem 7.12. Let (G, C) be an extremal-pair for the graph family Gn with c = 2.
Then,

GB1(G, C) =
(

n− 2
2

)((
n− 1

2

)
+ 2
)

.

Furthermore, the extremal value is reached at pair (Sn,2, I).

Proof. The expression (7.8) gives us a trivial lower bound GB1(C, G) > (n−1
2 )(n−2

2 ),
but we need a better lower bound. We start by showing GB1(G, C) > (n−1

2 )(n−2
2 )+

n2 − 5n + 6.
Assuming that our group is of size 2, from Proposition 7.10 it clearly follows

GB1(Sn,2, I) =
(

n− 2
2

)((
n− 1

2

)
+ 2
)

,

therefore for any extremal-pair (G, C), it holds

GB1(G, C) >
(

n− 2
2

)((
n− 1

2

)
+ 2
)

.

It remains to show, that no other pair can achieve a better score. Let (G, C)
be an extremal-pair for the graph family Gn, with c = 2 and C = {u, v}. Now,
we maximize the possible value of the expression

GB1(G, C) =
(

n
2

)
·GB(G, {u, v})− ∑

C′∈(V(G)
2 )

GB(G, C′).
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To maximize (n
2) · GB(G, {u, v}), note that in the extremal case, all shortest

paths between all pairs of vertices visit a member of C, see (7.7). Therefore
GB(C, G) 6 (n−c

2 ) for any chosen set C. To minimize ∑C′∈(V(G)
2 )

GB(G, C′), we
use Proposition 7.11.

Joining both conclusions, we get

GB1(G, C) =
(

n
2

)
·GB(G, C)− ∑

a∈V(G)\{u,v}
(GB (G, {u, a}) + GB (G, {v, a}))

−GB (G, C)− ∑
C′∈(V(G)\{u,v}

2 )

GB
(
G, C′

)
6
(

n
2

)
·GB(G, C)− (n− 2) · (GB(G, C)− n + 3)−GB(G, C)

6 GB(G, C) ·
((

n
2

)
− 1− n + 2

)
+ (n− 2)(n− 3)

6
(

n− 1
2

)(
n− 2

2

)
+ n2 − 5n + 6

=

(
n− 2

2

)((
n− 1

2

)
+ 2
)

,

which concludes the proof.

7.6 some open problems

We determined that the star is the maximizing graph for degree centralization,
which is not surprising. One would think that also for other centralization
measures, the star would be the best possible choice. To our surprise, this is
not the case. The maximum achieved value of group eccentricity centralization
for 2-sets is realized by Dandelion graphs. Stars are also not extremal graph for
betweenness centralization for c = 2. We give the following conjectures about
the structure of extremal graphs.

Conjecture 7.13. (Sn,c, C) is the extremal-pair for group betweenness centralization
of networks on n vertices and groups of size |C| = c.

Our next problem is regarding the eccentricity centralization. In particular,
we believe that the graphs of extremal-pairs are Dandelion graphs.

Conjecture 7.14. Let c 6 n
3 and let C = {p3i}c−1

i=0 , where pi are vertices of D(n, 3c−
1), as defined in Section 7.4. Then (D(n, 3c − 1), C) is an extremal-pair for group
eccentricity centralization of networks on n vertices.

Another interesting question for studying centrality indices is presented in
[48], where authors are asking, in the class of graphs with fixed maximum



7.6 some open problems 105

degree and fixed number of edges, for any extremal-pair for betweenness cen-
tralization (G, v) it holds deg(v) = ∆(G). As presented in this chapter, the
mentioned conjecture holds also for eccentricity group centralization on 2-sets,
and for degree group centralization. It is therefore natural to ask the following:

Conjecture 7.15. Let (G, C) be an extremal-pair for group eccentricity centralization
of networks on n vertices, with arbitrary size of set C. Then, there exists a member
v ∈ C, such that deg(v) = ∆(G).





8
A L G O R I T H M I C A P P R O A C H T O D E G R E E
C E N T R A L I Z AT I O N I N L A R G E N E T W O R K S

In the thesis, much has been written on centrality indices, Freeman centraliza-
tion, and group centrality concepts, see Section 3.3 on page 21, Section 3.3.2
on page 24 and Chapter 7 on page 89, respectively. The most basic centrality
measure of degree centrality is simply defined as the degree of a given node.
In this chapter, we study group centralization notion for degree centrality, i.e.
group degree centralization.

The chapter is structured as follows. In Section 8.1 we provide notations
and definitions from [84] that we use. In Section 8.2 we mathematically ana-
lyze group degree centralization problem and determine its time-complexity.
Furthermore, using a classic graph theoretical approach of double counting,
we show that the sum ∑S′∈(V(G)

k )
GD(S′, G) can be computed efficiently. In Sec-

tion 8.3, with help of a related problem k-MaxVD (see Miyano and Ono [107])
we develop an efficient greedy algorithm for finding an approximate group
with maximal degree centralization. The algorithm approximately determines
group degree centralization for all group sizes k (with 1 6 k 6 n) and alto-
gether runs in O (m + γ(G) · ∆(G)) 6 O(n2) time. We describe the procedure
in detail and provide complexity analysis of the algorithm. In Section 8.4 we
describe the experiments made on six real-world networks. We present com-
puters and datasets used and discuss the results. In the results we observe
the degree-unimodality property, which may be a new property for studying
real-world networks. In the concluding section we provide some challenges
for possible future work.

8.1 preliminaries

Let G be a graph on n vertices and m edges, and let S ⊆ V(G). According to
[46], group degree centrality is defined as

GDG(S) =

∣∣∣∣∣⋃
v∈S

N(v) \ S

∣∣∣∣∣ .

107
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For a given k, let S∗k be one of the sets from (V(G)
k ) that achieves the maximum

value of group degree centrality, i.e. GDG(S∗k ) = maxS∈(V(G)
k )

GDG(S).

According to [52, 84], GD1(S, G) stands for group degree centralization. De-
fine k := |S|, and observe

GD1(S, G) =
∑S′∈(V(G)

k )
(GDG(S)−GDG(S′))

maxH∈Gn ∑S′′∈(V(H)
k )

GDH(S∗|S|)−GD(S′′)
. (8.1)

According to Freeman [52], the denominator is needed to efficiently normalize
centralization to interval [0, 1], for better relative comparison. Clearly GD1(S, G)

is maximized whenever GD(S, G) is maximized, and from [84] we know that
the maximum value of the denominator corresponds to star graph Sn, where
an optimal set S∗k is any set containing the center of the star.

Whenever the graph G is known from the context, we omit it from the no-
tions of centrality or centralization. Denote maximizing group size dc(G) to be
the positive integer such that S∗dc(G)

achieves the maximum value of group de-

gree centralization, i.e. GD1(S∗dc(G)
, G) = maxk∈[n] GD1(S∗k , G), and also denote

S∗ := S∗dc(G)
. Let γ(G) be a cardinality of a minimum set that dominates graph

G (also known as domination number). The notation ∆(G) stands for the highest
degree of any vertex in a graph G, i.e. ∆(G) = maxv∈V(G) degG(v). A function
f is said to be unimodal if locally there is only a single highest value in f .

8.2 evaluating degree centralization

The goal of this section is to optimize the procedure of calculating group de-
gree centralization for a given graph and a constant k. We start by calculating
the denominator for group degree centralization.

Proposition 8.1. Let G be a star on n vertices with center c, and let S∗ ∈ (V(G)
k ) such

that c ∈ S∗. Then

∑
S′∈(V(G)

k )

[
GD(S∗)−GD(S′)

]
= (k + 1)

(
n− 1
k + 1

)
.

Proof. Let us partition the sets of (V(G)
k ) into two parts P1 and P2, depending

on weather or not (respectively) they include the vertex c as a member. It is
easy to see that the group degree centrality of members of these parts equals
to n− k and 1, respectively.

Consider the number of k-sets of V(G) that contain the vertex c, i.e. |P1|.
Since all such sets contain vertex c, we have yet to choose k − 1 set members
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among the remaining n− 1 vertices, therefore we have |P1| = (n−1
k−1). With the

similar argument, we get |P2| = (n−1
k ). Joining those facts, we get

∑
S′∈(V(G)

k )

[
GD(S∗, G)−GD(S′, G)

]
=

(
n
k

)
(n− k)−

(
n− 1
k− 1

)
(n− k)−

(
n− 1

k

)
= (n− k) ·

(
n− 1

k

)
−
(

n− 1
k

)
= (n− k− 1)

(
n− 1

k

)
= (k + 1) ·

(
n− 1
k + 1

)
.

In the following proposition we use a classic graph theoretical approach of
double counting to show, that the sum ∑S′∈(V(G)

k )
GD(S′, G) from (8.1) can be

computed efficiently.

Proposition 8.2. Let G be a graph on n vertices, and let k 6 n be a positive integer.
It holds that

∑
S′∈(V(G)

k )

GD(S′, G) = n ·
(

n− 1
k

)
− ∑

v∈V(G)

(
n− deg(v)− 1

k

)
.

In particular, the sum ∑S′∈(V(G)
k )

GC(S′, G) can be computed in O(n) steps.

