
UNIVERSITY OF LJUBLJANA
FACULTY OF MATHEMATICS AND PHYSICS
DEPARTMENT OF MATHEMATICS

David Gajser

Verifying Time Complexity of
Turing Machines

Doctoral dissertation

Advisor: izred. prof. dr. Sergio Cabello Justo
Co-advisor: prof. dr. Bojan Mohar

Ljubljana, 2015

UNIVERZA V LJUBLJANI
FAKULTETA ZA MATEMATIKO IN FIZIKO
ODDELEK ZA MATEMATIKO

David Gajser

Preverjanje časovne zahtevnosti
Turingovih strojev

Doktorska disertacija

Mentor: izred. prof. dr. Sergio Cabello Justo
Somentor: prof. dr. Bojan Mohar

Ljubljana, 2015

Izjava

Podpisani David Gajser izjavljam:

• da sem doktorsko disertacijo z naslovom Preverjanje časovne zahtevnosti Turingovih strojev
izdelal samostojno pod mentorstvom izred. prof. dr. Sergia Cabella Justa in somentorstvom
prof. dr. Bojana Moharja.

• da Fakulteti za matematiko in fiziko Univerze v Ljubljani dovoljujem objavo elektronske
oblike svojega dela na spletnih straneh.

Ljubljana, 13. 10. 2015 Podpis

i

ii

Acknowledgements

I met my advisor Sergio Cabello just before I started writing my bachelor thesis. Since then, he
guided me carefully, offering numerous advices. I chose not to do research in his main area of ex-
pertise which is computational geometry. Instead, I analyzed Turing machines in detail. However,
we had many enlightening consultations about topics of my, his and common interest and about
the mathematical research in general. Sergio, I would like to thank you for all the guidance and
support.

I would like to thank my co-advisor Bojan Mohar and Valentine Kabanets for co-hosting me
for a semester on Simon Fraser University, Canada. I met a big research group of Bojan there and
I saw how productive such a group can be. With Valentine, I was able to discuss the state of art in
the area that interests me most, that is computational complexity theory. I would also like to thank
him for aikido lessons.

I would like to thank numerous people for reading and commenting my work. First on the list
is my advisor, then Valentine Kabanets, Bojan Mohar, the anonymous reviewer of the paper [10],
Andrej Bauer, Marko Petkovšek, Matjaž Konvalinka and Jurij Mihelič.

I would like to thank Jana, Gašper, my family, and all of my friends for taking and making me
as I am.

iii

iv

Abstract

The central problem in the dissertation is the following.

For a function T : N→ R≥0, how hard is it to verify whether a given Turing
machine runs in time at most T (n)? Is it even possible?

Our first main contibution is that, for all reasonable functions T (n) = o(n log n), it is possible
to verify with an algorithm whether a given one-tape Turing machine runs in time at most T (n).
This is a tight bound on the order of growth for the function T because we prove that, for T (n) =
Ω(n log n) and T (n) ≥ n+1, there exists no algorithm that would verify whether a given one-tape
Turing machine runs in time at most T (n). As opposed to one-tape Turing machines, we show that
we can verify with an algorithm whether a given multi-tape Turing machine runs in time at most
T (n) if and only if T (n0) < n0 + 1 for some n0 ∈ N.

Linear time bounds are the most natural algorithmically verifiable time bounds for one-tape
Turing machines, because a one-tape Turing machine that runs in time o(n log n) actually runs in
linear time. This motivates our second main contibution which is the analysis of complexity of the
following family of problems, parameterized by integers C ≥ 2 and D ≥ 1:

Does a given one-tape q-state Turing machine run in time Cn+D?

Assuming a fixed tape and input alphabet, we show that these problems are co-NP-complete and
we provide good lower bounds. Specifically, these problems cannot be solved in o(q(C−1)/4)
non-deterministic time by multi-tape Turing machines. We also show that the complements of
these problems can be solved in O(qC+2) non-deterministic time and not in o(q(C−1)/4) non-
deterministic time by multi-tape Turing machines.

To prove the upper bound O(qC+2), we use the so-called compactness theorem which is our
third main contribution. We need more notation to state it in full generality, but a simple corollary
tells the following: To verify whether an input one-tape Turing machine runs in time Cn+D, it is
enough to verify this on a finite number of inputs.

We argue that our main results are proved with techniques that relativize and that using only
such techniques we cannot solve the P versus NP problem.

Math. Subj. Class. (2010): 68Q05, 68Q10, 68Q15, 68Q17

Keywords: Turing machine, relativization, NP-completeness, crossing sequence, decidability,
lower bound, time complexity, running time, linear time

v

vi

Povzetek

Osrednji problem v disertaciji je sledeč.

Naj bo T : N→ R≥0 poljubna funkcija. Kako težko je preveriti, ali je časovna
zahtevnost danega Turingovega stroja T (n)? Je to sploh mogoče preveriti?

Naš prvi večji prispevek pove, da je za vse “normalne” funkcije T (n) = o(n log n) možno
z algoritmom preveriti, ali je časovna zahtevnost danega enotračnega Turingovega stroja T (n).
Meja o(n log n) je tesna, saj za T (n) = Ω(n log n) in T (n) ≥ n + 1 ni mogoče z algoritmom
preveriti, ali je časovna zahtevnost danega enotračnega Turingovega stroja T (n). Pri večtračnih
Turingovih strojih je rezultat enostavnejši. Zanje namreč velja, da je časovno zahtevnost T (n) moč
z algoritmom preveriti natanko tedaj, ko velja T (n0) < n0 + 1 za neki n0 ∈ N.

Znano je, da je vsak enotračni Turingov stroj časovne zahtevnosti o(n log n) tudi linearne ča-
sovne zahtevnosti. Posledično je linearna časovna zahtevnost najbolj naravna časovna zahtevnost,
ki jo lahko z algoritmom preverimo pri enotračnih Turingovih strojih. V disertaciji se zato ukvar-
jamo tudi z naslednjimi problemi, ki so parametrizirani z naravnima številoma C ≥ 2 in D ≥ 1:

Ali je dani enotračni Turingov stroj s q stanji časovne zahtevnosti Cn+D?

Pri analizi teh problemov, kar je naš drugi večji prispevek, predpostavljamo fiksno vhodno in tračno
abecedo. Ti problemi so co-NP-polni in zanje lahko dokažemo dobre spodnje meje računske zah-
tevnosti. Ni jih namreč mogoče rešiti v času o(q(C−1)/4) z nedeterminističnimi večtračnimi Tu-
ringovimi stroji. Še več, komplementi teh problemov so rešljivi z večtračnimi nedeterminističnimi
Turingovimi stroji v času O(qC+2), ne pa v času o(q(C−1)/4).

Pri dokazu zgornje meje O(qC+2) uporabimo tako imenovani izrek o kompaktnosti, naš tretji
večji prispevek. Potrebovali bi več notacije, da bi ga na temmestu navedli, zato povejmo le njegovo
posledico: Da bi preverili, ali dani enotračni Turingov stroj teče v času Cn+D, je dovolj preveriti
čas izvajanja Turingovega stroja le na končno mnogo vhodih.

Glavni prispevki te disertacije so dokazani s tehnikami, ki relativizirajo. Dokažemo tudi znano
dejstvo, da s takimi tehnikami ni mogoče rešiti slavnega problema P ?

= NP.
Daljši povzetek v slovenskem jeziku najdemo na koncu disertacije.

Ključne besede: Turingov stroj, relativizacija, NP-polnost, prekrižno zaporedje, odločljivost, spo-
dnja meja, časovna zahtevnost, čas izvajanja, linearni čas

vii

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Outline of the Dissertation . 3
1.3 Literature and Related Work . 6

2 Preliminaries 9
2.1 Notation, Languages and Problems . 9

2.1.1 Basic Notation . 9
2.1.2 Languages over Alphabets . 10
2.1.3 Encodings . 11
2.1.4 Decision Problems . 13

2.2 Finite Automata, Regular Languages and Regular Expressions 14
2.2.1 Deterministic Finite Automata and Regular Languages 14
2.2.2 Non-Deterministic Finite Automata . 16
2.2.3 Regular Expressions . 20

3 Turing Machines 25
3.1 One-Tape Turing Machines . 25

3.1.1 The Formal Definition of a Computation of a One-Tape NTM 26
3.1.2 Giving an Input to a Turing Machine . 26
3.1.3 Running Time . 27
3.1.4 Language of a Turing Machine . 27
3.1.5 About Our Definition of a One-Tape NTM 27
3.1.6 One-Tape Deterministic Turing Machines 28

3.2 Multi-Tape Turing Machines . 28
3.2.1 About Our Definition of a Multi-Tape NTM 28
3.2.2 Multi-Tape Deterministic Turing Machines 29

3.3 How Different Attributes of Turing Machines Influence the Time Complexity . . 29
3.3.1 Reducing the Tape Alphabet . 30
3.3.2 Linear Speedup . 31
3.3.3 Reducing the Number of Tapes . 35
3.3.4 Non-Determinism and Determinism . 41
3.3.5 Reducing the Number of Non-Deterministic Options 42

3.4 Complexity Classes . 43
3.4.1 Complexity Classes of Decision Problems 44
3.4.2 The Complexity of Regular Languages 44

ix

3.4.3 Complexity of Computing Functions . 45
3.5 The Church-Turing Thesis . 46
3.6 Encoding Turing Machines . 46

3.6.1 Universal Turing Machine . 47
3.7 Classes NP and co-NP . 48

3.7.1 Reductions and Complete problems . 49

4 Diagonalization and Relativization 53
4.1 Halting Problems . 54

4.1.1 Proving Undecidability of Problems . 56
4.2 Time Hierarchy Theorems . 56

4.2.1 Time Constructible Functions . 56
4.2.2 The Deterministic Time Hierarchy . 57
4.2.3 The Non-Deterministic Time Hierarchy 58

4.3 Relativization . 61
4.3.1 Oracle Turing Machines . 61
4.3.2 Encodings of Oracle Turing Machines 63
4.3.3 Results that Relativize . 63
4.3.4 Limits of Proofs that Relativize . 64

5 Crossing Sequences 69
5.1 Definition and Basic Results . 69

5.1.1 The Cut-and-Paste Technique . 70
5.1.2 One-Tape Turing Machines that Run in Time o(n log n) 72
5.1.3 Simple Applications . 75

5.2 The Compactness Theorem . 78
5.2.1 Computation on a Part . 79
5.2.2 The Compactness Theorem . 80
5.2.3 Supplementary Results to the Compactness Theorem 84

6 Verifying Time Complexity of Turing Machines 89
6.1 Decidability Results . 89

6.1.1 Folkloric Results and Extended Considerations 90
6.1.2 One-Tape Turing Machines and an o(n log n) Time Bound 93

6.2 Complexity Results . 97
6.2.1 Encoding of One-Tape Turing Machines 97
6.2.2 The Upper Bound . 98
6.2.3 The Lower Bounds . 99
6.2.4 Optimality of Our Measuring of the Length of an Input 106
6.2.5 Relativization in Theorem 1.2.1 . 106
6.2.6 An Open Problem . 107

Slovenski povzetek 109

Bibliography 118

x

Chapter 1

Introduction

The introduction is split into three parts. The first part is for the general public; it gives the motiva-
tion to study the problems presented in the dissertation and it explains how the presented concepts
reflect (in) the real world. The second part is for readers that are familiar with undergraduate com-
putational complexity theory; we skim through the chapters in this part. The third part is for experts
that are interested also in related work.

1.1 Motivation

Since the invention of modern day computers, the following definition of complexity has been
very natural: A problem is hard if a computer cannot solve it fast. This empirical definition can
be put on solid ground with a well defined model of computation and the history shows that the
Turing machines are a very reasonable one. Thus we can say that a problem is hard if no Turing
machine can solve it fast. This reasoning is supported by two theses (see Section 3.5). The first
one is the Church-Turing thesis which states that intuitively computable functions are exactly those
computable by Turing machines. The thesis is not a mathematical statement, so it cannot be for-
mally proven, despite some attempts [5]. A good argument in favor of the thesis is the fact that
many realizable models of computation, also the models of personal computers, can be simulated
by Turing machines. What is more, the simulations are efficient in the sense that the simulating
Turing machine does not make essentially more steps than the simulated model of computation.
This ascertainment forms the basis for the strong version of the Church-Turing thesis which states
that all reasonable models of computation are polynomially equivalent to the Turing machines, i.e.,
they are comparably fast. The strong version is not so generally accepted as the Church-Turing the-
sis and quantum computers presumably violate it. However, the current technology still does not
allow us to build reasonably big quantum computers.

While Turing machines can compute everything that our computers can compute, and they can
compute it (theoretically) comparably fast, the biggest advantage of Turing machines over today’s
computers is their simplicity. To present how simple they are, let us sketchily describe a one-
tape deterministic Turing machineM (abbreviated as one-tape DTM); the formal definition can be
found in Section 3.1.6. M physically consists of three things: a two-way infinite tape, a head and a
state control. The tape is divided into tape cells, where each cell contains exactly one symbol and
the head ofM is always above some tape cell. In the state control, which is connected to the head,
there are finitely many states in which M can be, one being the starting state and some of them
being the halting states. The computation begins with the input written on the tape (each symbol

1

of the input in its own tape cell), the rest of the tape cells are filled with so-called blank symbols
L (see Figure 1.1), the head is over the first symbol of the input and the machine is in the starting
state. Then, in each step, the machine reads the symbol below its head which together with the
current state completely determines an action of the following type: rewrite the symbol below the
head with a prescribed symbol, change the current state and move the head for one cell to the left
or to the right. Hence,M computes very locally since the action in each step is determined only by
the current state and the symbol below its head. M finishes its computation when it enters a halting
state, although this may never happen in which caseM runs forever. The result of the computation
can be either the content of the tape after the computation or the halting state in whichM finished
its computation. As we discussed above, despite the simplicity of the model, one-tape DTMs can
efficiently simulate computations carried out by modern day computers.