Proof. For each vertex v ∈ V(G), define its contribution gk(v) to be the number
of k-sets that dominates v, i.e.

gk(v) =

∣∣∣∣{X ∈
(

V(G)− v
k

)
; X ∩ N(v) 6= ∅

}∣∣∣∣
=

(
n− 1

k

)
−
(

n− deg(v)− 1
k

)
.

It follows that

∑
S′∈(V(G)

k )

GD(S′, G) = ∑
v∈V(G)

gk(v)

= n ·
(

n− 1
k

)
− ∑

v∈V(G)

(
n− deg(v)− 1

k

)
, (8.2)

which can be computed in O(n) steps, traversing all vertices once.
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We join results from Propositions 8.1 and 8.2 to further develop (8.1). We can
therefore claim the following.

Theorem 8.3. For a given graph G and a group of its vertices S of size k, group degree
centralization can be evaluated as

GD1(S, G) =
(n

k) ·GD(S, G) + ∑v∈V(G) (
n−deg(v)−1

k )− n · (n−1
k )

(k + 1) · (n−1
k+1)

, (8.3)

which can be computed in O(n) steps.

It is easy to see that finding the best-possible group S∗ that maximizes group
degree centrality (and hence group degree centralization) is NP-hard.

Proposition 8.4. Suppose that you are given an input graph G and integer k. The
problem that determines a set S∗k is NP-hard.

Proof. We prove the claim by reducing the problem of finding S∗k to the exis-
tence of k-dominating set. Let us assume that there exists of polynomial algo-
rithm for finding a k-set S∗k ⊆ V(G) such that

GDG (S∗k ) = max
S∈(V(G)

k )

GDG (S) .

Now observe that the existence of k-dominating set is equivalent to the prop-
erty

GDG (S∗k ) = n− k.

As group degree centrality of a given fixed set S∗k can be computed in at most
linear time, it is clear that the set S∗k provides us with an answer of the existence
of k-dominating set, which is a well-known NP-hard problem.

In Section 8.4 we present an efficient algorithm that achieves the best possible
linear-time approximation for calculating group degree centrality scores for all
group sizes.

8.3 algorithmic approach

In this section we will present methods used to calculate an estimate of group
degree centralization for big real-world networks. We introduce a greedy algo-
rithm for finding an approximate group with maximal degree centralization,
describe it in detail and provide its complexity analysis. In the end, we briefly
discuss the approximation ratio.
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8.3.1 The algorithm

Finding the group with biggest degree centralization can be useful for many
real-world networks which can in some cases be very large (largest network
from the experiments contains 16 million edges). To calculate group degree cen-
tralization, we reduce it to k-VertexMaximumDomination (k-MaxVD, for short).
The problem k-MaxVD is a special case of MaximumCoverageProblem, that for
a positive integer k finds a subset of size k that maximizes the cardinality of
dominated vertices. By Proposition 8.4, group degree centralization cannot be
calculated in polynomial time, unless P = NP . To calculate it efficiently, we
use greedy algorithm for k-MaxVD from [107] which is a polynomial time
(1− 1/e)-approximation algorithm. Furthermore, in [107] it is proven that no
other polynomial time constant factor approximation algorithm for k-MaxVD
can have an approximation ratio better than (1− 1/e). An implementation of
procedure that calculates an approximation for the group with biggest degree
centralization, for all meaningful group sizes, is given by Algorithm 8.1. Note
that by data structure of a dictionary D we mean that D is a set of keys with
additionally defined values D [i] for each i ∈ D. In next paragraph we describe
the parts of the algorithm without going to detail; some details are included in
the paragraphs that follow later.

In the first phase of Algorithm 8.1 (throughout lines 1–12), we pre-process
our graph G′, convert it to directed graph G, and initialize the starting values
of all dictionaries and other variables. In the main loop (lines 14–28) we use
k-MaxVD greedy approach to efficiently find groups S, starting with k = 1
and increasing the group size until the graph is dominated. We first choose the
vertex v to add to our group S, and accordingly update variables S and k (lines
14–15). Then we calculate the group degree centrality for increased set S (in line
16). The actual changes in graph G are made throughout lines 18–25, where
we remove v from G, remove the in-edges attached to the out-neighbors of v
(since they just became dominated by v), and update the dictionary histogram
accordingly. Finally, in lines 26 and 27, we update some centralization variables
and calculate the Freeman centralization of the centrality from line 16. We now
present some details of how we maintain some values and graph properties.

Every time that k increases, we add some greedily chosen vertex (the one
that maximizes the contribution) to the set S and remove it from G while main-
taining some dictionaries that we use (contribution, dominated and histogram,
in particular). While the directed graph G that we work with is changing with
each iteration, notice that the original instance of the original graph G′ stays
the same throughout an algorithm. Note that we initially have deg+

G (v) =

deg−G (v) = degG′(v) for all vertices from a network. To calculate Freeman cen-
tralization, we efficiently calculate group degree centralization of all possible
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Algorithm 8.1 Finding group with maximal degree centralization

Input: a graph G′.
Output: a list centralization of group degree centralization scores, where

centralization[i] is an approximation of maxS∈(V(G)
i )

GD(S, G′).

1: n← |V(G′)|, k← 0, S← ∅ . Centrality variables initialization.
2: dominated← ∅, histogram← ∅
3: G ← {a directed instance of graph G′}
4: for all v in V(G′) do
5: add v to histogram[degG′(v)]
6: dominated[v]← False

7: centralization← ∅ . Centralization variables initialization.
8: A← 1/(n− 1)
9: C ← n/(n− 1)

10: for all i ∈ histogram do
11: sum[i]← 1/(n− 1)
12: degDistribution[i]← |histogram[i]|
13: while max(histogram) > 0 do . Main loop
14: v← any vertex from histogram with the highest contribution
15: S← S ∪ v, k← k + 1
16: centrality← centrality+contribution(v)
17: for all u ∈ N+

G (v) do
18: decreaseContribution(u)
19: for all u ∈ N−G (v) do
20: decreaseContribution(u)
21: dominated[u]← True
22: for all w ∈ N+

G (u) do
23: decreaseContribution(w)
24: E(G)← E(G)− uw

25: G ← G− v
26: updateCentralizationVariables()
27: centralization[k]← A · centrality + B− C . Computing centralization.

28: return centralization

k-sets in G′ by use of Propositions 8.1 and 8.2. Before the beginning of each
iteration of the main loop, the existence of a directed edge uv means, that

• in a initial graph G′, we have uv ∈ E(G′),

• neither of v, u is a member of S, and
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• in a initial graph G′, vertex v is not connected with any vertex from S, i.e.
v /∈ ∪v∈SN(v).

While the first two properties are trivial to prove, the third follows from Lines
23–24 of Algorithm 8.1. For any vertex v ∈ V(G) \ S, we define the contribution
of vertex v to be the value GD (S ∪ {v} , G)−GD (S, G) and observe that

GD (S ∪ {v} , G)−GD (S, G) =

deg−G (v) if v is not dominated,

deg−G (v)− 1 otherwise.

The calculation of the value contribution is done by a short function contribution
(see Algorithm 8.3). As different nodes have various contributions we define a
dictionary histogram, initialized in line 5 of Algorithm 8.1, where keys are all
possible values of contribution (for any key i, it clearly holds −1 6 i 6 ∆(G)),
while the values are unordered sets of nodes with a given contribution. While
dictionary histogram is initially indeed a degree-histogram, with each modifi-
cation of graph G and set S we carefully update it. The goal of algorithm is,
for each S, to calculate the value of (8.3). We implement this by introducing
variables A, B, C, centrality, each assigned for different part of the expression
(8.3), i.e.

GD1(S, G) =
(n

k) ·GD(S, G) + ∑v∈V(G) (
n−deg(v)−1

k )− n · (n−1
k )

(k + 1) · (n−1
k+1)

,

which may, for algorithmic purposes, be written as A · centrality + B− C, with

A =
n

(n− k) (n− k− 1)
,

centrality = GD(S, G),

B =
(n− k− 2)!
(n− 1)! ∑

v∈V(G)

(n− deg(v)− 1)!
(n− k− deg(v)− 1)!

,

C =
n

n− k− 1
.

Clearly, whenever the group S increases, also all values of A, B, C, centrality
change. To handle variable B we also introduce a dictionaries degDistribution
and sum, where keys of both are all degrees of vertices in G, and the values
are defined as

sum[i] =
(n− i− 1)!

(n− k− i− 1)!
· (n− k− 2)!

(n− 1)!
,

degDistribution[i] = number of vertices in G of degree i.
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Algorithm 8.2 Updating variables A, B, C and sum.

1: function updateCentralizationVariables

2: A← n
(n−k)(n−k−1)

3: C ← n
n−k−1

4: for all i in sum do
5: sum[i]← sum[i] · N−i−k−1

N−k−2

6: B← ∑i sum[i] · degDistribution[i]

Note that sum need to be refreshed with every change of k. We first initialize
both dictionaries before entering the main loop, and then we maintain their
values by use of a function updateCentralizationVariables (we treat these vari-
ables as global variables, therefore no parameters are needed). To avoid using
big numbers, we update the value of sum[i] by just multiplying it by (n−k−i−1)

(n−k−2) ,
whenever k increases by one. Using this, B can be calculated by a simple addi-
tion

B = ∑
i

sum[i] · degDistribution[i],

see line 6 of Algorithm 8.2.
Note that while the graph is changing and the group S is increasing, also

contributions of the remaining vertices change. While initial contribution for
some vertex v is equal its degree degG(v), during the main loop the contribu-
tion of v may incrementally decrease by one several times. We handle these
changes by defining a function decreaseContribution(v), see Algorithm 8.3.

Algorithm 8.3 Functions contribution and decreaseContribution. The former
outputs the contribution of v while the latter refreshes the dictionary histogram
whenever the contribution of node v decreases by one.

1: function contribution(v)
2: if dominated[v] then
3: return deg−G (v)− 1
4: else
5: return deg−G (v)

6: function decreaseContribution(v)
7: c← contribution(v)
8: histogram[c]← histogram[c] \ {v}
9: histogram[c− 1]← histogram[c− 1] ∪ {v}
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8.3.2 Complexity analysis

In this section, we analyze the running time complexity of Algorithm 8.1 in
terms of n, m, ∆(G) and γ′(G) := e

e−1 γ(G). First notice that both functions
from Algorithms 8.2 and 8.3 take at most O (∆ (G)) 6 O (n) and O(1), respec-
tively. Using the greedy approach from [107], in each step of the algorithm a
node with biggest contribution to the group degree centrality is added to the
group. We implement this by maintaining a sorted histogram of node contribu-
tions. Initially, the contributions to group centrality are equal to node degrees.
After each addition of a new node to the group, the histogram is accordingly
updated. The MAIN LOOP of the algorithm terminates when there is no node
with contribution greater than −1, which occurs when all the nodes are domi-
nated by the group. Note that the the number of iterations of the MAIN LOOP
is bounded to γ′(G).

It is easy to see, that throughout lines 1–10, our algorithm needs up to O(n)
steps to initialize all needed variables for the MAIN LOOP to start. By use
of the dictionary histogram, it takes constant time to greedily pick the vertex
v with biggest contribution, therefore line 12 altogether takes at most O(n)
time. Further notice that also lines 13–15 and 25 take constant time, altogether
using up to additional O(n) steps. Consider now the lines 16–23 and notice,
that a function decreaseContribution is called for each removed directed edge
precisely once (here we also consider edges removed in line 23. Furthermore,
in line 22, deleting a vertex v from a graph means removing a vertex (O(1))
and removing its adjacent edges (O (deg (v))). Since there is m edges in G,
the lines 16–23 are altogether bounded to O(m). Finally, line 24 takes con-
stant time for updating variables A and C, while both sum and B takes up to
O (∆ (G)) time to compute, altogether summing up to O (γ′(G) · ∆(G)). Sum-
ming everything, the final complexity of finding the approximation of group
degree centralization for groups of sizes 1 6 k 6 n in Algorithm 8.1 equals
O (m + γ(G) · ∆(G)) 6 O(n2). For most scale-free networks this can probably
be reduced further to O(n log n). From [107] we know that from approximation
ratio point of view, Algorithm 8.1 is the best possible polynomial approxima-
tion for group degree centralization.

8.3.3 Performance guarantee

In this section we determine the absolute performance guarantee of out algo-
rithm. Let S∗ be a set that maximizes group degree centrality in G, and let S be
our sub-optimal set, found by greedy algorithm from [107] with relative per-
formance guarantee 1− 1

e ≈ 0.632. Based on such low performance guarantee,
we do not expect our algorithm to perform well theoretically. Although the
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approximation ratio from [107] is quite bad, authors prove that it is the best
that one can attain in polynomial time.

Let us now focus on Algorithm 8.1. From expression (8.3), it follows

GD1(S∗, G) 6
(n

k) · e
e−1 GD(S, G) + ∑v∈V(G) (

n−deg(v)−1
k )− n · (n−1

k )

(k + 1) · (n−1
k+1)

=GD1(S, G) +
n ·GD(S, G)

(e− 1) (n− k) (n− k− 1)

6GD1(S, G) +
n

(e− 1) (n− k− 1)
.

Thus, the error of our approximation algorithm is bounded to n
(e−1)(n−k−1) . In

the table 8.1, the error bound is calculated for the maximal achieved group
degree centralization value in the datasets we used.

G |V(G)| GD1(S∗dc(G), G) error bound

facebook 4,039 0.905393 0.5836

cobiss 25,301 0.654997 0.4590

twitter 81,306 0.773615 0.5754

amazon 403,394 0.542647 0.4926

youtube 1,134,890 0.777639 0.7172

patents 3,923,922 0.470009 0.5925

Table 8.1: The theoretical error-bound for the experiments we did.

8.4 experiments

In this section we describe the experiments made with six real-world networks.
We present the machines and datasets used and discuss the results. In the re-
sults we observe the degree-unimodality property, which may be a new property
for studying real-world networks.

8.4.1 Datasets

Here we describe the datasets used for testing the degree centralization algo-
rithm. We used six real world networks ranging from several hundred thou-
sand up more than 16 million edges.

Facebook is the smallest dataset in experiments containing 4039 nodes and
88234 edges [92]. It is anonymized data collected by survey participants us-
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ing a Facebook application with combined ten ego networks. The dataset was
generated for study of social circles in ego networks [93]. Cobiss dataset is
a graph of scientific co-authoring of the complete national research database
in Slovenia from 1970 to 2013. Two authors are connected if they publish at
least one paper together. The graph contains 25,301 nodes and 316,587 edges.
The dataset was generated using database maintained by ARRS (Slovenian Re-
search Agency) and IZUM (Institute of Information Science, Maribor, Slovenia).
Twitter dataset contains graph of followers, with 81,306 nodes and 1,768,149

edges [92]. The dataset was collected from public sources for study of social
circles discovering study [93]. Amazon dataset is a graph of frequently co-
purchased products based on Amazon website in June, 2003 [92]. The graph
has 403,394 nodes and 3,387,388 edges and was generated for the study of vi-
ral marketing dynamics [97]. Youtube dataset contains a graph of user friend-
ship graph [92]. The graph contains 1,134,890 nodes and 2,987,624 edges. The
dataset was prepared by Mislove et al [106]. Patents dataset is a citation graph
of patents granted between 1975 and 1999 [92]. The graph contains 3,923,922

nodes (patents) and 16,522,438 edges (citations). The dataset was generated
for the purpose of graph evolution study [96], using the U.S. patent dataset
maintained by the National Bureau of Economic Research [65].

8.4.2 Environment

We implement the algorithm in C++1 and Python2 with help of the libraries
“SNAP” [94] and “SNAP.Py” [95], respectively. We run the C++ implementa-
tion of the algorithm for finding group with maximal degree centralization
on two different machines. First machine was a Windows Server 2012, with
4 AMD Opteron 6386 Processors (2.8 GHz), 512 GB RAM and Visual Studio
2013 environment. Second machine was a personal computer with 4 core 2.67

GHz Intel i7 CPU, 6 GB RAM, running on Ubuntu 14.04 LTS with GNU C++
compiler.

8.4.3 Experimental results

Figure 8.1 shows the value of centralization with different size of the group,
while Table 8.2 gives precise values about results and optimal dataset sizes.
In Cobiss (Figure 8.1b) network the maximal centralization is obtained with
relatively small group size, and after that point adding members to the group
causes drastic decreasing of centralization. Amazon (Figure 8.1d) has a sim-
ilar shape, but increasing and decreasing of centralization is less intensive.

1 https://github.com/mkarlovc/gcentralization

2 https://github.com/mkrnc/group_degree_centralization

https://github.com/mkarlovc/gcentralization
https://github.com/mkrnc/group_degree_centralization


118 algorithmic approach to degree centralization in large networks

(a) Facebook (b) Cobiss (c) Twitter

(d) Amazon (e) Youtube (f) Patents

Figure 8.1: The graphic representation of Freeman centralization of group degree cen-
trality of six networks with different sizes of groups.

In Youtube network (Figure 8.1e), relatively small group size has a high de-
gree centralization. Further increasing of group size slowly increases central-
ization, which is maximal only when the group dominates all the nodes. In
Facebook network (Figure 8.1a) the maximal centralization is also achieved
when the group dominates all the nodes. Patents network (Figure 8.1f) is sim-
ilar to Youtube, but the maximal centralization is achieved before the nodes
are dominated by the group. In Twitter (Figure 8.1c), network centralization
increases up to maximal point and then decreases with the same intensity.

Centralization is comparable between different networks. We can determine
that the biggest centralization from the networks in the experiments obtains
Facebook with values of 0.9, when the group is of size 10. This is very ex-
pectable result because the Facebook network was generated by combining 10
ego networks and the centers of the ego networks are the group members iden-
tified by our algorithm. Youtube and Twitter have relativity similar and high
maximal centrality, which is obtained with 214,003 and 803 group members
respectively. Cobiss and Amazon graphs are in the middle range of our central-
ization experiments, while the lowest maximal centrality has Patents network,
which is also the largest and the sparsest network in our experiments.

Looking at the centralization values for all networks in the experiments, with
thousands of different sizes of groups, we observed an interesting property,
that we believe is worth further discussion. Within a small error bound, the
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shape of most of plots on Figure 8.1 is unimodal, i.e. it is monotonic increasing
up to a maximizing group size, while at value dc(G) the slope starts to have
negative slope. Results of our experiments indicate that this is a property that
could hold for many real world networks.