. . . L L L v h o d L L . . .

Figure 1.1: The tape of a one-tape DTM with input vhod written on it. Before the first step of the
computation, the DTM is in the starting state and its head is above the symbol v.

In this dissertation we mostly consider decision problems, i.e., the problems which have a yes
or no answer. While the notion of a decision problem is more formally defined in Section 2.1.4,
we present here only a few examples.

Compare Length . . . Given a string of symbols w, is w of the form 00 . . . 011 . . . 1
where the number of 0s equals the number of 1s?

Hamiltonian Cycle . . . Given a simple undirected graph G, is G Hamiltonian1?

D-Halt1
ε . . . Given a one-tape DTMM , doesM halt on the empty input, i.e.,

doesM halt on the input with no symbols?

The hardest decision problems are those that cannot be solved by Turing machines and it is well
known that the problem D-Halt1

ε is an example of such a problem (see Section 4.1.1 for a proof).
While the fact that such a simple problem cannot be solved by Turing machines is interesting by
itself, it also has a real-world application. It tells us that there is no computer program that could
solve the problem

Given a code of a program in Java that does not need an input, would the program
ever terminate if we would run it, or would it run forever?

Hence, verifying correctness of the code is a job that cannot be completely automated.
It is natural to classify decision problems with respect to how fast they can be solved by Turing

machines. If we do so, we get a whole hierarchy of distinct complexity classes (see Section 4.2.2).
The most well known class is the class P of decision problems that can be solved in polynomial
time by one-tape DTMs. In other words, a problem is in P if and only if there exists a polynomial
p and a one-tape DTM that solves the problem and, for all n, makes at most p(n) steps on inputs
of length n.

Another well known class of decision problems is NP. It is defined as the class of decision
problems whose yes-answers can be verified in polynomial time by a one-tape DTM that is always

1For the definition of a simple and a Hamiltonian graph see Section 2.1.4.

2

given a so-called certificate (a short hint) together with the input. The class is formally defined in
Section 3.4; here we give just an example. The problem Hamiltonian Cycle is in NP because,
for each graph that has a Hamiltonian cycle, we can give a sequence of vertices that form the cycle
as a certificate. Given such a certificate, we can verify in polynomial time whether the certificate
is indeed a Hamiltonian cycle. However, no short certificates are known for the complement of the
problem Hamiltonian Cycle:

Given a simple undirected graph G, is it true that G is not Hamiltonian?

This problem is in the class co-NP which includes exactly the complements of the decision prob-
lems fromNP (the yes and no answers are switched). There are several natural, real-world problems
that are in NP or co-NP but not known to be in P, one of them being Hamiltonian Cycle (see
also [12]). While clearly P ⊆ NP ∩ co-NP, the question whether P = NP is central in computa-
tional complexity theory and has spurred the field. It is one of the still unsolved Millennium Prize
Problems and its solution is worth a million USD [23]. The question appeared also in the title
of a book by Richard J. Lipton [22] and surveys have been written about what theorists think of
the P versus NP problem [13]. Two more open problems are whether NP = co-NP and whether
P = NP∩ co-NP and there are many other natural classes of decision problems for which it is not
known how they relate to P, to NP or among themselves.

Motivated by such questions and having in mind that many natural classes of decision problems
can be rigorously defined by Turing machines, it is of great benefit for a researcher to know and
understand verywell themodel of Turingmachines. One of the basic properties of a Turingmachine
is its running time. The main results of the author during his graduate years talk about how to
verify and whether it is even possible to algorithmically verify whether a Turing machine runs in a
specified time [10, 11]. These results are presented in Chapter 6.

1.2 Outline of the Dissertation

The objective of the dissertation is to present results from Chapters 5 and 6 together with their
background. Results in Chapter 6 talk about verifying time complexity of a given Turing machine.
While the results for multi-tape Turing machines are simple, the results for one-tape Turing ma-
chines are more involved. A main tool used to analyze one-tape Turing machines are crossing
sequences, studied in Chapter 5. Most results from Chapters 5 and 6 are by the author [10, 11] and
we present them in more detail below.

Chapters 2, 3 and 4 contain quite standard undergraduate and graduate topics that are prelimi-
nary or supplementary to the topics in Chapters 5 and 6. In Chapter 2, basic notation is introduced
and regular languages are studied. In Chapter 3, several models of Turing machines are introduced
together with time-related complexity classes. A major and very technical section in this chapter,
Section 3.3, explains how different attributes of Turing machines influence the time complexity of
deciding a language, where the attributes are size of the tape alphabet, number of tapes and the use
of non-determinism. In Chapter 4 we prove undecidability of the halting problem, time hierarchy
theorems and the famous limitation of relativizing results: the solution of the P versusNP problem
does not relativize. The author uses this fact to show that using only the methods from Chapters 5
and 6, we cannot solve famous problems such as P versus NP.

3

Chapter 6

This is the last chapter and it holds the same title as the dissertation: Verifying Time Complexity
of Turing Machines. For this introduction, if not specified otherwise, all results hold for non-
deterministic Turing machines (abbreviated as NTMs) as well as deterministic Turing machines
(abbreviated as DTMs).

While it is tempting to argue about a Turing machine’s time complexity, we cannot algorithmi-
cally tell even whether a given Turing machine halts on the empty input (see Section 4.1.1). Can we
perhaps check whether it is of a specified time complexity? While the answer is no in most cases,
there is an interesting case where the answer is yes: verifying a time bound T (n) = Cn + D,
C,D ∈ Z, for a given one-tape Turing machine.

There are at least two natural types of questions about whether a Turing machine obeys a given
time bound:

• For a function T : N→ R>0, does a given Turing machine run in time O(T (n))?

• For a function T : N → R>0, does a given Turing machine run in time T (n), i.e., does it
make at most T (n) steps on all computations on inputs of length n for all n?

It is a folklore that it is undecidable whether a Turing machine runs in time O(1), thus the first
question is undecidable for all practical functions T . We state a generalization of this well known
fact in Theorem 6.1.6 and prove it using standard techniques. However, for the second question,
it is not hard to see that it is decidable whether a given Turing machine runs in time C for some
constant C ∈ N: we just need to simulate a given Turing machine on all the inputs up to the length
C (for details, see Lemma 6.1.1). It would be interesting if the second question were decidable also
for linear functions T . However, we prove in Theorem 6.1.3 that it is decidable whether a multi-
tape Turing machine runs in time T (n) if and only if we have the “eccentric” case T (n0) < n0 + 1
for some n0 ∈ N. The time bound n + 1 is special because it minimally enables a multi-tape
Turing machine to mark time while simulating another Turing machine. The timekeeping can be
done on the input tape by just moving the head to the right until the blank symbol at the end marks
n + 1 steps, while the other tapes are used for the simulation. But what if the simulation has to
be performed on the same tape as the timekeeping, i.e., how much time do we need for a one-tape
Turing machine to count steps and simulate another Turing machine? We show in Theorem 6.1.5
that Ω(n log n) time is enough:

Let T : N → R>0 be a function such that T (n) = Ω(n log n) and, for all n ∈ N, it
holds T (n) ≥ n+ 1. Then it is undecidable whether a given one-tape Turing machine
runs in time T (n).

Theorem 6.1.10 gives a nice contrast:

For any “nice” function T : N→ R>0, T (n) = o(n log n), it is decidable whether a
given one-tape Turing machine runs in time T (n).

Hence, a one-tape Turing machine that runs in time T (n) = o(n log n) cannot count steps while
simulating another Turing machine. There is another well known fact about one-tape Turing ma-
chines that makes the time bounds Θ(n log n) special: these bounds are the tightest that allow a
one-tape Turing machine to recognize a non-regular language (see Propositions 5.1.7 and 5.1.9).

Corollary 5.1.6 from Chapter 5 tells that one-tape Turing machines that run in time o(n log n)
actually run in linear time. Thus, we can conclude that the most natural algorithmically verifiable

4

time bound for one-tape Turing machines is the linear one. This is a motivation for the second
half of the last chapter, where we analyze the computational complexity of the following problems
parameterized by integers C,D ∈ N. The problem Halt1

Cn+D is defined as

Given a one-tape NTM, does it run in time Cn+D?

and the problem D-Halt1
Cn+D is defined as

Given a one-tape DTM, does it run in time Cn+D?

For the analyses of the problems Halt1
Cn+D and D-Halt1

Cn+D, we fix an input alphabet Σ,
|Σ| ≥ 2, and a tape alphabet Γ ⊃ Σ. It follows that the length of most standard encodings of
q-state one-tape Turing machines is O(q2). To make it simple, we assume that each code of a q-
state one-tape Turing machines has length Θ(q2) and when we will talk about the complexity of
the problems Halt1

Cn+D, we will always use q as the parameter to measure the length of the input
(see Section 6.2.1). We prove the following.

Theorem 1.2.1. For all integers C ≥ 2 and D ≥ 1, all of the following holds.

(i) The problems Halt1
Cn+D and D-Halt1

Cn+D are co-NP-complete.

(ii) The problems Halt1
Cn+D and D-Halt1

Cn+D cannot be solved in time o(q(C−1)/4) by multi-
tape NTMs.

(iii) The complements of the problems Halt1
Cn+D and D-Halt1

Cn+D can be solved in time
O(qC+2) by multi-tape NTMs.

(iv) The complement of the problem Halt1
Cn+D cannot be solved in time o(q(C−1)/2) by multi-

tape NTMs.

(v) The complement of the problemD-Halt1
Cn+D cannot be solved in time o(q(C−1)/4) by multi-

tape NTMs.

To put the theorem in short, the problems Halt1
Cn+D and D-Halt1

Cn+D are co-NP-complete

with a non-deterministic and a co-non-deterministic time complexity lower boundΩ(q0.25C−1) and
a co-non-deterministic time complexity upper bound O(qC+2).

Chapter 5

This chapter contains the definition and themain results about crossing sequences. They are defined
only for one-tape Turing machines. Intuitively, a crossing sequence generated by a one-tape Turing
machine M after t steps of a computation ζ on an input w at a boundary i (see Figure 1.2) is a
sequence of states ofM in whichM crosses the ith boundary of its tape when considering the first
t steps of the computation ζ on the input w. We assume that, in each step,M first changes the state
and then moves the head. Note that this sequence contains all information that the machine carries
across the ith boundary of the tape in the first t steps of the computation ζ.

The main technique to deal with crossing sequences is called the cut-and-paste technique. We
describe it in Section 5.1.1 and use it to prove the main result in this chapter, the compactness
theorem (Theorem 5.2.1). We needmore notation to state it in full generality, but a simple corollary
is the following.

5

boundaries: . . . −3 −2 −1 0 1 2 3 4 5 . . .

cells: . . . L L L L L . . .

Figure 1.2: Numbering of tape boundaries of a one-tape Turing machine. The shaded part is a
potential input of length 4.

Corollary 1.2.2. For all positive integersC andD, a one-tape q-state Turing machine runs in time
Cn+D if and only if, for each n ≤ O(q2C), it makes at most Cn+D steps on each computation
on inputs of length n.

To rephrase the corollary, we can solve the problem Halt1
Cn+D for an input Turing machineM

by just verifying the running time ofM on the inputs of length at most O(q2C). Behind the big O
is hidden a polynomial in C andD (see Corollary 5.2.5). The result is interesting not only because
it allows us to algorithmically solve the problem Halt1

Cn+D, but also because it gives a good
insight into one-tape linear-time computations. However, we need the more powerful compactness
theorem to prove the upper bound in Theorem 1.2.1.

In Section 5.1.2 we prove a standard result about one-tape Turing machines that run in time
o(n log n): such Turing machines generate only crossing sequences of size O(1) and they accept
only regular languages. Additionally, we show that they actually run in linear time. In Section 5.2.3
we give an algorithm that takes integers C,D ∈ N and a one-tape NTMM as inputs and ifM runs
in time Cn+D, returns an equivalent finite automaton.

Historically, crossing sequences were also used to prove complexity lower bounds for solving
problems on one-tape Turing machines (see e.g. [17]) and we present two such lower bounds in
Section 5.1.3.

1.3 Literature and Related Work

Chapters 2, 3 and 4 are primarily covered in books by Arora and Barak [2], and Sipser [28]. For
most results in these chapters we give our own proofs and reshape the statements so that they fit in
the given setting. The results are standard and the additional literature that was used is marked on
appropriate places.