G |V(G)| |E(G)| dc(G) GD1(S∗dc(G), G) GD(S∗dc(G), G)

facebook 4,039 88,234 10 0.905393 4029

cobiss 25,301 316,587 204 0.654997 19635

twitter 81,306 1,768,149 803 0.773615 78,811

amazon 403,394 3,387,388 12,810 0.542647 320,133

youtube 1,134,890 2,987,624 214003 0.777639 920,887

patents 3,923,922 16,522,438 464,298 0.470009 3,105,485

Table 8.2: Some statistics and centrality results from our experiments.

8.5 concluding remarks and future work

Regarding group degree centralization, various results can be found in this
chapter. We developed some mathematical optimizations and also used known
results of Miyano and Ono [107] to develop a novel algorithm for estimat-
ing group degree centralization for all group sizes. In Section 8.4 we describe
the developed algorithm and analyze its time complexity. From the theoretical
performance-guarantee point of view, the algorithm may look useless, however
it might be interesting to compare the attained error on real-world networks.
We run the algorithm on six real-world networks on various number of nodes,
ranging from few thousands to few millions and observe an interesting prop-
erty of the shape of plots on Figure 8.1, which we call the degree-unimodality
property. Out of these six networks only Patents is not unimodal although in
some sense it is “almost” unimodal. Nonetheless, we believe this is a property
of most of the real networks.

Finally, one may study if the unimodality property is satisfied for the group
centralization of some other centrality indices, such as betweenness, closeness
or eccentricity. Or, even more going out of centralization, for any “normalized”
group centrality.





9
O N T H E W I E N E R I N V E R S E I N T E RVA L P R O B L E M

The Wiener index W(G), introduced by Wiener [142], is among most known
indices for chemical networks and is defined as the sum of the lengths of
shortest paths between all pairs of vertices in G (for more motivation and
background on the Wiener index the reader is referred to Section 3.4.5 on
page 30).

As stated in Section 3.1, one of important aspects of network analysis is
describing various network descriptors, such as degree distribution, diameter,
clustering coefficient and various other structural indices. For these descriptors,
we are interested in the feasible values that various networks can achieve. Many
results in the field of network theory are actually of this type. For instance,
a famous result of Milgram [103] claiming that people in the United States
are separated by about six people on average is actually about measuring an
average distance in a network. Another example of similar type by Onnela,
Saramäki, Hyvönen, Szabó, Lazer, Kaski, Kertész, and Barabási [115] states
that in real-world network G the value of exponent γ in the expression for
expected degree P [deg (v) = k] = k−γ of any node v ∈ V(G) is between 2 and
3. In this chapter we are studying the values of the Wiener index in the family
of all connected graphs on n nodes Gn.

For a given integer k, the inverse Wiener index problem is a problem of finding
a graph G, such that W(G) = k. The problem was proposed in 1995 by Gutman
and Yeh [61], where they posed the following conjecture.

Conjecture 9.1. For all but finitely many integers w, there exist trees with Wiener
index w.

The conjecture was first checked for integers up to 1206 by Lepović and
Gutman [91], where authors found 49 integers without Wiener inverse. This
result was further extended to integers up to 108, see Ban et al. [10]. The con-
jecture was finally solved in 2006, see Wagner [136] and Wang and Yu [137].
Furthermore, Fink et al. [50] showed that every sufficiently large integer has
sub-exponentially many Wiener inverses in the family of trees. A related ques-
tion that we deal with in this section is the following:
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Problem 9.2. What value of the Wiener index can a connected graph on n vertices
have?

In relation to this one can also ask how many such values exist, how are they
distributed along the related interval or how many of them are contiguous. We
will call this problem the Wiener inverse interval problem.

9.1 basic notions

Let Gn represent the family of all connected graphs on n vertices. For integers
a and b, the notion [a, b] stands for the set containing a, b and all consecutive
integers between them. We now define the core notation for the Wiener inverse
interval problem.

Throughout this chapter we use notion of various graph families defined in
Section 2.2 on page 8, such as stars, Dandelion graphs, paths and complete
graphs. Additionally, let P(α1, . . . , αk) be the graph constructed from a copy of
Pk, with additional αi leaves added to i-th vertex of a path.

Definition 9.3. For a fixed n, we define W [Gn] to be the image of W under Gn,
i.e.

i ∈W [Gn]⇔ there is a graph G ∈ Gn such that W (G) = i.

Also, let Wint
n be the largest interval of contiguous integers, such that Wint

n ⊆
W [Gn].

The extremals of the set W [Gn] are well-known, see [145].

Proposition 9.4. For the family Gn it holds that

min (W [Gn]) =

(
n
2

)
and max (W [Gn]) =

(
n + 1

3

)
,

which are achieved at Kn and Pn, respectively.

A nice example is set W [G4], which does not miss any value between (4
2) and

(5
3).

Example 9.5. Let n = 4 and let K−4 be a graph, isomorphic to complete graph
K4 without one edge and observe that

G4 =
{

P4, S3, C4, C(4, 2), K−4 , K4
}

.

In Table 9.1 the values of Wiener index for each graph from G4 is calculated.
From Table 9.1 we deduce that W [G4] = {6, 7, 8, 9, 10}.

For the graphs with induced star, observe the following.
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graph from G4 the wiener index of a graph

P4 10

S3 9

C4 8

C(4, 2) 8

K−4 7

K4 6

Table 9.1: Values of Wiener index of the members of G4.

Observation 9.6. Let G ∈ Gn be a graph that contains k leaves adjacent to the
same neighbor. Then [

W(G)−
(

k
2

)
, W(G)

]
⊆W [Gn] .

Proof. Let v be the common neighbor and label its adjacent leaves with v1, . . . , vk.
Now iteratively add (k

2) additional edges between the leaves v1, v2, . . . , vk to G,
each time decreasing the Wiener index of G by one. This concludes the proof
of the observation.

The Wiener index for the family of Dandelion graphs is determined in the
next lemma.

Lemma 9.7. For a fixed positive integer n let a and b be two positive integers that
sum up to n. The Wiener index of a Dandelion graph can be expressed as follows

W (D (n, b)) =

(
b + 1

3

)
+

((
b + 1

2

)
− 1
)
· a + a2.

Proof. We partition all the pairs of vertices of the graph D(n, b) into three parts.
First consider the pairs that belong to the path Pb. They sum up to the Wiener
index of a path, i.e. (b+1

3 ). Now consider all the pairs from the star Sa (note that
this is a tree on a + 1 nodes and a leaves). One can deduce that

W(Sa) = 1 · a + 2 ·
(

a
2

)
= a2.

Finally, consider all the remaining pairs. Those are all of type (u, v), where u
is one of the leaves of the star, and v is one of the path-vertices, excluding the
center of the star. One can easily conclude that for each of a admissible leaves
of the star such distances sum up to (b+1

2 )− 1.
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The values of Wiener index for some relevant graph families are listed below:

W (Sn−1) = (n− 1)2

W (Kn) =

(
n
2

)
W (Pn) =

(
n + 1

3

)
W (C (n, b)) =

(
b + 1

3

)
+

((
b + 1

2

)
− 1
)
· (n− b) +

(
n− b + 1

2

)
W (D (n, b)) =

(
b + 1

3

)
+

((
b + 1

2

)
− 1
)
· (n− b) + (n− b)2 .

In the next section, we show that Wint
n is of length 1

6 n3 + O
(
n2) and that it

starts at (n
2). Consequently the same holds for W [Gn]. In the concluding section,

we discuss some other properties of W [Gn] and Wint
n and state some open

problems.

9.2 the cardinality of W int
n and W [Gn ]

By Proposition 9.4, the Wiener index of every graph on n vertices falls inside
the interval

[
(n

2) , (n+1
3 )
]

. Since (n+1
3 ) − (n

2) + 1 = 1
6 · n3 − 1

2 · n2 + 1
3 · n + 1,

it is easy to conclude the following upper-bound for
∣∣W int

n
∣∣.

Corollary 9.8. For the family Gn it holds that∣∣W int
n
∣∣ 6 |W [Gn ] | 6

1
6
· n3 − 1

2
· n2 +

1
3
· n + 1.

In lemmas that follow, we proceed by defining some intervals that are fully
contained in W [Gn ]. We then try to tile these intervals so that their union form
a bigger interval. The core part of estimating the length of W int

n is the following
lemma.

Lemma 9.9. Fix positive integers n > 7 and a1 , . . . , ak such that P(a1 , a2 , . . . , ak )

has n vertices and a1 + a2 > 2
√

n. Then

[W (P (a1 , a2 , . . . , ak )) , W (P (a1 + 1, a2 − 1, . . . , ak ))] ⊆ W [Gn ] .

Proof. For easier notation denote

G = P (a1 , a2 , . . . , ak ) ,

H = P (a1 + 1, a2 − 1, . . . , ak )

and observe that
W (H ) −W (G) = n − 2a1 − 3.



9.2 the cardinality of W int
n and W [Gn ] 125

a1

a2

(−5
2,

3
2)

n√
4n + 1− 1

Figure 9.1: A graphic representation of the inequalities a1 + a2 >
√

1 + 4n− 1 (grayed
surface) and

(
a1 +

5
2
)2

+
(
a2 − 3

2
)2

> 1
2 + 2n (dashed circle). Notice that

a1 + a2 6 n.

Depending on which of both graphs H and G had smaller Wiener index we
consider the following two cases. In both cases, we fill the space between
W (H ) and W (G) by adding at least |n − 2a1 − 3 | additional edges to one
of the graphs G or H that have bigger Wiener index, as described in Observa-
tion 9.6.

Case 1: a1 > n
2 − 3

2 . It holds that W (H) 6 W (G), hence we fill the space
between W (H) and W (G) by adding at least |n− 2a1 − 3| additional edges
to G. It is therefore enough to show that (a1

2 ) > − (n− 2a1 − 3). Indeed, since
n > 7, we have(

a1

2

)
+ n− 2a1 − 3 =

(
a1 − 5

2

)2

2
− 49

8
+ n > n− 49

8
> 0.

Case 2: a1 < n
2 − 3

2 . Now notice W (H) > W (G), hence we fill the space
between W (H) and W (G) by adding at least |n− 2a1 − 3| additional edges
to H. From the fact that a1 + a2 > 2

√
n >
√

1 + 4n− 1, it is clear that(
a1 +

5
2

)2

+

(
a2 −

3
2

)2

>
1
2
+ 2n. (9.1)
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D (n, i) −→ P (1, n− i− 2, 0, . . . , 0)

−→ P (2, n− i− 3, 0, . . . , 0)
...

−→ D (n, i + 1)

Figure 9.2: The schema that describes the key graphs in the process of generating an
interval Wint

n . The gap between any two graphs on the schema is filled
by adding additional edges, as described in Observation 9.6. Note that all
graphs on the figure are members of Gn.

The same can be also observed on Figure 9.1, where the inequality (9.1) is
drawn. Again, it is enough to show that (a1+1

2 ) + (a2−1
2 ) > n − 2a1 − 3. By in-

equality (9.1) and since a1 > 0, n > 8, we conclude(
a1 + 1

2

)
+

(
a2 − 1

2

)
− (n− 2a1 − 3)

=

(
a1 +

5
2

)2
+
(
a2 − 3

2

)2

2
− 1

4
− n > 0.

With the tools provided, we now state the main result, where we iteratively
transform our graph by a scheme, provided on Figure 9.2. Note that on each
step, coming from graph G to G′, Lemma 9.9 guarantees that all integers from
[W(G), W(G′)] are members of W [Gn]. We will use this schema to create a
collection of intersecting intervals from W [Gn], which will be the building-
blocks of Wint

n . Recall the Lemma 9.7 and define a function f : R×R → R

such that

f (n, b) =

(
b + 1

3

)
+

((
b + 1

2

)
− 1
)
· (n− b) + (n− b)2

=
1
2

b2n− 1
3

b3 +
1
2

b2 − 3
2

bn +
5
6

b + n2 − n.

Now, consider the following bound.

Lemma 9.10. It holds that

W
(

D
(
n,
⌊
n− 2

√
n− 1

⌋))
>

1
6

n3 − 2 n2 − 1
3

n
3
2 +

35
6

n +
7
3
√

n.
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Proof. Let p ∈ (0, 1] be a real number, such that
⌊
n− 2

√
n− 1

⌋
= n− 2

√
n−

2 + p. By substituting b with n− 2
√

n− 2 + p in f (n, b), we get

f
(
n, n− 2

√
n− 2 + p

)
=

1
6

n3 − 2 n2 +

(
2p− 1

3

)
n

3
2 +

(
53
6
− 1

2
p2 − 5

2
p
)

n

+

(
31
3

+ 2p2 − 10p
) √

n + 3− 1
3

p3 +
5
2

p2 − 31
6

p

>
1
6

n3 − 2 n2 − 1
3

n
3
2 +

35
6

n +
7
3
√

n,

as claimed.

We are now ready to state the main result.

Theorem 9.11. Let Wint
n = [a, b] be a largest interval of contiguous integers such that

Wint
n ⊆W [Gn]. Then, it holds

a =

(
n
2

)
and b >

1
6

n3 − 5
2

n2 + O
(

n3/2
)

.

In particular,
∣∣Wint

n
∣∣ = 1

6 n3 + O
(
n2).

Proof. We prove the theorem by using Lemma 9.9, which provides us with a
collection of intervals [W (D (n, i)) , W (D (n, i + 1))] for i ∈

[
1,
⌊
n− 2

√
n− 1

⌋]
,

see Figure 9.2.
First, consider the left end of the interval with i = 1. By iteratively adding

the edges, we can easily extend the left end from W(D(n, 1)) = (n − 1)2 to
W(Kn) = (n

2). Since by Claim 9.4, (n
2) is the minimum of W [Gn], we cannot

improve the lower-bound of this interval any further.
Now, consider the right part of the interval and calculate the lower bound of

W (D (n, k)) with k =
⌊

n−
√

2n− 1
⌋

. Using Lemmas 9.7 and 9.10, we have

W
(

D
(
n,
⌊
n− 2

√
n− 1

⌋))
>

1
6

n3 − 2 n2 − 1
3

n
3
2 +

35
6

n +
7
3
√

n.

From this, we subtract the left-end of the interval, and obtain a lower-bound of
the cardinality of Wint

n , i.e.

∣∣Wint
n
∣∣ >

1
6

n3 − 2 n2 − 1
3

n
3
2 +

35
6

n +
7
3
√

n−
(

n
2

)
=

1
6

n3 − 5
2

n2 − 1
3

n
3
2 +

19
3

n +
7
3
√

n, (9.2)

which concludes the proof of our theorem.

The following corollary clearly follows.
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Corollary 9.12. Let W [Gn] be an image of a Wiener index function on the set Gn.
Then

|W [Gn]| =
1
6

n3 + O
(
n2) .

Let us also note that whenever n > 25 the lower bound from (9.2) is always
always greater than a half of our trivial upper-bound form Corollary 9.8, which
also implies uniqueness of the observed interval for n > 25.

9.3 concluding remarks and further work

From Example 9.5, we observed that W [G4] = Wint
4 =

[
(4

2), (
5
3)
]
. Similarly,

one can easily check that also for other values of n 6 4 it holds that W [Gn] =

Wint
n =

[
(n

2), (
n+1

3 )
]
. When estimating the cardinality of Wint

n , one could improve
the final result from (9.2) by precisely calculating the gap that we made with an
inequality from (9.1). Also, one could improve the cardinality of W [Gn] by ad-
dressing the fact that the intervals of type

[
W (D (n, i))− (n−i

2 ), W (D (n, i))
]
∈

W [Gn] are disjoint inside the area of red-dashed circle from Figure 9.1. Sum-
ming these would increase the lower bound of cardinality of W [Gn]. One impli-
cation of these optimizations may be the proof of uniqueness also for n 6 24.

Conjecture 9.13. Let n be a positive integer. Interval Wint
n is unique and starts at (n

2).

The complementary question we are interested in is also the cardinality of[
(n

2), (
n+1

3 )
]
\W [Gn]. Notice, that the cardinality of

[
(n

2), (
n+1

3 )
]
\W [Gn] is at

least linear, since the gap between the two graphs in Gn with highest Wiener
index equals n − 4 (for n > 4). We believe that the number of values W [Gn]
misses is indeed linear, hence the following conjecture.

Conjecture 9.14. The cardinality of W [Gn] is of order 1
6 n3 − 1

2 n2 + Θ(n).

Among other generalizations one could also answer similar questions on the
family of all trees on n vertices. For a fixed n, we define W [Tn] to be the image
of W under Tn, i.e.

i ∈W [Tn]⇔ there is a graph G ∈ Tn such that W (G) = i.

We conjecture the following.

Conjecture 9.15. The cardinality of W [Tn] equals 1
6 n3 + Θ

(
n2).

Conjecture 9.16. In the family of Tn, the cardinality of Wint
n equals Θ

(
n3).
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F U T U R E W O R K

In this chapter, we point out some of interesting open problems and briefly
present additional work in progress on betweenness centralization. We further
discuss some of the results from previous chapters, and summarize conjectures
on the extremal graphs for Freeman centralization.

10.1 max-degree property

An interesting question for studying centrality indices is presented in [48],
where authors are asking the following.

Problem 10.1. In the class of graphs with fixed maximum degree ∆(G) and
fixed number of edges, is it true that for any extremal-pair (G, v) for between-
ness centralization it holds deg(v) = ∆(G)?

While the question above will be further discussed later, one may similarly
inspect if a vertex from an extremal pair for some other family of graph (and
other centrality index) is of highest degree. Furthermore, for group centrality
measures one can ask if all maximizing sets contain a vertex of maximum
degree. As presented in the thesis, the mentioned property holds

• for most centralities (betweenness, degree, closeness, eccentricity) for the
family Gn,

• for most centralizations (betweenness, degree, closeness, eccentricity) for
the family Gn,

• for most centralizations (betweenness, degree, closeness, eccentricity) for
the family B(n0, n1),

• for degree group centralization for the family Gn, on any size of the set,

• for eccentricity group centralization on 2-sets, for the family Gn.

129
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In particular, we know that in Gn, for any extremal pair (G, v) for betweenness
centralization, it holds degG (v) = ∆(G). However, this does not answer the
question above. Let us briefly present the work in progress, that partly gives
answer to the Problem 10.1.