Chapters 5 and 6 are based on the papers [10, 11] of the author. While there is quite some
other literature about crossing sequences (Chapter 5), the literature for Chapter 6 is harder to find.
However, Hájek [19] in the late 1970s proved that it is undecidable whether a givenmulti-tape DTM
runs in time n + 1. Roughly at the same time Hartmanis published a monograph [16], where in
Chapter 6 he argues about what can and cannot be proven about computational complexity. There,
for a function T : N → R≥0, he compares the class of languages of Turing machines that run in
time T (n) to the class of languages of Turing machines that provably run in time T (n). There is
also a result of Adachi, Iwata and Kasai [1] from 1984 where they proved good deterministic lower
bounds for some problems that are complete in P, a result that has a structure comparable to the
structure of Theorem 1.2.1.

Crossing sequences were first studied in the 1960s by Hartmanis [15], Hennie [17], and Trakht-
enbrot [30]. In 1968 Hartmanis [15] proved that any one-tape DTM that runs in time o(n log n)
recognizes a regular language. He acknowledges that Trakhtenbrot [30, in Russian] came to the
same result independently. In the proof Hartmanis showed that a one-tape DTMwhich runs in time

6

o(n log n) produces only crossing sequences of bounded length and then he used Hennie’s [17]
result which tells that such Turing machines recognize only regular languages. Later in 1980s
Kobayashi [20] gave another proof of the same result but, in contrast to Hartmanis’ approach, his
proof gives a way to compute a constant upper bound on the length of the crossing sequences. Re-
cently Tadaki, Yamakami and Lin [29] generalized his proof to show that one-tape NTMs which
run in time o(n log n) accept only regular languages. Their proof also gives a way to compute a
constant upper bound on the length of the crossing sequences that such machines can produce. This
is essential for the proof of Theorem 6.1.10 which states that we can verify whether a given one-
tape NTM obeys a (nice) time bound of order o(n log n). In [26] Pighizzini showed that one-tape
NTMs that run in time o(n log n) actually run in linear time. A summary of results about one-tape
linear-time Turing machines of different types can be found in [29].

Other Work by the Author. Let us only mention two results of the author from his graduate
years that are off the topic of the dissertation and will not be discussed further. In [4] the author and
Cabello show that very simple algorithms based on local search are polynomial-time approximation
schemes for the problems Maximum Independent Set, Minimum Vertex Cover and Minimum
Dominating Set, when the input graphs have a fixed forbidden minor. In [9], the author compares
convergence properties of some sequences.

7

8

Chapter 2

Preliminaries

In this chapter we first introduce basic notation, languages and decision problems. Then we de-
fine finite automata and regular expressions and we show that they both describe the same set of
languages called regular languages. All the material in this chapter could be taught in an under-
graduate theoretical computer science course, so those familiar with the topic might want to skip
it.

2.1 Notation, Languages and Problems

2.1.1 Basic Notation

N . . . the set of non-negative integers.

Z . . . the set of integers.

Q . . . the set of rational numbers.

R . . . the set of real numbers.

R≥0 . . . the set of non-negative real numbers.

R>0 . . . the set of positive real numbers.

P(A) . . . the power set of a set A.

For r ∈ R≥0,

brc . . . the integer part of r, i.e., the largest integer smaller than or equal to r.

dre . . . the smallest integer greater than or equal to r.

For a function f : N→ R≥0,

bfc . . . bfc : N→ N, defined by bfc(n) = bf(n)c.

9

For functions f, g : N→ R≥0, we say that

f(n) = O(g(n)) . . . if there exist k > 0 and n0 ∈ N such that, for all n ≥ n0, it holds
f(n) ≤ k · g(n).

f(n) = Ω(g(n)) . . . if there exist k > 0 and n0 ∈ N such that, for all n ≥ n0, it holds
f(n) ≥ k · g(n).

f(n) = Θ(g(n)) . . . if f(n) = Ω(g(n)) and f(n) = O(g(n)).

f(n) = o(g(n)) . . . if lim
n→∞

f(n)
g(n) = 0.

All logarithms have base 2.

2.1.2 Languages over Alphabets

An alphabet is any non-empty finite set of symbols. Two examples are the Slovenian alphabet {a,
b, c, č . . . ž} and the binary alphabet {0, 1}. For an alphabet Σ and for an integer i ∈ N, we denote
by

Σi . . . the set of all possible finite sequences of symbols from Σ of length i.

ε . . . the empty sequence of symbols. Note that Σ0 = {ε}.

Σε . . . Σε = Σ ∪ {ε}.

Σ∗ . . . the set of all finite sequences of symbols from Σ. Note that

Σ∗ =
⋃
i∈N

Σi.

Each element of Σ∗ is called a string over the alphabet Σ. For a string w ∈ Σ∗, we denote by

|w| . . . the length of w. Clearly, |ε| = 0.

For a string w and for integers 0 ≤ i ≤ j ≤ |w|, we denote by

w(i, j) . . . the string of symbols of w from ith to jth, including the ith symbol and excluding
the jth symbol (we start counting with 0). If i = j then w(i, i) = ε. Note that
|w(i, j)| = j − i and w(0, |w|) = w.

For each i, j, we call w(i, j) a substring of w. For example, the word ananas over the Slovenian
alphabet is a string of length 6 with a substring ananas(0, 2) = an. For strings w1 and w2 and for
n ∈ N, we denote by

w1w2 . . . the concatenation of strings w1 and w2 and by

wn1 . . . the concatenation of n copies of w1. If n = 0, then w0
1 = ε.

For example, for strings w1 = ananas and w2 = banana, we have w1w2 = ananasbanana and
w2

1 = ananasananas.
Any subset of Σ∗ is called a language over an alphabet Σ. We can imagine the language as

the set of strings that mean something. For example, a language over the Slovenian alphabet could
be the set of all words found in SSKJ (the dictionary of standard Slovenian language) that are
composed exclusively of Slovenian letters.

10

For languages L1, L2 ⊆ Σ∗ and for an integer i ∈ N, we denote by

L1 . . . the complement Σ∗\L1 of L1,

L1L2 . . . = {w1w2; w1 ∈ L1, w2 ∈ L2} the concatenation of languages L1 and L2,

Li1 . . . = {w1w2 · · ·wi; w1, w2 . . . wi ∈ L1}. Note that this definition is consistent with
the definition of Σi where Σ is an alphabet. (We can view Σ as a language over Σ.)

L∗1 . . . =
⋃
i∈N

Li1. This definition is consistent with the definition of Σ∗.

2.1.3 Encodings

Let S be a set of some objects (like graphs, boolean formulas . . .) and let Σ be an alphabet. An
encoding of S over an alphabet Σ is a function f which maps elements of S to pairwise disjoint
non-empty subsets of Σ∗. For a fixed encoding f and for an element s ∈ S, we say that each string
in f(s) is a code of s.

Example. For example, if S is the set of all matrices with entries 0 or 1, then the following f :
S → {subsets of {0, 1,#}∗} is an encoding over the alphabet {0, 1,#}:

f

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
am1 am2 . . . amn

 = {a11a12 . . . a1n#a21a22 . . . a2n# . . .#am1am2 . . . amn#}.

We see that each matrix A from S has a unique code. However, we could add any number of zeros
at the end of each code so that our encoding would be

f

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
am1 am2 . . . amn

 = {a11 . . . a1n#a21 . . . a2n# . . .#am1 . . . amn#0k; k ∈ N}.

Note that f maps different matrices to disjoint subsets of {0, 1,#}∗ and is hence an encoding. The
technique we used to get infinitely many codes for each element of S, by just adding redundant
symbols to the code, is called padding. It will be used several times in the dissertation. �

When describing an encoding over an alphabet Σ, we usually do not mention Σ if it is clear
from the context what alphabet is used, as we can see in the next example.

Example. Let us give an encoding of weighted directed graphs1 whose weights are strings over
an alphabet Σ̃. We may assume that Σ̃ does not contain the symbols %, & and # (else we would
choose other three special symbols). In our encoding, each graph will have a unique code, hence it
is enough to describe the code of someweighted directed graphG. SupposeG has n vertices, hence
it can be represented by an n × n matrix AG whose entry AG[i, j] equals the weight on an edge

1We suppose that the reader is familiar with basic graph notions. More information about graphs can be found, for
example, in [6].

11

between the ith and the jth vertex, if the edge between these two vertices exists, elseAG[i, j] = %.
Then the code of G is:

AG[1, 1]&AG[1, 2]& . . .&AG[1, n]#AG[2, 1]&AG[2, 2]& . . .&AG[2, n]# . . .

. . .#AG[n, 1]&AG[n, 2]& . . .&AG[n, n]#.

Note that the number of vertices n can be deduced from the code. Our encoding is over the alphabet
Σ̃ ∪ {%,&,#}. �

Encoding in Binary

It might seem that the choice of an alphabet Σ that is used in an encoding matters a lot, but this is
actually not the case. Here we describe one of several possible ways to transform an encoding over
an arbitrary alphabet Σ to a related encoding over {0, 1}.

First, we label each symbol from Σ with non-negative integers. Then a string w over Σ can
be written over the binary alphabet as follows: we swap each symbol in w with the corresponding
binary number with all digits doubled and between each two symbols of w we write 01. It is easy
to see that this way all of the codes of an encoding can be transformed so that we get an encoding
over {0, 1}.

Example. For example, the word ananas viewed as a string over the Slovenian alphabet can be
transformed into a binary string

110111111111011101111111110111011100001111,

using

a 7→ 1

n 7→ 1111

s 7→ 10011. �

Fixing an Alphabet Σ

Because for all encodings there exists a naturally related binary encoding, we can fix an alphabet
Σ that will be used to encode things. We assume also that 0, 1 ∈ Σ, hence Σ has at least two
elements. This is because unary codes, which come from encodings with just one symbol, are too
long for our purposes.

Example. One needs unary codes of length at least n to encode numbers 0, 1, 2 . . . n. With binary
encoding we can encode the same numbers using codes of length O(log(n)) by just writing the
numbers in binary. �

Natural Encodings

Clearly, every finite or countably infinite set of objects has several encodings over some alphabet,
but we are usually interested in encodings that are natural in the sense that:

• Given a code of an object s, one can quickly figure out what s is.

• Given an object s, one can quickly construct one of its codes.

By “quickly”, we mean quickly relative to the current technology and developed algorithms. We
will only be interested in such (vaguely defined) natural encodings.

12

What Encodings are Used in this Dissertation

Although the title suggests differently, we will not fix any encodings in this section. This is because
there are several good ways of how to encode well studied objects and we do not want to limit
ourselves to just one particular encoding. However, for objects that will matter to us, we will
describe at least one relevant encoding.

Example. First, we give an encoding of tuples of strings that are over the alphabet Σ. We may
suppose that the symbols ‘(’ and ‘)’ for brackets and the symbol ‘,’ for comma are not in Σ. Then
the unique code of a tuple (s1, s2 . . . sk) is the string (s1, s2 . . . sk). To change the encoding to be
over the binary alphabet, we can use the trick described above. �

Example. As a final example we give an encoding of matrices with string entries. We can view a
matrix A with string entries as a tuple of rows, where each rows is a tuple of strings. We already
described how we can encode tuples, thus if we first encode the rows of A and then encode the
tuple of the codes of the rows, then we get the code of the matrix A. Note that we implicitly used
the same idea when describing an encoding of weighted graphs. �

2.1.4 Decision Problems

For a decision problem, we need one (usually infinite) set of elements U called instances and a
subset Y ⊆ U , and the problem is given as:

“Given an instance x ∈ U , is x an element of Y ?”

Example. A graph is simple if it does not contain loops and parallel edges. We say that a simple
undirected graph G is Hamiltonian, if it admits a cycle (called a Hamiltonian cycle) that contains
all of its vertices. The problem Hamiltonian Cycle is the following:

Given a simple undirected graph G, is G Hamiltonian?

In this case U is the set of all graphs and Y is the set of all Hamiltonian graphs. �

To solve a decision problem means the following: For a fixed (natural) encoding of the set U
over the alphabetΣ, find an algorithm that takes a stringw ∈ Σ∗ as input and returns the appropriate
value “YES” or “NO” depending on whether w is a code of some element x ∈ Y . At this point we
can think of an algorithm as a computer program. Later, the word algorithm will be replaced by
the phrase Turing machine, which will be well defined in Chapter 3.

If we fix some natural encoding f of U over Σ, then

L =
⋃
y∈Y

f(y)

is a language over the alphabet Σ. Note that L contains exactly the codes of elements of Y , hence
to solve our decision problem it is enough to find an algorithm that solves the problem:

“Given x ∈ Σ∗, is x an element of L?”

This problem is a special form of a decision problem, given by a language over some alphabet.
Solving such a problem is called deciding a language L ⊆ Σ∗. More generally, if we can solve a
decision problem, we say that the problem is decidable.

13

2.2 Finite Automata, Regular Languages and Regular Expressions

In this section we define finite automata, regular languages and regular expressions and we present
how these notions are related. We follow the book by Sipser [28] where these topics are covered
in detail.

2.2.1 Deterministic Finite Automata and Regular Languages

A deterministic finite automaton (abbreviated as DFA) is a 5-tuple (Q,Σ, δ, q0, F), where

Q . . . a finite set whose elements are called states,

Σ . . . the input alphabet, fixed in Section 2.1.3,

δ . . . a function δ : Q× Σ→ Q called the transition function,

q0 ∈ Q . . . the starting state and

F ⊆ Q . . . the set of accepting states.