10.2 betweenness centralization

Let us recall that B1(v, G) stands for betweenness centralization, see Defini-
tion 3.11 on page 29. In real social networks, nodes often have a (natural
or enforced) maximum number of connections. It is, therefore, interesting to
consider the problem of maximizing betweenness centralization in classes of
graphs where we impose an upper bound on the maximum degree. Let

H(∆, m) := {G : |E(G)| = m and 1 6 deg(v) 6 ∆ for every v ∈ V(G)} ,

be the class of graphs on exactly m edges and maximum degree at most ∆
that contain no isolated vertices. Observe that the extra condition regarding
isolated vertices is necessary as one can artificially inflate the betweenness
centralization index by adding dummy nodes.

The following has been conjectured in [48]:

Conjecture 10.2. For fixed integers m and ∆, let (G∗, v∗) be the optimizers of

max
G∈H

max
v∈G

B1(v; G).

Then degG∗(v
∗) = ∆.

Conjecture 10.3. Let H∗∆,m be the minimizer of minG∈H(∆,m) W(G) and let (G∗∆,m, v∗)
be the optimizers of

max
G∈H(∆,m)

max
v∈V(G)

B(v; G).

Then G∗∆,m can be constructed by taking S∆ and identifying all leaves with any vertex
of graph H∗

∆, m−∆
∆

.

We now briefly outline the work in progress and the partial results related
to Conjecture 10.2.

We can prove that if m > n log n, the conjecture holds. We do this by finding
an upper bound on B(v) for a vertex of degree at most ∆− 1 and exhibiting a
graph (actually, a tree) which contains a vertex that exceeds this bound.

The upper bound is attained by using Turán’s theorem [133] as an upper
bound on the cutting number of a vertex. Using some known bounds on
Turán’s numbers tk(n), this results in the proof of the following lemma.
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Figure 10.1: An example of a tree T∗ with n = 46 and ∆ = 3.

Lemma 10.4. Let G be a graph on n vertices and let v ∈ V(G) be a vertex of degree
k. Then,

B(v; G) 6 tk(n− 1) 6
(n− 1)2

2

(
1− 1

k

)
.

In terms of Freeman centralization, we therefore have the following bound.

Corollary 10.5. Let G ∈ H(∆, m) and let v ∈ G with degG(v) = k < ∆. Then

B1(v; G) 6 n · B(v; G) <
n3

2

(
1− 1

k

)
6

n3

2

(
1− 1

∆− 1

)
.

Next, we construct a rooted tree, T∗, and estimate the betweenness central-
ization index of its root to provide a lower bound on the value of betweenness
centralization. The tree T∗ is a balanced tree with almost all vertices of degree
either ∆ or 1, see example on Figure 10.1, with n = 46 and ∆ = 3. We then show
that, in most cases (unless m− n is “small”), this constructive lower bound is
greater than the above obtained upper bound. Specifically, with help of the tree
from Figure 10.1, we prove the following lemma.

Lemma 10.6. It holds that

max
G∈H(∆,m)

max
v∈V(G)

B1(v; G) >
m3

2

(
1− 1

∆

)
−m2 log m.

If (G∗, v∗) is an optimizer for maxG∈H(∆,m) maxv∈V(G) B1(v; G), and suppos-
ing that deg(v∗) < ∆, then it clearly follows

n3

2

(
1− 1

∆− 1

)
> B1(v∗, G∗) >

m3

2

(
1− 1

∆

)
−m2 log m

n3 > m3 − 2m2 log m. (10.1)

If ∆ 6 3, or if n < 6, this is not strictly true. However, for these cases the
conjecture can be easily checked by hand. It follows that ( 10.1) gives a desired
contradiction in most of the cases, in particular, whenever m > n log n.

In order to prove the conjecture, one need to take care of the cases where
n ≈ m, or improve the bounds from the above lemmas.

In next section we discuss some of the other conjectures from Chapters 4 on
page 35– 7 on page 89.
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the family Gn the family B (n0 , n1 )

Degree Freeman [1979] Borgatti and Everett [1997]

Closeness Everett et al. [2004] Theorem 4.3 on page 40

Eccentricity Proposition 5.5 on page 60 Theorem 5.3 on page 58

Betweenness Freeman [1979] Sinclair [2005]

Transmission Theorem 6.8 on page 81 ?

Table 10.1: The list of results on extremal network for Freeman centralization of some
centrality indices. Note that Theorem 5.3 only describe the acyclic extremal
graphs for eccentricity centralization.

10.3 concluding remarks

The reader can notice that most of our results are focused towards Freeman
centralization of some well-known centrality indices, such as degree, between-
ness, eccentricity, closeness and transmission. For these indices, we tried to
determine networks that maximize or in some cases minimize the Freeman
centralization. For the family of Gn (all connected networks on n nodes) and
the family of B(n0, n1) (all two-mode networks on fixed bipartition sizes n0

and n1) some results on extremal networks are summarized in Table 10.1 (note
that Gn represents the family of all connected networks on n vertices, while B

is the family of all connected bipartite graphs with fixed bipartition sizes).
In addition to the results above, in thesis we also describe

• (some) networks that maximize the value of eccentricity centralization
for networks with fixed maximum degree and fixed number of vertices,

• networks that maximize the value of eccentricity centralization for net-
works with fixed number of edges,

• networks that minimize the value of transmission centralization for Gn,

• (some) networks that maximize the value of group eccentricity centraliza-
tion (for groups of size two), for Gn,

• networks that maximize the value of group betweenness centralization
(for groups of size two), for Gn, and

• networks that maximize the value of group degree centralization in Gn

(for arbitrary size of the group).

We are aware that our analysis for extremal graphs in Freeman centralization is
just a small portion of centrality research area. One of the aims of our research
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centrality index conjectured

resulting

extremal graph

class of

graphs

ref .

Group betweenness centralization
with groups of sizes k.

Sn−k,k
(definition on

page 100)

Gn [84]

Group eccentricity centralization
with groups of sizes k 6 n

3 .
D(n, 3c− 1)

(definition on page 10)
Gn [84]

Eigenvalue centralization (see
Section 3.4.6 on page 32)

H(·, n0, n1)

(definition on page 11)
B(n0, n1) [48]

Betweenness centralization G∗∆,m
(definition on

page 130)

H(∆, m) [48]

Table 10.2: A partial list of open conjectures on the extremal graphs for Freeman cen-
tralization.

is to provide some additional insight on the fundamental differences between
various types of centrality. Let us also note that there remain quite some open
problems in this specific field of characterizing extremal graphs. Some of these
are summarized on Table 10.2.
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B
R A Z Š I R J E N I P O V Z E T E K V S L O V E N Š Č I N I

Socialna omrežja so že več desetletij predmet raziskav na različnih raziskoval-
nih področjih. Ob močni rasti internetnega omrežja v preteklih letih so se pojav-
ila mnoga spletna socialna omrežja (na primer Facebook, Linkedin, Google+),
poleg tega pa so postali dostopni podatki o drugih velikih omrežjih, kot je npr.
omrežje soavtorstva člankov [109, 110, 118, 43].

Socialna omrežja ponavadi predstavimo z grafom, kjer so individualni ljudje
predstavljeni kot vozlišča, razmerja med določenimi pari pa kot povezave v
grafu. V večini omrežij so nekatera vozlišča ali povezave pomembnejša od
drugih, zato je centralnost (ali centralnost skupine) pomemben koncept v razisko-
vanju teh socialnih omrežij [113, 52]. Glede na različne vrste omrežij ter njihovo
uporabo je bilo definiranih več različnih centralnostnih indeksov. Med najbolj
razširjene sodijo stopnja točke, vmesnostna centralnost, bližinska centralnost
ter ekscentričnost. Poleg teh v disertaciji analiziramo še nekatere druge struk-
turne indekse, kot so Wienerjev indeks ter totalna razdalja. Vsi ti so definirani
v razdelku 3.4 na strani 25.

Centralnostni indeksi skupin, vpeljani l. 1999 (Everett in Borgatti [46]), me-
rijo pomembnost izbrane množice vozlišč v omrežju. Glede na vsako izmed
razširjenih centralnostnih mer, lahko definiramo pripadajočo skupinsko cen-
tralnost. Več o tem si lahko preberemo v 7. poglavju na strani 89.

Naj omenimo še koncept Freemanove centralizacije [52], ki nam omogoča, da
za izbrani strukturni indeks merimo relativno pomembnost znotraj omrežja, ki
je primerljiva z rezultati iz drugih omrežij (več o tem v razdelku 3.3.2 na strani
24. Centralizacija strukturnega indeksa X je definirana kot

X1(v, G) := ∑
u∈V(G)

[
X(v)− X(u)

]
.

Disertacija je razdeljena v dva dela. V prvem delu se osredotočimo na ključne
vsebine iz teorije grafov ter analize omrežij ter te zaporedoma predstavimo v
2. in 3. poglavju. Tu so med drugim definirani vsi zgoraj našteti strukturni in-
deksi, ter relevantne družine grafov, ki se pojavljajo v nadaljevanju. V drugem
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Figure B.1: Zvezda Sn na 13 vozliščih.

delu, tj. v poglavjih 4–10, predstavimo ključne rezultate v zvezi z zgoraj našte-
timi strukturnimi indeksi.

Med področji, ki so nas zanimala, je tudi vprašanje iskanja grafov, ki mak-
simizirajo doseženo vrednost centralizacije nekega centralnostnega indeksa (t.
i. ekstremalni grafi). Nekatere odprte hipoteze ter relevantne članke iz te teme
lahko najdemo v Freeman [52], Borgatti and Everett [21], Everett and Borgatti
[46], Sinclair [128], Everett et al. [48], Sinclair [129], Butts [28], Bell [17]. V
[48] avtorji pokažejo, da je graf H(v, n0, n1) (za definicijo glej razdelek 2.2 na
strani 11) ekstremalni graf za centralizacijo vmesnostnega centralnostnega in-
deksa za družino povezanih dvodelnih grafov s fiksno velikostjo obeh biparti-
cij. Hkrati avtorji domnevajo, da je isti graf ekstremalen tudi za centralizacijo
bližine ter lastnih vektorjev. V poglavjih 4–6 razrešimo nekaj vprašanj o ek-
stremalnih grafih za centralizacijo bližine, ekscentričnost ter totalno razdaljo.

bližinska centralnost dvodelnih omrežij

V 4. poglavju se osredotočimo na ekstremalne grafe za centralnost bližine, ki
meri, kako blizu je neko vozlišče v skupni razdalji do vseh ostalih vozlišč,
natančneje

CG(v) :=
1

∑u∈V(G) dG(v, u)
.

Centralizacija bližine je definirana kot

C1(v, G) := ∑
u∈V(G)

[
C(v)− C(u)

]
.

Graf zvezda Sn−1, kot je definiran v [134], je drevo na n točkah, kjer ima eno
vozlišče stopnjo n− 1, vsa ostala vozlišča pa so listi (glej sliko B.1). Med vsemi
povezanimi grafi na n vozliščih Gn je bližinska centralizacija maksimizirana
prav v zvezdi.
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Izrek 4.1 (stran 36). Naj bo G omrežje na n vozliščih. Potem velja

C1(u; Sn−1) > C1(G),

kjer je u vozlišče z maksimalno stopnjo v grafu Sn−1.

V 4. poglavju potrdimo domnevo avtorjev Everett, Sinclair in Dankelmann [48]
glede maksimiziranja bližinske centralizacije v dvodelnih omrežjih s podanimi
velikostmi biparticij. Trdimo, da je največja vrednost centralizacije bližine (med
vsemi dvodelnimi omrežji) dosežena, če lokalno maksimiziramo bližinsko cen-
tralnost v neki točki. Izkaže se, da je ekstremalna konfiguracija dosežena v
korenskem drevesu globine 2, z dodatnim pogojem, da imajo vsi sosedje od
korena skoraj enako stopnjo.

Izrek 4.3 (stran 40). Naj bo G dvodelno omrežje z biparticijama A0 ter A1, zapore-
doma velikosti n0 ter n1. Potem, za v ∈ A0, velja

C1(u; H(u; n0, n1)) > C1(v; G).

ekscentričnost omrežij s strukturnimi omejitvami

Ekscentričnost eG(v) vozlišča v ∈ V(G) v povezanem omrežju G je maksimalna
razdalja med u in v, kjer je u poljubno vozlišče v G, formalno

eG(v) := max
{

dG(v, u) : (u, v) ∈ V(G)2} ∈N∪ {∞}.

V 5. poglavju med drugim določimo maksimizirajočo vrednost ekscentrične
centralizacije ter najdemo nekaj maksimizirajočih omrežij za različne družine
grafov. Označimo z B(n0, n1) družino vseh povezanih dvodelnih grafov z bi-
particijama velikosti n0 ter n1, z Tn pa družino vseh dreves na n točkah. V dis-
ertaciji najprej pokažemo, da se med ekstremalnimi grafi v družini B(n0, n1)

vedno nahajajo tudi drevesa, ki jih v spodnjem izreku tudi karakteriziramo.

Izrek 5.3 (stran 58). Naj velja n0 > n1 > 2. Potem so grafi v B(n0, n1)
∗ ∩ Tn0+n1

natanko drevesa iz B(n0, n1) z diametrom 4.

Za družino vseh povezanih grafov na n vozliščih Gn ter povezanih grafov na
m povezavah Gm naj omenimo spodnja nekoliko preprostejša rezultata.

Trditev 5.5 (stran 60). Naj bo n > 2, G ∈ Gn ter v ∈ V(G). Potem je E1(G, v) 6
n−1

2 , kjer velja enakost natanko tedaj, ko je v edino vozlišče stopnje n− 1.
Od tod hitro sledi naslednja posledica, ki določi zvezdo za edini ekstremalni

graf družine Gm.
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Figure B.2: Primer S-enumeracije drevesa s z maksimalno stopnjo 4, diametrom 8 ter
16 vozlišči.

Posledica 5.6 (stran 60). Če velja m > 2, tedaj je E∗1(Gm) =
m
2 ter G∗m = {Sm}.

Med drugim v podrazdelku 5.4.1 na strani 62 opišemo tudi nov način enu-
meracije vozlišč v poljubnem drevesu. Posebne lastnosti te enumeracije med
drugim omogočijo enostavnejšo karakterizacijo nekaterih ekstremalnih grafov,
ki jih omenimo kasneje.

Spodaj podajamo algoritmični postopek enumeracije vseh vozlišč nekega
drevesa T ∈ Tn z diametrom d. Za koren drevesa vzemimo neko mediansko vo-
zlišče. Enumeraciji omenjenega drevesa T pravimo S-enumeracija, če jo lahko
generiramo s spodnjim postopkom:

• Za začetek vzemimo diametralno pot v T ter označimo pripadajoča vo-
zlišča zaporedoma s števili 0, . . . , d.

• Od sedaj naprej bomo označevali le vozlišča, katerih starši so že označeni.
Izvedimo naslednjo zanko, pri kateri je vrednost spremenljivke i zapore-
doma med 1 ter bd/2c. V vsaki iteraciji ločeno izvedimo spodnji dve
zanki:

1. Vsakega neoznačenega otroka v, katerega starš je označen z i, ter nje-
govo poddrevo, oštevilčimo zaporedoma glede na algoritem iskanja
v globino.

2. Vsakega neoznačenega otroka v, katerega starš je označen z d − i,
ter njegovo poddrevo, oštevilčimo zaporedoma glede na algoritem
iskanja v globino.
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Opazimo lahko, da takšna enumeracija ni enolično določena, saj je nedeter-
minističen že algoritem iskanja v globino, odvisna pa je tudi od izbire diame-
tralne poti. Slika B.2 predstavlja primer S-enumeracije drevesa z maksimalno
stopnjo 4, diametrom 8 ter 16 vozlišči.

Da lahko zapišemo izrek, ki karakterizira ekstremalne grafe za družino dre-
ves fiksne velikosti n s podano maksimalno stopnjo ∆, potrebujemo nekaj do-
datnih definicij. Za drevo T na n vozliščih s sodim diametrom 2k, ki je koren-
jeno v svoji mediani m, pravimo, da je ekvivalentno z drevesom T′, če lahko
slednjega dobimo s “prerazporeditvijo” poddreves, korenjenih na neki fiksni
razdalji od m, pri čemer ostaneta tako maksimalna stopnja kot diameter ne-
spremenjena (natančno definicijo omenjene ekvivalenčne relacije najdemo na
strani 62).

Za pozitivna števila ∆, k ter n > max{∆ + 1, 2k} naj F∆,k predstavlja tako
drevo z maksimalno stopnjo ∆ ter diametrom 2k, ki maksimizira število vozlišč,
ter naj bo F∆,k(n) (enolično) poddrevo S-enumeracije drevesa F∆,k, inducirano
na vozliščih, označenih z {0, . . . , n − 1}. Naj F∆,k(n) označuje družino vseh
dreves, ki so ekvivalentna z F∆,k(n).

Ekstremalne grafe za družino dreves fiksne velikosti n s podano maksimalno
stopnjo ∆ karakteriziramo v naslednjem izreku.

Izrek 5.8 (stran 63). Naj bosta ∆ ter n celi števili, tako da 3 6 ∆ 6 n− 3. Potem je

T ∗
n,∆ = F∆,k(n,∆)(n),

kjer velja k(n, ∆) =
⌈
log∆−1

(
(n− 1) · ∆−2

∆ + 1
)⌉

.

Ekstremalna drevesa seveda dosežejo največjo vrednost centralizacije ekscen-
tričnosti v medianskem vozlišču, ki pa ni nujno stopnje ∆.

centralizacija totalne razdalje

Totalna razdalja vozlišča v je enaka vsoti vseh razdalj med v ter vsemi drugimi
vozlišči v omrežju. Pri analizi centralizacije totalne razdalje v 6. poglavju dolo-
čimo grafe na n točkah, ki dosežejo maksimalno ter minimalno vrednost le-tega
indeksa. Izkaže se, da so maksimizirajoči grafi sestavljeni iz poti, ki je na enem
koncu identificirana s kliko podobne velikosti. Te grafe natančneje opišemo v
naslednji definiciji.