Computation of a DFA

A DFA M = (Q,Σ, δ, q0, F) computes as follows on an input w ∈ Σ∗ of length n. It begins in
state q0. Then it reads the first symbol a1 of w and moves to the state q1 = δ(q0, a1). Then it reads
the second symbol a2 ofw and moves to the state δ(q1, a2). Then it reads the third symbol . . . Then
it reads the last symbol an of w and moves to the state qn = δ(qn−1, an). Then it halts. If qn ∈ F ,
then we say thatM accepts w, else it rejects w. The set of all strings accepted byM is called the
language ofM and is denoted by L(M). We also say thatM recognizes the language L(M).

Regular Languages

A language L ⊂ Σ∗ is regular if it is recognized by some DFA. Because DFAs are a very sim-
ple model of computation, they can solve only a small amount of (decision) problems (see Sec-
tion 4.2.2), hence the set of regular languages is a small subset of all decidable languages.

Presenting a DFA with a Graph

We can present a DFAM = (Q,Σ, δ, q0, F) as a weighted directed multigraph2 with the vertex set
Q, one special vertex q0 ∈ Q and the set of special vertices F ⊆ Q. There is an edge from q1 ∈ Q
to q2 ∈ Q with weight a ∈ Σ if and only if δ(q1, a) = q2.

The computation ofM starts in the vertex q0 and then it continues along the appropriate edges
depending on the symbols of the input which are read one by one from left to right. The computation
terminates when all the symbols of the input have been considered. If the last transition was to a
state from F , then the computation is accepting, else it is rejecting.

Example. Let us consider a DFA M1 = ({q0, q1, q2, r1, r2}, {0, 1}, δ, q0, {q1, r1}), where δ is
given by Table 2.1. The corresponding weighted multigraph is drawn in Figure 2.1.

We leave to the reader to verify thatM1 accepts exactly such binary inputs that begin and end
with the same symbol. Hence,M1 recognizes the language L of all binary strings that begin and
end with the same symbol. �

2A multigraph is a graph that can have parallel edges and loops.

14

δ 0 1
q0 q1 r1

q1 q1 q2

q2 q1 q2

r1 r2 r1

r2 r2 r1

Table 2.1: The transition function of DFAM1.

q0

q1

q2

r1

r2

0 1

0

1 0

1

0

1

0

1

Figure 2.1: DFAM1 as a weighted multigraph. The starting state is labeled by an incoming arrow
and the accepting states are marked by two circles.

The simplest languages are the finite ones. Let us show that they are all regular.

Proposition 2.2.1. Every finite language L ⊆ Σ∗ is regular.

Proof. We will prove the proposition by constructing a DFAM = (Q,Σ, δ, q0, F) that will rec-
ognize L. Let w be the longest string form L and let n0 = |w| be the length of w. LetQ be the set
of all strings from Σ∗ of length at most n0, together with an additional state qrej that we call the
rejecting state. Let q0 = ε ∈ Q be the starting state. For a state q that is a string of length strictly
less than n0 and for a ∈ Σ, define δ(q, a) = qa, where qa is the concatenation of the string q and
the symbol a. For each string q of length n0 and for each a ∈ Σ, define δ(q, a) = qrej. For each
a ∈ Σ, define δ(qrej, a) = qrej.

Now it is clear that if we define F = L, we get L(M) = L, hence L is regular. �

Now that we have some regular languages, let us also give an example of a simple non-regular
language.

Example. A palindrome over an alphabet Σ is any string from Σ∗ that reads the same from left to
right. Examples of palindromes over the Slovenian alphabet are ε, a, aa, anana and banab, but not
ananas or banana. Consider the decision problem Palindrome that is the following:

Given w ∈ Σ∗, is w a palindrome?

If L is the language of palindromes over Σ, we will show that L it is not regular. If it would be,
then there would be a finite automatonM with q states that would recognize L. Let us suppose that
this is true and derive a contradiction. Because |Σ|q > q, there exist at least two inputs w1 and w2

15

forM of length q such thatM is in the same state after it finishes computation on w1 or w2. If wR1
denotes the reversed string of w1, i.e., the string that reads as w1 if we read from right to left, then
M will return the same on the inputs w1w

R
1 and w2w

R
1 , which is a contradiction because w1w

R
1 is

a palindrome and w2w
R
1 is not.

Later in Proposition 5.1.10wewill prove that the language of palindromes cannot be recognized
even by a much stronger model of computation than a DFA. �

2.2.2 Non-Deterministic Finite Automata

A non-deterministic finite automaton (abbreviated as NFA) is a 5-tuple (Q,Σ, δ, q0, F), where Q
is a finite set of states, q0 ∈ Q is the starting state, F ⊆ Q is the set of accepting states, Σ is the
input alphabet fixed in Section 2.1.3 and

δ : Q× Σε → P(Q)

is the transition function. Recall that Σε = Σ ∪ {ε} and P(Q) is the power set of Q.
The definitions of DFAs and NFAs are very similar, they also have similar presentations with

weighted multigraphs. As by DFAs, we can present an NFAM = (Q,Σ, δ, q0, F) as a weighted
directed multigraph with the vertex set Q, one special vertex q0 ∈ Q and a set of special vertices
F ⊆ Q. There is an edge from q1 ∈ Q to q2 ∈ Q with a weight a ∈ Σε if and only if q2 ∈ δ(q1, a).
The only difference with DFAs in the presentation with multigraphs is that for a DFA, each vertex
has exactly |Σ| edges going out, one for each symbol, while an NFA can have any number of edges
with any labels going out from a vertex. An example of an NFA is given in Figure 2.2.

Example. Let us consider an NFA M2 = ({q0, q1, q2}, {0, 1}, δ, q0, {q0}), where δ is given by
Table 2.2. The corresponding weighted multigraph is drawn in Figure 2.2. �

δ 0 1 ε

q0 {q1} {} {q2}
q1 {q2} {q1, q2} {}
q2 {} {q0} {}

Table 2.2: The transition function of NFAM2.

Computation of an NFA

We will explain how an NFA M = (Q,Σ, δ, q0, F) computes on an input w by using a graph
representation ofM . M does not compute deterministically which means that, for a single input,
there are several possible computations. A computation begins in the state q0 andM either stays
in state q1 = q0 or it moves to some new state q1 that is reachable from q0 by edges labeled ε. Then
M reads the first symbol a1 of w. If δ(q1, a1) = ∅, thenM halts, else it moves to a state q′2 from
δ(q1, a1) and it either stays in state q2 = q′2 or it moves to a new state q2 that is reachable from
q′2 by edges labeled ε. . . . At the end, M reads the last symbol an of w. If δ(qn, an) = ∅, then
M halts, else it moves to a state q′n+1 from δ(qn, an) and it either stays in state qn+1 = q′n+1 or it
moves to a new state qn+1 that is reachable form q′n+1 by edges labeled ε. If qn+1 ∈ F , then we
say that the computation is accepting. Else, the computation is rejecting. We say thatM accepts
the input w if there exists an accepting computation ofM on w. If not, thenM rejects w.

16

q0

q1 q2

0 ε

1

1

0

1

Figure 2.2: NFAM2 as a weighted multigraph. The starting state is labeled by an incoming arrow
and the accepting states are marked by two circles.

To define what strings are accepted byM more formally, we say thatM accepts w ∈ Σ∗ if w
can be written as w = y1y2 . . . ym, where each yi is a member of Σε and if there exists a sequence
of states r0, r1 . . . rm ofM with three conditions:

• r0 = q0,

• ri+1 ∈ δ(ri, yi+1), for i = 0, 1 . . .m− 1, and

• rm ∈ F .

The first condition says that the machine starts out in the starting state. The second condition says
that when in state ri, the machine can move to the state ri+1 if it reads the symbol yi+1. Finally,
the third condition says that the machine accepts its input if the last state is an accepting state.

Example. The NFAM2 from Figure 2.2 accepts exactly such binary inputs that are composed of
blocks

• 1i for i ∈ N,

• 011 and

• 01i01 for i ∈ N.

The proof is left to the reader. �

Equivalence of DFAs and NFAs

It is clear from the definition that each DFAM = (Q,Σ, δ, q0, F) is also an NFA, if we imagine
the transition function of M mapping (q, a) ∈ Q × Σ to the set {δ(q, a)} and if we extend the
definition of the transition function to the domain Q× Σε by (q, ε) 7→ ∅. However, despite NFAs
seeming somewhat stronger, they accept only regular languages and are thus equivalent to DFAs.

Proposition 2.2.2. For each NFA, there exists a DFA that recognizes the same language.

Proof. LetM = (Q,Σ, δ, q0, F) be an NFA recognizing some language L ⊆ Σ∗. To describe a
DFAM ′ = (Q′,Σ, δ′, q′0, F

′) that will recognize L, let us first define Q′, q′0 and F ′.

17

• Q′ = P(Q) is the power set of Q. This definition reveals the main idea of how M ′ will
simulateM : it will keep track of which statesM can be when reading some input symbol.

• q′0 = S, where S is the set of all the states that are either q0 or are reachable from q0 by an
arrow labeled ε. Note that S is the set of all the possible states in whichM can be before it
reads the first symbol of an input.

• F ′ is the set of all the states X ∈ Q′ with X ∩ F not empty. Clearly, if M can reach an
accepting state after reading the last symbol of an input,M ′ should also accept that input.

To describe the transition function δ′, let us first define a function γ : Q× Σ→ Q′ as

γ(q, a) = the set of all the possible states of M that can be reached by M if it starts in
the state q, then follows some edges labeled ε, then it follows an edge labeled
a and then again it follows some edges labeled ε.

For X ∈ Q′ and a ∈ Σ, define
δ′(X, a) =

⋃
q∈X

γ(q, a).

We see that on an input w before M ′ scans its ith symbol, its state is the set of all the states in
whichM can be when scanning the ith symbol. ThusM ′ accepts the same language asM . �

Corollary 2.2.3. A language is regular if and only if some NFA recognizes it.

Proof. The if part is proven by Proposition 2.2.2 and the only if part is clear because DFAs are a
special form of NFAs. �

Operations on Regular Languages

In this section we first give three operations on languages called the regular operations and then
we prove that the set of regular languages is closed under these operations. We also prove that the
set of regular languages is closed under complementation and intersection.

There are three regular operations:

• The union L1 ∪ L2 of languages L1 and L2,

• the concatenation L1L2 of languages L1 and L2 and

• the star L∗ of a language L.

The concatenation of languages and the star operation were defined in Section 2.1.2. Let us prove
that regular languages are closed under regular operations.

Proposition 2.2.4. A language that is obtained from regular languages by regular operations is
regular.

Proof. Let L1 and L2 be regular languages. Then there exists a DFAM1 that recognizes L1 and
a DFAM2 that recognizes L2. We make proofs by picture to show how to construct

• an NFA that recognizes L1 ∪ L2 (see Figure 2.3),

• an NFA that recognizes L1L2 (see Figure 2.4),

18

M1

M2

M
ε

ε

Figure 2.3: Finite automataM1,M2 andM . IfM1 recognizes the language L1 andM2 recognizes
the language L2, thenM recognizes the language L1 ∪L2. The starting states of the automata are
labeled by incoming arrows and their accepting states are marked by two circles.

M1

M2

M

ε

ε

Figure 2.4: Finite automataM1,M2 andM . IfM1 recognizes the language L1 andM2 recognizes
the language L2, then M recognizes the language L1L2. The starting states of the automata are
labeled by incoming arrows and their accepting states are marked by two circles.

• an NFA that recognizes L∗2 (see Figure 2.5).

By Corollary 2.2.3 the languages L1 ∪ L2, L1L2 and L∗2 are regular. �

19

M2

M

ε
εε

ε

Figure 2.5: Finite automataM2 andM . IfM2 recognizes the language L2 thenM recognizes the
languageL∗2. The starting states of the automata are labeled by incoming arrows and their accepting
states are marked by two circles.

Next, we show that the class of regular languages is closed under complementation.

Proposition 2.2.5. The complement of a regular language is regular.

Proof. Let L be a regular language. Then there exists a DFAM = (Q,Σ, δ, q0, F) that recognizes
L. It is clear that the DFA (Q,Σ, δ, q0, Q\F) recognizes L, hence L is regular. �

A simple corollary of the above two results tells that regular languages are closed under inter-
section.

Corollary 2.2.6. The intersection of two regular languages is a regular language.

Proof. Let L1 and L2 be regular languages. By Proposition 2.2.5, the languages L1 and L2 are
regular, by Proposition 2.2.4 the language L1 ∪ L2 is regular and again by Proposition 2.2.5, the
language L1 ∩ L2 = L1 ∪ L2 is regular. �

2.2.3 Regular Expressions

Regular expressions are a way of describing a special type of languages which we will prove are
exactly the regular languages. They are defined inductively as follows. We say that R is a regular
expression (over the alphabet Σ) if R is either

1. a for some a ∈ Σ,

2. ε

3. ∅

20

4. (R1 ∪R2), where R1 and R2 are regular expressions (here ∪ is just a symbol, like + in the
arithmetic expression a+ b),

5. (R1R2), where R1 and R2 are regular expressions, or

6. R∗1, where R1 is a regular expression.

In items 1 and 2 of the definition, the regular expressions a and ε represent the languages {a} and
{ε}, respectively. In item 3, the regular expression ∅ represents the empty language. In items 4, 5,
and 6, the expression represents the languages obtained by taking the union or concatenation of the
languages given by expressions R1 and R2, or the star of the language given by R1, respectively.

Example. Let us consider the languages L1 and L2 recognized by the DFAM1 from Figure 2.1
and by the NFAM2 form Figure 2.2, respectively. If we recall, L1 is a binary language of strings
that start and end with the same symbol and L2 is the binary language of strings that are composed
of blocks

• 1i for i ∈ N,

• 011 and

• 01i01 for i ∈ N.

We know that these two languages are regular, however they are also given by the following two
regular expressions. L1 is given by(

1(0 ∪ 1)∗1
)
∪
(
0(0 ∪ 1)∗0

)
∪ 1 ∪ 0

and L2 is given by
(1 ∪ 011 ∪ 01∗01)∗. �

The next theorem tells us that languages given by regular expressions are exactly the regular
languages.

Theorem 2.2.7. A language is regular if and only if some regular expression describes it.

Proof. To prove the if part, we make an induction on the number of regular operations in a reg-
ular expression. If a regular expression contains no regular operation, then it represents a regular
language by Lemma 2.2.1. Else, let R be a regular expression that has k ≥ 1 regular operations.
Then R = R∗1 for some regular expression R1 with k − 1 regular operations, or R = R1R2 for
some regular expressions R1 and R2 with at most k − 1 regular operations each, or R = R1 ∪R2

for some regular expressions R1 and R2 with at most k− 1 regular operations each. By induction,
R represents a language that is in each of these cases obtained by a regular operation from regular
languages. Hence R represents a regular language by Proposition 2.2.4.

To prove the only if part, we introduce a new type of automata. A generalized non-deterministic
finite automaton (abbreviated as GNFA) is a 5-tuple M = (Q,Σ, δ, q0, qacc) where Q is a finite
set of states, q0, qacc ∈ Q are distinct starting and accepting states, Σ is the input alphabet fixed in
Section 2.1.3 and

δ : Q\{qacc} ×Q\{q0} → {regular expressions over Σ}

21

is a transition function.
We can present M as a weighted directed graph with loops on the vertex set Q, where the

weight on the edge qiqj is δ(qi, qj). Note this graph is “almost complete”, having all the possible
edges except for the edges from qacc and the edges to q0. It also has |Q| − 2 loops. An example of
such a graph is given in Figure 2.6.

q0

q1

q2

qacc

ε

0

1 ∪ 1(0 ∪ 1)∗1

∅

01 00∗

1∗

00∗

Figure 2.6: A GNFA represented as a weighted graph. The starting state is labeled by an incoming
arrow and the accepting state is marked by two circles. It is clear that this GNFA accepts only
binary strings that begin and end with the same symbol and we leave to the reader to verify that it
accepts all such strings and is thus equivalent to the DFA in Figure 2.1.

As the nameGNFA suggests,M will compute non-deterministically, hence there will be several
possible computations on a single input. Given an input w, M first chooses an edge going from
the starting state and a substring w(0, j1) of first few (possibly 0) letters of w. If w(0, j1) is an
element of the language given by the regular expression on the chosen edge, then M takes this
edge and comes to state q1. As in the first step,M then chooses an edge going from the state q1 and
a substring w(j1, j2) of the first few (possibly 0) letters of w(j1, |w|). If w(j1, j2) is an element
of the language given by the regular expression on the chosen edge, thenM takes this edge. The
computation continues this way for finitely many steps. IfM in the last step enters the state qacc
and during the computation it read the whole input (i.e., the parts of the input that were used to
travel through the states can be concatenated intow), then we say that the computation is accepting.
Else, it is rejecting. If there exists an accepting computation on an input w, then we say that M
accepts w. Else,M rejects w. Note that a GNFA computes exactly like an NFA, only that it reads
blocks of symbols from the input instead of just a single symbol or ε.

Now that we have defined the GNFAs, we can prove the only if part of the theorem. Let L be
a regular language and letM be a DFA that recognizes it. We first convertM to a GNFA M̃ :

• We add a new starting state q0 and connect it with the old one by an edge with weight ε.

• We add an accepting state qacc and we connect each of the old accepting states with qacc by
an edge with weight ε.

22

• For each ordered pair of vertices (qi, qj), if there are multiple edges from qi to qj , we delete
them and we put a single edge from qi to qj with the weight that is the union of the weights
of the deleted edges. If qi 6= qacc and qj 6= q0 and there is no edge from qi to qj , we add such
an edge and label it with ∅.

It is clear that M̃ is a GNFA that accepts the same language as M . Next, we are going to delete
vertices of M̃ one by one leaving q0 and qacc intact and changing the weights on the edges in such
a way that, after a deletion of a vertex, the automaton will recognize exactly the same language as
before. If we manage to delete all the vertices of M̃ except of q0 and qacc, we will be left with a
GNFA with just two vertices and one edge (from q0 to qacc) that accepts the same language as M̃ ,
which is L. Hence, the weight on the remaining edge will be a regular expression that represents
L.

The only thing left to show is how to delete a vertex from M̃ while not changing the language
it accepts. This is evident in Figure 2.7 where it is shown how the weight on every edge from M̃
should change when a vertex is deleted so that the language that M̃ accepts remains the same. �

qi qj

qd

R2

R3

R4

R1

qi qj
R1R

∗
2R3 ∪R4

Figure 2.7: Changing the regular expression R4 on the edge from qi to qj when deleting a vertex
qd of a GNFA. The same transformation is applied for every edge of the GNFA that is not incident
to qd.

23

24

Chapter 3

Turing Machines

Turing machines are a standard model of computation in theoretical computer science. They are
very simple, however powerful enough to simulate our computers. In this chapter we discuss the
basics (definition, running time, time related complexity classes, Church-Turing thesis, classes P,
NP andNP) and some technical topics about Turing machines (Section 3.3 and Section 3.6). While
most of the content in this chapter is on undergraduate level, there are some complex simulations
presented in Section 3.3, like fast simulations of a multi-tape Turing machine on a two-tape one.
In Section 3.6 we present an encoding of Turing machines that enables a construction of a code of
the composition of two Turing machines in linear time.

3.1 One-Tape Turing Machines

A one-tape non-deterministic Turing machine (abbreviated as one-tape NTM) is an 8-tuple
M = (Q,Σ,Γ,L, δ, q0, qacc, qrej), where

Q . . . a finite set of states,

Σ . . . the input alphabet fixed in Section 2.1.3,

Γ ⊃ Σ . . . a tape alphabet,

L ∈ Γ\Σ . . . a blank symbol,

δ : Γ×Q\{qacc, qrej} → P(Γ×Q× {−1, 1})\{∅}

. . . a transition function and

q0, qacc, qrej ∈ Q . . . pairwise distinct starting, accepting and rejecting states. The states qacc
and qrej are called halting states.

The machine M has a both-way infinite tape and we can number its cells as can be seen in
Figure 3.1. To give an input w toM means to write symbols of w on tape cells 0, 1 . . . (|w| − 1)
and to write the blank symbolL on all other tape cells. BeforeM starts the computation, it has the
head over the cell 0 and it is in the state q0. During a computation,M moves its head one cell at a
time, overwriting what is written below it with a symbol from Γ and changing the current state. A
next step ofM depends only on the current state and the symbol below the head. IfM is in a state
q and below the head is a symbol a, thenM can make a steps described by any of the triples from

25

δ(a, q). What this means is that if (b, r, d) ∈ δ(a, q), thenM can rewrite a below the head by b,
change the state into r and move in direction d (−1 for one cell left, 1 for one cell right). M halts
when it reaches a halting state.

cells: . . . −3 −2 −1 0 1 2 3 4 5 . . .

Figure 3.1: Numbering of tape cells of a one-tape Turing machine. The shaded part is a potential
input of length 4.

3.1.1 The Formal Definition of a Computation of a One-Tape NTM

A computation is more formally defined by a sequence of valid configurations.

• A valid configuration ofM is a triple C = (q, w1, w2), where q is a state ofM , and w1, w2

are non-empty strings over the alphabet Γ. If q = qrej, then we call C the rejecting config-
uration and if q = qacc, then we call C the accepting configuration. If q = q0, w1 = L
and w2 = wL where w ∈ Σ∗, then we call C the starting configuration for an input w.
Intuitively, a valid configuration describes a hypothetical situation that can happen during
a computation of M . The state q represents the current state of the machine, the tape has
the string w1w2 written on it while there are only blank symbols left and right of w1w2 and
the head is above the first symbol from w2. Note that a valid configuration does not include
the information about where on the tape the string w1w2 is written, i.e., where is the cell 0
relative to w1w2.

• A valid configuration C1 = (q, w1, w2) that is not accepting nor rejecting yields a configu-
ration C2 = (r, u1, u2) ifM can legally go from C1 to C2 in a single step. If w2 = av2 for
a ∈ Γ and v2 ∈ Γ∗, then C2 can be any of the valid configurations obtained the following
way:

– Take any (b, r, d) ∈ δ(a, q).
– If d = 1 then u1 = w1b. If |v2| = 0 then u2 = L, else u2 = v2.
– If d = −1, let w1 = v1c for v1 ∈ Γ∗ and c ∈ Γ. Then u2 = cbv2. If |v1| = 0, then
u1 = L, else u1 = v1.

• A computation of M is any sequence of valid configurations C1, C2, C3 . . . such that C1

is the starting configuration, configuration Ci−1 yields Ci for each i and the sequence is
infinite or ends in an accepting or rejecting configuration. If the computation is finite, we
say that it is accepting or rejecting depending on the final configuration. A transition from
one configuration of a computation to the next one is called a step.

We see thatM can have several possible computations on a single input. We say thatM accepts
an input w if there exists an accepting computation on w, otherwise we say thatM rejects w.

3.1.2 Giving an Input to a Turing Machine

It is clear from the definition of a computation that to give an input w ∈ Σ∗ to a one-tape NTM
M means to write the symbols of w in the tape cells from 0 to |w| − 1 of the input tape of M

26

and to fill all other cells with blank symbols (see Figure 3.1). However, we will often describe the
input for M in the way as “M is given a pair (w, u), w, u ∈ Σ∗” or “M is given a (code of a)
graph G” without specifying a particular encoding. And even if an encoding would be specified,
not all strings from Σ∗ necessarily represent a valid input, e.g. a pair of strings or a graph. When
we describe an input in this manner, we have some fixed natural encoding of objects in mind and
we allow the reader to have its own fixed natural encoding in mind. Additionally, we treat strings
that are not codes of any objects as codes of some fixed trivial object, like the pair (ε, ε) or the
graph with just one vertex.

3.1.3 Running Time

The number of steps that a one-tape NTM M makes on some computation ζ is called the length
of ζ and is denoted by |ζ|. Note that |ζ| could also be∞. For a function T : N → R>0, we say
that M runs in time T (n) if M makes at most T (n) steps on all computations on all inputs of
length n, for all n ∈ N. Note that if a Turing machine runs in time T (n), then all computations are
finite. We say thatM runs in time O(T (n)) if it runs in time T̃ (n) = O(T (n)) for some function
T̃ : N→ R≥0.

• IfM runs in time O(1), then we say that it runs in constant time.

• IfM runs in time O(n), then we say that it runs in linear time.

• If M runs in time O(p(n)) for some polynomial p, then we say that it runs in polynomial
time.

• If M runs in time O(2p(n)) for some polynomial p, then we say that it runs in exponential
time.

Our definition of running time is the same as in Arora and Barak [2, Chapter 2.1.2].

3.1.4 Language of a Turing Machine

A language L of M is the set of all inputs from Σ∗ that are accepted by M . We say that M
recognizes L and we write L = L(M). If additionallyM halts on all computations on all inputs,
we say thatM decides L. IfM runs in time T (n) and decides L, then we say thatM decides L in
time T (n).

3.1.5 About Our Definition of a One-Tape NTM

As can be seen from the definition, the head ofM must move in each step of a computation. The
same property is assumed also by e.g. Sipser [28]. We will use this property when discussing
crossing sequences in Chapter 5 because it will hold that the sum of the lengths of all crossing
sequences equals the number of steps. If we allowed the head to stay in place, we would have to
change the definition of the length of a computation on a part (Section 5.2.1).

We also assume that at the end of each finite computation the head ofM is in a halting state
(qacc or qrej), as can be seen from the definition of the transition function (it cannot map to the
empty set). This is a minor assumption and we can use it without loss of generality. It helps us in a
way that we know in which state the computation ends (rejecting or accepting or it runs for ever).
Additionally it implies that an NTM makes at least one step on each input, which is naturally true

27

for deterministic Turing machines as we shall see in the next subsection. This further implies that
if a Turing machine runs in time T (n), then T (n) ≥ 1 for all n.

Finally, because we fixed the alphabet Σ used for encodings (see Section 2.1.3), our Turing
machines have a fixed input alphabet.

3.1.6 One-Tape Deterministic Turing Machines

A one-tape deterministic Turing machine (abbreviated as one-tape DTM) is an 8-tuple
M = (Q,Σ,Γ,L, δ, q0, qacc, qrej), where Q is a finite set of states, Σ an input alphabet, Γ ⊃ Σ a
tape alphabet,L ∈ Γ\Σ a blank symbol,

δ : Γ×Q\{qacc, qrej} → Γ×Q× {−1, 1}

a transition function and q0, qacc, qrej ∈ Q pairwise distinct starting, accepting and rejecting states.
A one-tape DTM is actually a special form of a one-tape NTM, where the transition function

maps each (a, q) ∈ Γ×Q\{qacc, qrej} to a set with exactly one element. Hence, a DTM has exactly
one computation on each input.