Definicija 6.5 (stran 78). Za pozitivna cela števila a, b ter c 6 b, naj PK(a, b, c)
predstavlja povezan graf na a + b vozliščih, sestavljen iz poti Pa ter klike Kb,
tako da je eno krajišče omenjene poti povezano s c vozlišči klike Kb. Graf
PK(a, b, c) tako vsebuje a − 1 + (b

2) + c povezav. Dva primera lahko najdemo
na sliki B.3.
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PK(2, 2, 1) PK(2, 2, 2)

Figure B.3: Primera grafov PK(2, 2, 1) ter PK(2, 2, 2).

S pomočjo zgornje definicije formuliramo naslednji izrek.

Izrek 6.8 (stran 81). Grafi, ki v družini Gn maksimizirajo centralizacijo totalne raz-
dalje, so izomorfni grafu

• PK
( n

2 , n
2 , i
)
, če je n sodo število, pri čemer velja 1 6 i 6 n

2 , ter

• PK
(⌊ n

2

⌋
,
⌈ n

2

⌉
, 1
)
, če je n liho število.

V razdelku 6.3 pokažemo, da so grafi, ki minimizirajo centralizacijo totalne
razdalje, sestavljeni iz treh poti podobne velikosti, ki imajo eno krajišče identi-
ficirano v skupni točki. Te grafe opišemo v naslednji definiciji. Naj P(α1, α2, α3)

predstavlja drevo na 1 + α1 + α2 + α3 vozliščih, sestavljeno iz treh poti Pα1 , Pα2 ,
Pα3 , tako da je eno vsakega krajišča teh poti povezano z dodatnim vozliščem
stopnje 3.

Izrek 6.12 (stran 86). Naj velja n > 9 ter naj bodo α1 6 α2 6 α3 pozitivna cela
števila, tako da α1 + α2 + α3 = n− 1 ter α3− α1 6 1. Potem so grafi, ki minimizirajo
centralizacijo totalne razdalje v družini Gn, izomorfni grafu P (α1, α2, α3).

skupinska centralizacija omrežnih indeksov

Centralnostni indeksi skupin, vpeljani l. 1999 (Everett in Borgatti [46]), merijo
pomembnost izbrane množice vozlišč v omrežju. V 7. poglavju preučujemo
skupinske indekse centralizacije ekscentričnosti, stopnje, ter vmesnostne cen-
tralnosti, glede na neko skupino vozlišč, velikosti k.

Za centralnostne indekse določimo nekatere ekstremalne grafe, ki dosežejo
maksimalno vrednost centralizacije skupine. Za skupinsko centralizacijo stop-
nje v spodnjem izreku določimo, da je edini ekstremalni graf izomorfen zvezdi
Sn−1.

Izrek 7.2 (stran 92). V družini Gn doseže zvezda Sn−1 maksimalno vrednost skupinske
centralizacije stopnje, ne glede na velikost skupine k.

V nadaljevanju se osredotočimo na skupinsko centralizacijo parov točk, torej
k = 2. Tu določimo največje dosežene vrednosti skupinske ekscentričnosti ter
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skupinske vmesnostne centralnosti, hkrati pa določimo tudi nekatere pripada-
joče ekstremalne grafe.

Izrek 7.8 (stran 98). Naj bo G ∈ Gn graf, ki doseže maksimalno vrednost skupinske
centralizacije ekscentričnosti, pri velikosti skupine k = 2. Potem pri pravilno izbrani
dvojici vozlišč C velja:

• za n = 3 velja G ' P3, ne glede na izbor C,

• za n = 4 velja G ' S3, če je mediana m ∈ C,

• za n = 5 velja G ' D (5, 3), če le C dominira G,

• za n > 6 velja G = D(n, 5), če C = {p0, p3}.

Naj bo Trn ∈ Gn graf na n vozliščih, ki vsebuje natanko n− 2 različnih trikot-
nikov, ki pa si vsi delijo eno povezavo. Za skupinsko vmesnostno centralizacijo
pri k = 2 dokažemo naslednje.

Izrek 7.12 (stran 103). V družini Gn je največja vrednost skupinske vmesnostne cen-
tralizacije, pri velikosti skupine k = 2, dosežena v grafu Trn.

algoritmični pristop k skupinski centralizaciji stopnje

Na problem določanja najboljše skupine v smislu skupinske centralizacije stop-
nje pri podanem omrežju G se osredotočimo tudi algoritmično. Pri podani
velikosti skupine k problem zajema iskanje take množice vozlišč velikosti k,
ki maksimizira skupinsko centralnost stopnje, ter nato računanje Freemanove
centralizacije za to skupino, glede na skupinsko centralnost vseh ostalih skupin
enake velikosti.

Prvi del omenjenega problema jeNP-težak, kar lahko opazimo, če ga prevedemo
na problem maksimalne k-dominacije [107].

Trditev 8.4 (stran 110). Naj bo G vhodni graf na n vozliščih, ter naj bo k < n pozi-
tivno celo število. Problem, ki določi podmnožico S ∈ (V(G)

k ), ki maksimizira skupinsko
centralnost stopnje je NP-težak.

Za drugi del problema (tj. računanje Freemanove centralizacije za podano
množico vozlišč, glede na centralnost vseh ostalih k-teric) dokažemo, da se
lahko izračuna v linearnem času.

Izrek 8.3 (stran 110). Naj bo G vhodni graf na n vozliščih, naj bo k < n pozitivno
celo število, ter naj bo S podana množica vozlišč velikosti k. Potem je skupinska cen-
tralizacija stopnje GD1(S, G) enaka

GD1(S, G) =
(n

k) ·GD(S, G) + ∑v∈V(G) (
n−deg(v)−1

k )− n · (n−1
k )

(k + 1) · (n−1
k+1)

,
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(a) Facebook (b) Cobiss (c) Twitter

(d) Amazon (e) Youtube (f) Patents

Figure B.4: Grafična predstavitev Freemanove centralizacije skupinske centralnosti
stopnje za šest omrežij različnih velikosti.

kar je izračunljivo v O(n) korakih.

Glavni rezultat poglavja je polinomski algoritem (glej stran 112) z najboljšim
možnim aproksimacijskim koeficientom, ki za vse smiselne velikosti k izračuna
aproksimacijo centralizacijskih vrednosti v skupni časovni zahtevnosti O(m +

γ(G) · ∆(G)) 6 O(n2). Omenjeni algoritem testiramo na šestih realnih om-
režjih. Nekaj rezultatov je prikazanih v tabeli B.1. V rezultatih na sliki B.4 pri
večini omrežij opazimo lastnost unimodalnosti (za parameter k), ki se lahko
uporabi kot novi deskriptor za preučevanje velikih omrežij.

G |V(G)| |E(G)| dc(G) GD1(S∗dc(G), G) GD(S∗dc(G), G)

facebook 4,039 88,234 10 0.905393 4,029

cobiss 25,301 316,587 204 0.654997 19,635

twitter 81,306 1,768,149 803 0.773615 78,811

amazon 403,394 3,387,388 12,810 0.542647 320,133

youtube 1,134,890 2,987,624 214003 0.777639 920,887

patents 3,923,922 16,522,438 464,298 0.470009 3,105,485

Table B.1: Nekaj statističnih podatkov iz analiziranih realnih mrež.
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o intervalu wienerjevega indeksa

Wienerjev indeks W(G) grafa G je enak vsoti razdalj med vsemi pari vozlišč
v G. Z W [Gn] označimo množico vseh vrednosti Wienerjevega indeksa za
družino povezanih omrežij na n vozliščih, pri čemer največji neprekinjen inter-
val iz W [Gn] označimo z Wint

n . Iz spodnje trditve sledi, da je trivialna zgornja
meja velikosti obeh intervalov enaka kvečjemu (n+1

3 )− (n
2) + 1.

Trditev 9.4 (stran 122). Za družino Gn velja

min (W [Gn]) =

(
n
2

)
ter max (W [Gn]) =

(
n + 1

3

)
.

Spodnja in zgornja meja sta zaporedoma doseženi v Kn ter Pn.

V 9. poglavju pokažemo, da je Wint
n smiselno definiran ter se, za n > 25,

začne v vrednosti (n
2). Poleg tega na konstruktiven način postavimo spodnjo

mejo za velikost Wint
n ter W [Gn], ki je asimptotično blizu omenjeni zgornji meji,

tj. najdemo grafe, ki s svojimi Wienerjevimi vrednostmi nepretrgoma večinoma
pokrijejo interval med (n

2) ter (n+1
3 ). Natančneje pokažemo naslednje.

Izrek 9.11 (stran 127). Naj bo Wint
n = [a, b] največji interval zaporednih celih števil,

ki je v celoti vsebovan v W [Gn]. Potem velja

a =

(
n
2

)
and b >

1
6

n3 − 5
2

n2 + O
(

n3/2
)

.

Med drugim sledi
∣∣Wint

n
∣∣ = 1

6 n3 + O
(
n2).

nadaljnje delo

Zgornje rezultate predstavimo v ločenih poglavjih, ter jih zaključimo z morebit-
nimi idejami za prihodnje delo ter odprtimi domnevami. V zaključnem po-
glavju vključimo kratek povzetek tekočega dela v zvezi z vmesnostno cen-
tralizacijo, izpostavimo nekatere predstavljene rezultate ter pregledno povza-
memo nekatere odprte domneve na področju ekstremalnih grafov.
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