3.2 Multi-Tape Turing Machines

For an integer k ≥ 2, a k-tape non-deterministic Turing machine is an 8-tuple
M = (Q,Σ,Γ,L, δ, q0, qacc, qrej), where Q is a finite set of states, q0, qacc, qrej ∈ Q pairwise
distinct starting, accepting and rejecting states, Σ the input alphabet fixed in Section 2.1.3, Γ ⊃ Σ
a tape alphabet,L ∈ Γ\Σ a blank symbol and

δ : Γk ×Q\{qacc, qrej} → P(Γk ×Q× {−1, 0, 1}k)\{∅}

a transition function.
The machineM has k both-way infinite tapes, where one of them is special and is called the

input tape. To give an input w toM means the same as to give an input to a one-tape NTM, if we
consider only the input tape and all other tapes are filled only with blank symbols. BeforeM starts
the computation, it has the head on the input tape over the cell 0 (on other tapes the head is over
any cell because they are all equivalent) and it is in the state q0. During a computation,M moves
its heads one cell at a time, possibly overwriting what is written below them with symbols from Γ
and changing the current state. A next step ofM depends only on the current state and the symbols
below all the k heads. IfM is in a state q and below the heads are symbols (a1, a2 . . . ak), thenM
can make any of the steps from δ(a1, a2 . . . ak, q).

We will not describe a formal definition of computation as we did by one-tape NTMs. It is
quite cumbersome but very intuitive and analogous to the formal definition of a computation of
a one-tape NTM. The definition of running time and languages of k-tape Turing machines is the
same as by one-tape Turing machines.

Amulti-tape non-deterministic Turing machine is a one-tape NTM or a k-tape NTM for k ≥ 2.

3.2.1 About Our Definition of a Multi-Tape NTM

For k ≥ 2 and for a k-tape Turing machineM , the heads ofM do not need to move on each step of
a computation. This is because it is easier to construct a Turing machine if you do not need to care
about moving each head in each step. Recall that for one-tape Turing machines we wanted their

28

head to move in each step so that the analyses of crossing sequences would be easier. For multi-tape
Turing machines, the author is not aware of any notion analogous to crossing sequences.

3.2.2 Multi-Tape Deterministic Turing Machines

A k-tape deterministic Turing machine is a special form of a k-tape NTM where the transition
function maps each element to a set with exactly one element (analogously to one-tape DTMs).

3.3 How Different Attributes of Turing Machines Influence the Time
Complexity

We defined Turing machines in such a way that we have the following:

{one-tape DTMs} ⊆ {one-tape NTMs} ⊆ {multi-tape NTMs} and
{one-tape DTMs} ⊆ {multi-tape DTMs} ⊆ {multi-tape NTMs}.

Hence, all Turing machines defined so far are multi-tape NTMs and one-tape DTMs are of all types.
In this section we try to answer the following question: If a language L is decided in time T (n)

by one type of a Turing machine, how fast can it be decided on other types of Turing machines?
In addition to the above types we also consider a 2-tape Turing machine and a Turing machine that
can make at most 2 non-deterministic choices in each step. This will tell us how strong our models
are when considering running time. In Section 3.3.2 we prove a so-called linear speedup theorem
(Corollary 3.3.7) which tells that, for each language L that is decided in time T (n) by some NTM
and for each constant ` ∈ N, there exists a multi-tape NTM that decides L in time

2−`T (n) + (1− 2−`)n+ 1,

which is asymptotically 2−`T (n) if n = o(T (n)).
We start by a simple lemma that holds for all types of Turing machines defined so far in this

dissertation.

Lemma 3.3.1. If a multi-tape NTM M runs in time T (n) and there exists n0 ∈ N such that
T (n0) < n0 + 1, then

• M never reads the (n0 + 1)st symbol of any input,

• M runs in constant time,

• there exist finite languages L1 ⊆
n0−1⋃
i=0

Σi and L2 ⊆ Σn0 such that L(M) = L1 ∪ (L2Σ∗) ,

• M accepts a regular language.

Proof. Suppose an input w of length at least n0 + 1 is given toM and let w0 = w(0, n0) be the
starting substring of w of length n0. BecauseM on any computation on input w0 makes at most
n0 steps, it never reads the blank symbol to the right of w0. This means thatM on input w never
reads the (n0 + 1)st symbol of w and hence it computes the same as on the input w0. This implies
thatM on any input of length more than n0 makes exactly as many steps as on some input of length
n0.

29

BecauseM makes at most T (n) steps on any computation on inputs of length n, there are only
finitely many computations on inputs of length at most n0. If ζ is a longest such a computation,
thenM runs in time |ζ|.

Let L1 ⊆ L(M) be the set of all strings from L(M) of length strictly less that n0 and let L2 ⊆
L(M) be the set of all strings from L(M) of length exactly n0. We see that L(M) = L1∪(L2Σ∗).

Because L1 and L2 are finite, then by Proposition 2.2.1 they are regular. Because Σ∗ is also a
regular language, L(M) is regular by Proposition 2.2.4. �

3.3.1 Reducing the Tape Alphabet

In this section we will show that a larger tape alphabet does not help much in reducing time com-
plexity for deciding a language. First, we consider a special case, analyzed also in Lemma 3.3.1.

Lemma 3.3.2. Let T : N → R>0 be such that T (n0) < n0 + 1 for some integer n0 ∈ N. If a
language L ⊆ Σ∗ is decided in time T (n) by a multi-tape NTM, then there exists a one-tape DTM
that decides L in time O(1) using the tape alphabet Σ ∪ {L}.

Proof. By Lemma 3.3.1 there exist finite languages

L1 ⊆
n0−1⋃
i=0

Σi and L2 ⊆ Σn0

such that L = L1 ∪ (L2Σ∗). Let us describe a one-tape DTMM that decides L in time O(1). On
an input w, the machine M first verifies whether w ∈ L1 or whether w begins with some string
fromL2. If so, thenM accepts, else it rejects. This can be done inO(1) deterministic steps without
changing the content of the tape, becauseM never needs to visit the (n0 + 1)st cell of its tape. �

Next, we prove that the size of Γ does not matter a lot when considering multi-tape Turing
machines with more than one tape.

Proposition 3.3.3. For an integer k > 1, if a languageL ⊆ Σ∗ is decided in time T (n) by a k-tape
Turing machineM , then it is also decided by a k-tape Turing machine of the same type (NTM or
DTM) in time O(T (n)) using the tape alphabet Σ ∪ {L}.

Proof. If there is an integer n0 ∈ N such that T (n0) < n0 + 1, then by Lemma 3.3.2 we can
define a one-tape DTM M̃ that decides L in time O(1) using the tape alphabet Σ∪ {L}. Because
T (n) is a running time of some Turing machine it follows that T (n) = Ω(1), hence M̃ runs in time
O(T (n)). We can add k − 1 redundant tapes to M̃ so that the proposition holds.

We are only left with the case where T (n) ≥ n + 1 for all n ∈ N. Let Γ be the tape alphabet
ofM and let each symbol of Γ\{L} be represented by a unique binary sequence of length exactly
dlog(|Γ| − 1)e. Let us describe a k-tape Turing machine M̃ of the same type asM that uses the
tape alphabet Σ ∪ {L} and decides L(M) in time O(T (n)).

On an inputw ∈ Σ∗, M̃ first rewrites the input in such a way that each input symbol is replaced
by its binary sequence. Using the second tape, this can be done in time O(n). Note that the length
of the input was increased by a factor of dlog(|Γ| − 1)e. Next, M̃ simulatesM step by step, using
only the binary codes of symbols from Γ\{L} and using dlog(|Γ|−1)e consecutive blank symbols
as a one blank symbol ofM . For each step ofM , M̃ makes O(dlog(|Γ|−1)e) = O(1) steps, hence
M̃ runs in time O(n+ T (n)) = O(T (n)). �

30

The next proposition tells us what is different with one-tape Turing machines.

Proposition 3.3.4. If a language L ⊆ Σ∗ is decided in time T (n) by a one-tape Turing machine
M , then it is also decided by a one-tape Turing machine of the same type (NTM or DTM) in time
O(T (n) + n2) using the tape alphabet Σ ∪ {L}.

Proof. The proof is the same as that of Proposition 3.3.3, only that when encoding the input ofM
in binary, we use O(n2) steps because we have only one tape. �

3.3.2 Linear Speedup

In the preceding section we saw in Proposition 3.3.3 that we can reduce the tape alphabet of a multi-
tape Turing machines to the minimal one if we allow a Turing machine to run for a multiplicative
constant factor longer. In this section wewill show the converse: We can speed up a Turingmachine
if we allow it to use more tape symbols or additional tapes.

Proposition 3.3.5. For k > 1, if a language L ⊆ Σ∗ is decided in time T (n) by a k-tape NTMM ,
then it is also decided by some k-tape NTM M̃ in time d1

2T (n)e+ d3
2ne+ 1. IfM is deterministic,

then M̃ can also be deterministic.

Proof. The idea for the construction of M̃ is very simple. We can define tape symbols Γ̃ of M̃ so
that they will represent two symbols from adjacent tape cells of M . Then we simulate two steps
ofM in just one step of M̃ by ensuring that all information needed to perform two steps ofM is
below the heads of M̃ and stored in the states of M̃ .

Define the tape alphabet Γ̃ of M̃ as

Γ̃ = Σ ∪ {L} ∪ Γ2,

where Γ is the tape alphabet of M . Let us now explain how M̃ computes on an input w =
w1w2 . . . wn, where wi ∈ Σ for all i. First, M̃ writes the following on the second tape:

(L,L)(w3, w4)(w5, w6) . . . (wn−1, wn)

or
(L,L)(w3, w4)(w5, w6) . . . (wn,L),

depending on whether n is odd or even, and it deletes the content of the first tape. Note that the
first two symbols of the input are nowhere on the tape. However, M̃ stores them using states. Then
M̃ copies the content of the second tape to the first tape leaving only blank symbols on the second
tape, which enables the head of the first tape to be over the “first” symbol (L,L) of the new input.
This all can be done in at most d3

2ne + 1 steps. In the simulation ofM that follows, M̃ will use
only symbols from Γ2 on all tapes and it will treat each blank symbol as (L,L) ∈ Γ2.

M̃ simulates steps ofM two by two. Let us first present the main invariant of the simulation.
If the content of the ith tape of M̃ before simulating a jth and (j + 1)st step ofM is

. . .LL(a1, a2)(a3, a4) . . . (a2l+1, a2l+2)LL . . .

and the ith head of M̃ is above the symbol (a2m+1, a2m+2), then the content of the ith tape ofM
before the jth step is either

31

. . .LLa1a2a3 . . . a2m−1a2mb1b2a2m+1a2m+2a2m+3 . . . a2l+1a2l+2LL . . . (3.1)

or

. . .LLa1a2a3 . . . a2ma2m+1a2m+2b1b2a2m+3a2m+4 . . . a2l+1a2l+2LL . . . (3.2)

where the symbols b1 and b2 are stored using the states of M̃ . The ith head ofM before a jth step
is over one of the symbols b1, b2, a2m+1 or a2m+2. Even more is true, if the case (3.1) is the right
one, then the head ofM is above one of the symbols b2 or a2m+1, and if the case (3.2) is the right
one, then the head ofM is above one of the symbols b1 or a2m+2. Which case is the right one and
where the ith head ofM lies is stored using the states of M̃ .

It is clear that the information that M̃ has before simulating the jth and the (j + 1)st step of
M is enough to perform two steps ofM in a single step of M̃ , because for each head, M̃ knows
the state, the symbols below the heads, at least one symbol to the left of each head and at least one
symbol to the right of each head.

Let us show how M̃ canmaintain themain invariant. We have to consider four basic cases: (3.1)
and (3.2) and for each of them there are 2 possibilities where the ith head of M is. For each of
these cases, the ith head ofM after two steps can stay in place or move one or two cells to the left
or to the right. Because of the symmetry, we will only deal with the case (3.1).

• SupposeM has its head over the symbol b2.

– If the position of the ith head of M changes for two cells to the left after the jth and
the (j + 1)st step, then the ith head of M̃ moves one cell to the left, not changing the
content of its ith tape, but remembering in its state that we now have case (3.2) with
the ith head ofM above the right symbol below the head of M̃ . Also the symbols b1
and b2 get updated.

– If the position of the ith head ofM changes for one cell to the left in the jth and the
(j + 1)st step, then the ith head of M̃ moves one cell to the left, not changing the
content of its ith tape, but remembering in its state that we now have case (3.2) with
the ith head ofM above the (updated) symbol b1. Also the symbol b2 gets updated.

– If the position of the ith head ofM remains the same after the jth and the (j+1)st step,
then the ith head of M̃ stays in place and the symbols b1, b2 and a2m+1 get updated.

– If the position of the ith head ofM changes for one cell to the right after the jth and
the (j + 1)st step, then the ith head of M̃ stays in place and the symbols b2 stored in
the state and a2m+1 below the ith head get updated. Again we have case (3.1), but with
the ith head ofM above the (updated) symbol a2m+1.

– If the position of the ith head ofM changes for two cells to the right after the jth and
the (j + 1)st step, then the ith head of M̃ moves one cell right and the symbols b1
and the updated symbol b2 are written on the tape where the pair (a2m+1, a2m+2) was
before. In the state, M̃ remembers the updated symbol a2m+1 and the symbol a2m+2.
We now have case (3.1) again with the ith head ofM above the symbol a2m+2 stored
in the state.

32

• SupposeM has its head over the symbol a2m+1.

– If the position of the ith head ofM changes for two cells to the left after the jth and the
(j+ 1)st step, then the ith head of M̃ moves one cell left, remembering in its state that
we now have case (3.2) with the ith head ofM above the symbol b1. Also the symbols
b2 and a2m+1 get updated.

– If the position of the ith head ofM changes for one cell to the left after the jth and the
(j + 1)st step, then the ith head of M̃ stays in place and the symbols b2 stored in the
state and a2m+1 below the ith head get updated. Again we have case (3.1), but with the
ith head ofM above the updated symbol b2.

– If the position of the ith head of M remains the same after the jth and the (j + 1)st
step, then the ith head of M̃ stays in place and the symbols b2, a2m+1 and a2m+2 get
updated.

– If the position of the ith head ofM changes for one cell to the right after the jth and the
(j + 1)st step, then the ith head of M̃ moves one cell to the right, writing the symbol
(b1, b2) instead of (a2m+1, a2m+2) and remembering the updated symbols a2m+1 and
a2m+2 in the state. We again have case (3.1) with the head over the updated symbol
a2m+2 stored in the states.

– If the position of the ith head ofM changes for two cells to the right after the jth and
the (j + 1)st step, then the ith head of M̃ moves one cell right and the symbols b1 and
the symbol b2 are written on the tape where the pair (a2m+1, a2m+2) was before. In the
state, M̃ remembers the updated symbols a2m+1 and a2m+2. We now have case (3.1)
again with the ith head ofM above the symbol a2m+3.

It is clear that M̃ runs in time d1
2T (n)e+ d3

2ne+ 1. �

It might seem that the increase of the alphabet or the number of states is necessary to reduce the
running time. However, another way to reduce the running time is to increase the number of tapes
of a Turing machine.

Lemma 3.3.6. For k ≥ 1, if a language L ⊆ Σ∗ is decided in time T (n) by a k-tape NTM M ,
then it is also decided by some (4k + 3)-tape NTM M̃ in time d1

2(T (n) − n)e + n where M̃ has
the same tape alphabet Γ and the same set of states Q as M . If M is deterministic, then M̃ can
also be deterministic.

Proof. As in the proof of Proposition 3.3.5, the idea is very simple. M̃ will simulateM in such
a way, that it will use four tapes to handle one tape ofM . The four tapes that will handle the ith
tape ofM will be called the ith block. The input tape and two additional tapes called the counting
tape and the parity tape of M̃ will be special and will not be in any block. We can number the
cells of each ofM ’s tapes with integers as in Figure 3.1 (for non-input tapes, the cell 0 coincides
with the position of the corresponding head before the beginning of a computation). Let the first
of the four tapes of the ith block contain exactly the cells of the ith tape ofM that are labeled by
integers divisible by 3, let the second tape contain exactly the cells labeled by integers congruent
to 1 modulo 3 and let the third tape contain exactly the cells labeled by integers congruent to 2
modulo 3. The fourth tape of the ith block will only be supplementary and the head above this tape
will never move. If there will be a symbol L below this head, this will mean that the ith head of
M is on a cell labeled by an integer divisible by 3. If there will be a symbol 0 below this head, this

33

will mean that the ith head ofM is on a cell labeled by an integer congruent to 1 modulo 3 and if
there will be a symbol 1 below this head, this will mean that the ith head ofM is on a cell labeled
by an integer congruent to 2 modulo 3.

M̃ will interleave the copying of the input to the first block and the simulation of a computation
ofM . In each step, M̃ will simulate exactly one step ofM or exactly two steps ofM , depending
on whetherM would read a new input symbol or not. IfM would read a new input symbol, then
M̃ will simulate only this (one) step of M , else it will simulate exactly two steps of M . Let us
explain the invariants during the computation of M̃ .

For each block i, except for the first block, the following will hold: before the simulation of the
jth (and possibly the (j+1)st) step ofM , the content of each of the first three tapes of the ith block
will be as described in the first paragraph of this proof (each tape contains every third symbol of
the ith tape ofM before the jth step). The fourth tape of the ith block tells us on which of the three
tapes the head ofM should be and the head on this tape is exactly on the cell that corresponds to the
cell ofM with the ith head on it. The heads on the other two tapes are on the cells that correspond
to the left and the right cell of where the head ofM is. For the first block (representing the input
tape of M), the same holds except that instead of the input symbols that have not been read yet,
there are blank symbols.

To support the first block which partially describes the input tape of M , we have three more
tapes: the input tape, the counting tape and the parity tape. On the input tape, the head will always
be on the leftmost unread input symbol, if there exists such. If all the symbols of the input have
been read, the head on the input tape will be on some blank symbol and will not move for the rest of
the simulation ofM . Also the counting tape and the parity tape will become redundant when the
input is read. Before this happens, the counting tape will measure how far left of the leftmost unread
input symbol the first head ofM is. There will be only one non-blank symbol on the counting tape,
say 0, which is written in the first step of M̃ . If the head on the counting tape will be x cells left of
the symbol 0, this means that the first head ofM is either 2x or 2x+ 1 cells left from the leftmost
unread input symbol. The function of the parity tape is only to store the information whether the
first head ofM is 2x or 2x+ 1 cells left from the leftmost unread input symbol. Hence, the head
of the parity tape does not need to move at all and it needs only to change two symbols, say 0 and
1. If there is a blank symbol below the head of the parity tape, we know that the computation has
not yet begun and that M̃ has to write 0 on the counting tape in the first (i.e., next) step and one of
the symbols 0 or 1 on the parity tape, depending on whether the input head of M̃ moves or not.

We now know that M̃ will always simulate exactly two steps of M except for the following
three exceptions when it will simulate exactly one step ofM .

1. The head on the parity tape reads the blank symbol L (M̃ is starting its computation) and
the head on the input tape of M̃ reads a symbol from Σ (not the blank symbol).

2. The head on the counting tape reads the symbol 0, the head on the parity tape reads the
symbol 0 and the head on the input tape of M̃ reads a symbol from Σ (not the blank symbol).

3. M goes to a halting state in the next step (qacc or qrej).

This altogether implies that M̃ runs in time d1
2(T (n)− n)e+ n.

M̃ only uses the states of M to maintain all the invariants. If M̃ has to simulate the jth and
possibly the (j + 1)st step ofM , then M̃ is in the same state asM before these two steps. If the
input head of M before the jth step is not above a new symbol of the input, then M̃ has enough
information below its heads to simulate two steps ofM , else it has enough information to simulate
one step ofM . It is clear that all the invariants can be maintained. �

34

If we use Lemma 3.3.6 several times, we can, for any positive constant c, decrease any super-
linear1 running time T (n) of a multi-tape Turing machine down to n+1 for small inputs and down
to 1

cT (n) for long enough inputs, as it can be deduced from the following corollary. With such a
transformation, the Turing machine gets several additional tapes.

Proposition 3.3.7. For every constant ` ∈ N, if a language L ⊆ Σ∗ is decided in time T (n) by a
multi-tape NTMM , then it is also decided by some multi-tape NTM M̃ in time

2−`T (n) + (1− 2−`)n+ 1

where M̃ has the same tape alphabet Γ and the same set of states Q asM . IfM is deterministic,
then M̃ can also be deterministic.

Proof. Using Lemma 3.3.6 ` times we get a multi-tape Turing machine M̃ that has the same tape
alphabet Γ and the same set of states Q asM . It runs in time⌈

1

2

(
· · ·
⌈

1

2

(⌈
1

2
(T (n)− n)

⌉
+ n− n

)⌉
· · ·+ n− n

)⌉
+ n

=

⌈
1

2
· · ·
⌈

1

2

⌈
1

2
(T (n)− n)

⌉⌉
· · ·
⌉

+ n,

where there are ` divisions by 2 on each side of the equality. Using that⌈
dx/ae
b

⌉
=
⌈ x
ab

⌉
holds for all x ∈ R and positive integers a, b, we get that M̃ runs in time⌈

2−`(T (n)− n)
⌉

+ n ≤ 2−`T (n) + (1− 2−`)n+ 1,

which proves the corollary. �

3.3.3 Reducing the Number of Tapes

In this section we show how we can reduce the number of tapes of a Turing machine so that the
new machine would recognize the same language and it would run only slightly slower than the
original Turing machine. We give three results: in the first result we reduce the number of tapes to
1 and in the second (non-deterministic case) and the third (deterministic case) result we reduce the
number of tapes to 2.

In the following proposition we show how to reduce a multi-tape Turing machine to a one-tape
Turing machine by only squaring the running time. Later in Proposition 5.1.10 we show that this
is optimal by proving that the problem Palindrome cannot be decided by a one-tape NTM in time
o(n2) while it can clearly be decided in linear time by a 2-tape DTM.

Proposition 3.3.8. If a language L ⊆ Σ∗ is decided in time T (n) by a multi-tape NTMM , then
it is also decided by some one-tape NTM M̃ in time O(T (n)2). IfM is deterministic, then M̃ can
also be deterministic.

1A function f : N→ R≥0 is superlinear if lim f(n)/n =∞.

35

Proof. Suppose that the multi-tape NTMM = (Q,Σ,Γ,L, δ, q0, qacc, qrej) has k > 1 tapes. We
will define a one-tape NTM M̃ = (Q̃,Σ, Γ̃,L, δ̃, q̃0, qacc, qrej) that will simulate M on just one
tape and will run in timeO(T (n)2). This will be done by encoding configurations of a computation
of M on just one tape, using more symbols. Note that for each configuration of M , we need to
know what symbols are on each tape, where the heads are on each tape and what is the current state
ofM . The content of the tapes and the positions of the heads ofM will be encoded on the tape of
M̃ , while the current state ofM will be remembered by the states of M̃ .

To define the tape alphabet Γ̃, let Γ′ be the alphabet that has exactly the same symbols as Γ,
except that symbols in Γ′ have an additional apostrophe. In other words, for each a ∈ Γ we have
a′ in Γ′. Without the loss of generality we may assume that Γ ∩ Γ′ = ∅. We define

Γ̃ = Σ ∪ {L} ∪
(
Γ ∪ Γ′

)k
where we assume that the sets Σ, {L} and (Γ ∪ Γ′)k are pairwise disjoint.

Let us describe the meaning of the symbols in Γ̃ and how they help us in encoding a con-
figuration of M . Symbols from Σ ∪ {L}, while being initially on the tape, will be replaced by
symbols from (Γ ∪ Γ′)k as soon as the head of M̃ comes across them. When this happens, a
symbol a ∈ Σ ∪ {L} will be treated the same as if there was the symbol (a,L,L . . .L) in-
stead of a. The only exception is at the start of a computation when the first symbol a of the
input is treated as (a′,L′,L′ . . .L′). (If the input is ε, then a = L.) The meaning of a symbol
(x1, x2 . . . xk) ∈ (Γ ∪ Γ′)k is the following: if xi ∈ Γ′, then the head of the ith tape ofM is above
this symbol, else xi is a symbol in a cell of the ith tape ofM and the ith head ofM is not above
this cell. This way we can maintain on just one tape the content of the tapes and head positions of
M during the simulation.

During the simulation ofM , there will always be blank symbols on the left part of the tape of
M̃ , followed by some cells with symbols from (Γ ∪ Γ′)k, followed only by symbols from Σ∪{L}.
We call the part of the tape of M̃ with symbols from (Γ ∪ Γ′)k written on it the visited part of the
tape. To simulate one step ofM , the Turing machine M̃ will pass through the visited part of the
tape left to rigth or vice versa three times, each time adding a new cell to the visited part. If M̃ is
passing to the left, then one symbol is added to the visited part on its left side, else one symbol is
added to the visited part on its right side. In the first of the three passes, M̃ reads and remembers
(using states) all the k symbols below the heads ofM in the current configuration ofM . Then it
uses non-determinism to decide which non-deterministic choice to simulate for the next step ofM
and in the next two passes, it changes the symbols on the M̃ ’s tape so that they represent the next
configuration ofM . When passing to the left it simulates the heads ofM that move to the left in
the simulated step and when passing to the right, it simulates the heads ofM that move to the right
in the simulated step.

Suppose an input of length n is given to M̃ . Note that for each simulated step ofM , the visited
part of the tape of M̃ gets increased by 3 cells. Because we simulate at most T (n) steps, the visited
part contains at most 3T (n) cells at the end of the simulation. Hence, for each simulated step of
M , M̃ makes at most 9T (n) steps which sums up to 9T (n)2 = O(T (n)2) steps altogether. �

In the simulation of multi-tape Turing machines by one-tape ones in Proposition 3.3.8 we used
many new symbols in the tape alphabets of one-tape Turing machines. The following corollary
tells us that this was in fact not need.

Corollary 3.3.9. If a language L ⊆ Σ∗ is decided in time T (n) by a multi-tape NTMM , then it
is also decided by some one-tape NTM M̃ in time O(T (n)2) using the tape alphabet Σ ∪ {L}. If
M is deterministic, then M̃ can also be deterministic.

36

Proof. If there is some integer n0 ∈ N such that T (n0) < n0 + 1, then by Lemma 3.3.2 there
exists a one-tape DTM M̃ that decides L in time O(1) using the tape alphabet Σ ∪ {L}. Because
T (n) is a running time of some Turing machine, it follows that T (n) = Ω(1), hence M̃ runs in
time O(T (n)2) .

Now suppose that T (n) ≥ n + 1 for all n. By Proposition 3.3.8 we get a one-tape NTM M̄
that decides L in time O(T (n)2) and by Lemma 3.3.4 we can find a one-tape Turing machine M̃
that decides L in time O(T (n)2 +n2) and uses the tape alphabet Σ∪{L}. Because T (n) ≥ n+1
for all n, M̃ runs in time O(T (n)2). Lemma 3.3.4 and Proposition 3.3.8 tell also that if M is
deterministic, then M̃ can also be deterministic. �

In the next proposition we show how the time complexity changes when reducing a multi-tape
NTM to a 2-tape machine. The idea of the proof is from Seiferas, Fischer and Meyer [27].

Proposition 3.3.10. If a language L ⊆ Σ∗ is decided in time T (n) by a multi-tape NTMM , then
it is also decided by some 2-tape NTM M̃ in time O

(
T (n)

)
.

Proof. The NTM M̃ will compute in two main phases. In the first phase, M̃ will non-determinis-
tically guess “snapshots” of a computation ofM and in the second phase it will verify whether the
snapshots could arise in some accepting computation ofM . Then M̃ will alternate between these
two phases a few times to simulate enough steps ofM . M̃ will accept an input if and only ifM
would.

LetM = (Q,Σ,Γ,L, δ, q0, qacc, qrej) be a k-tape NTM. A snapshot of a configuration ofM is
a (k+1)-tuple consisting of the current state ofM and the current symbols below the heads ofM .
The snapshot determines which actions are legal as the next move and whether the configuration
is an accepting one or a rejecting one. Given a snapshot (q, a1, a2 . . . ak) ∈ Q× Γ× · · · × Γ, the
set of legal moves is exactly δ(q, a1, a2 . . . ak).

Suppose an input w is given to M̃ . In the first phase, for some ` ∈ N determined later, M̃
on the second tape non-deterministically guesses an alternating sequence of length ` of snapshots
and legal moves ofM . Note that to guess a legal move, M̃ needs only the information about the
preceding snapshot. However, the sequence of snapshots and legal moves may not correspond to
a valid computation, but we will deal with this in the second phase. Note that if M̃ uses a big
enough alphabet so that it can encode any legal move or a snapshot in a single symbol, then M̃
needs only ` cells on the second tape to write down the sequence. If some snapshot is from a halting
configuration, i.e., it contains a halting state, then M̃ does not write down the rest of the sequence
of snapshots and legal moves.

In the second phase, M̃ deterministically verifies whether the sequence of snapshots and legal
moves on the second tape corresponds to a legal computation of M on the input w. It does so
one tape ofM at a time, using its first tape and head to perform exactly as theM ’s tape and head
that are being simulated and the second tape to tell the next move. Not to forget the input w, M̃
stores it using more symbols which encode two symbols at a time: the original one from the input
tape of M̃ and another one from the tape ofM currently being simulated. Hence, the input tape
of M̃ actually “contains” two tapes: the unchanged input tape of M̃ and the tape ofM currently
being simulated. Note that in the second phase M̃ can verify in time O(k`) = O(`) whether the
snapshots and legal moves from the first phase correspond to a legal computation ofM on the input
w. There are three possible outcomes of the second phase.

• If the sequence from the first phase does not correspond to a legal computation ofM on the
input w, then M̃ rejects.

37

• If the sequence from the first phase corresponds to a legal computation of M on the input
w that finishes in a halting configuration, then M̃ returns the same asM would, i.e., if the
halting configuration is accepting, then M̃ accepts, else it rejects.

• If the sequence from the first phase corresponds to a legal computation of M on the input
w and it does not finish in a halting configuration, then M̃ restores the input and runs the
first phase again, this time guessing a sequence of length 2`. Note that, using the first tape
to measure `, M̃ can do the first phase in time O(`).

Suppose that initially ` = 1. Because M runs in time T (n), ` will get at most 4T (n) on the
inputs of length n. Hence, M̃ runs in time

O(1) + O(2) + O(4) + O(8) + · · ·+ O(2dlog 4T (n)e) = O(T (n)).

It is clear that M̃ accepts an input w if and only if there exists an accepting computation ofM on
the input w, hence M̃ decides the same language asM . �

The next corollary tells us that when reducing a multi-tape NTM to a 2-tape NTM, we do not
need to increase the tape alphabet to get the same performance.

Corollary 3.3.11. If a language L ⊆ Σ∗ is decided in time T (n) by a multi-tape NTMM , then it
is also decided by some 2-tape NTM M̃ with the tape alphabet Σ ∪ {L} in time O

(
T (n)

)
.

Proof. Proposition 3.3.10 gives us a two-tape Turing machine that decides L and runs in time
O
(
T (n)

)
and Proposition 3.3.3 assures that this Turing machine can have the tape alphabet Σ ∪

{L}. �

Finally, we show how the time complexity changes when reducing amulti-tape DTM to a 2-tape
DTM. Because we have to compute deterministically this time, we cannot “guess” the computation,
hence we need another clever method. While the original idea of the proof is from Hennie and
Stearns [18], we will follow the proof from [2, Chapter 1].

Proposition 3.3.12. If a language L ⊆ Σ∗ is decided in time T (n) by a multi-tape DTMM , then
it is also decided by some 2-tape DTM M̃ in time O

(
T (n) log T (n)

)
.

Proof. If there is some integer n0 ∈ N such that T (n0) < n0 + 1, then by Lemma 3.3.2 there
exists a one-tape DTM M̃ that decides L in time O(1) using the tape alphabet Σ∪{L}. It follows
that there exists a 2-tape DTM that decides L and runs in time O

(
T (n) log T (n)

)
. Hence, we may

suppose that T (n) ≥ n+ 1 for all n.
The idea of the proof is very similar to the idea of the proof of Proposition 3.3.8. If we recall,

we increased the tape alphabet of M in such a way that we could encode all of its tapes on just
one tape. We also marked the positions of all the k heads. Then we needed to pass between the
leftmost cell that marked the position of some head and the rightmost one, which resulted in the
need of O(T (n)) steps of M̃ to simulate one step of M . Hence, to simulate M more efficiently,
we need to keep all of the k heads together. This will be done in such a way that, instead of moving
the heads, we will actually be moving the content of the tapes ofM left and right.

IfM has the tape alphabet Γ, then M̃ will have the tape alphabet

Γ̃ = Σ ∪ {L} ∪
(
(Γ ∪ {#})k × {0, 1}

)
,

38

where # 6∈ Γ. Let us explain the meaning of a symbol (a1, a2, a3 . . . ak, b) ∈ (Γ∪{#})k×{0, 1}.
The symbol b ∈ {0, 1} will mark the beginnings of zones of the tape of M̃ defined in the next
paragraph. For all i, if ai ∈ Γ then ai will correspond to some symbol on the ith tape of M ,
else ai = # which means that this symbol should be ignored when considering the ith tape of
M . After each simulated step of M , if we consider only the ith element of the symbols from
(Γ ∪ {#})k × {0, 1} on the input tape of M̃ and we discard the symbols #, we get exactly the
content of the ith tape ofM .

The input tape of M̃ will be the main simulating tape and, before simulating a step ofM , it will
encode the exact configuration ofM before this step. The second tape, however, will serve only as
a tool for fast shifting of content of the first tape from one place to another. So let us explain how
the first tape will be organized. Its cells are marked with integers as in Figure 3.1 and we divide
them into zonesR0, L0, R1, L1 . . . as follows. The cell at the location 0 is not in any zone, the cells
1 and 2 belong to the zone R0 while the cells −1 and −2 belong to the zone L0. The cells 3, 4, 5
and 6 belong to the zone R1 while the cells −3,−4,−5 and −6 belong to the zone L1. Generally,
for every i ≥ 1, the zoneRi contains the first 2i+1 cells that are right of the zoneRi−1 and the zone
Li contains the first 2i+1 cells that are left of the zone Li−1 (see Figure 3.2). When simulatingM ,
M̃ will try to keep the positions of all the heads ofM over the cell 0, shifting some of the content
of each tape through zones.

1
L
L
a

1 0
L#
L#
n #

R0

10
L#
L#
L#

L0

L
L
L
L

L
L
L

L
L
L a n

##
##
##

##
##
##

11 00 00 00

R1L1

L
L
L
L
L
L
L
L

L
L
L

L
L
L

L
L
L

L
L
L a s LL

##
##
##

##
##
##

##
##
##

##
##
##

11 00 00 00 00 00 00 00

R2L2

LLL. . . LLL . . .

Figure 3.2: The input tape of M̃ just before simulating a first step of a 3-tape Turing machineM
on the input ananas, where each column represents one symbol of Γ̃. The initialized zones are
marked below the tape and they are all i-half-full for i = 1, 2, 3.

During the simulation ofM , M̃ will maintain the following invariants:

• For each tape i ofM and for each zoneRj , the zone will be i-empty, i-full or i-half-full with
non-# symbols, which means that the number of non-# symbols on the ith coordinate of
the symbols in the zone Rj will be either 0, 2j+1 or 2j . The same will hold for the zone Lj .

We assume that initially, i.e., before the zone Rj is initialized, it is i-half-full for every i.
The zone Rj will be initialized as soon as the head of M̃ steps into Rj or Lj . The same
holds for the zone Lj , hence the zones Rj and Lj are always initialized together. When a
zone is initialized, it is filled to the half with symbols (L,L . . .L, 0) and in the other half
with symbols (#,# . . .#, 0). The exceptions are the leftmost symbol in the zone Rj and
the rightmost symbol in the zone Lj that are initially (L,L . . .L, 1), with a 1 marking the
beginning of a new zone.

• For each tape i ofM and for each zone Rj , the total number of non-# symbols on the ith
coordinate of symbols in Rj and Lj will be 2j+1. That is, either Rj is i-empty and Lj is
i-full, or Rj is i-full and Lj is i-empty or they are both i-half-full.

• Cell 0 of the tape of M̃ does not contain # in any coordinate at any time.

39

Let us explain how M̃ prepares for the simulation ofM given some input. First, it initializes
as many zones as needed to cover all of the input and it remembers the input in the first coordinates
of the new symbols on the tape (see Figure 3.2). Clearly, this can be done in time O(n).

Next, we explain how M̃ simulates one step ofM . First, it reads the symbol in the cell 0, which
contains the content below the heads ofM and replaces this symbol with a new one according to
the M ’s transition function. Then for each head i of M separately, M̃ shifts to the left or to the
right (depending on the direction in which the ith head of M moves) the ith coordinates of the
symbols in a neighborhood of the cell 0. Because of the symmetry we will only explain how this
is done if the ith head ofM moves to the right, which means that we have to move the content of
the ith tape to the left so that the ith head ofM will again be above cell 0.

• M̃ finds the smallest j0 such that Rj0 is not i-empty. Note that this is also the smallest j0
such that Li0 is not i-full. We call the number j0 the index of this particular shift.

• If we consider only the ith coordinate of the symbols on the tape of M̃ , M̃ writes the leftmost
non-# symbol of the zoneRj0 in the cell 0 and shifts the next leftmost 2j0−1 non-# symbols
from Rj0 into the zones R0, R1 . . . Rj0−1 filling up exactly half the symbols in each zone.
Note that there is exactly room to perform this since all the zones R0, R1 . . . Rj0−1 were
i-empty and indeed 2j0 − 1 =

∑i0−1
`=0 2`.

• M̃ performs the symmetric operation to the left of the cell 0. That is, for ` starting from
j0 − 1 down to 0, M̃ iteratively moves the 2`+1 ith coordinates of symbols from L` to fill
half the ith coordinates of the symbols in L`+1. Finally, M̃ writes the ith coordinate of the
symbol that was in position 0 before the shift to the ith coordinate of the rightmost symbol
in L0. An example is given in Figure 3.3.

• At the end of the shift, all of the zones R0, L0 . . . Rj0−1, Lj0−1 are i-half-full, Rj0 has 2j0

fewer non-#-symbols and Lj0 has 2j0 additional non-# symbols. Thus our invariants are
maintained.

• The total cost of performing the shift is proportional to the total size of all the zones involved
(R0, L0 . . . Rj0 , Lj0). That is,

O

(
j0∑
`=0

2`+1

)
= O(2j0)

operations.

We are going to bound the total time of the simulation, as it is done in amortized analyses.
After performing a shift of the ith tape with index j, the zones R0, L0 . . . Rj−1, Lj−1 are i-half-
full which means that it will take at least 2j−1 right shifts before the zonesR0, R1 . . . Rj−1 become
i-full and it will take at least 2j−1 left shifts before the zones R0, R1 . . . Rj−1 become i-empty. In
any case, once M̃ performs a shift of the ith tape with index j, the next 2j−1 shifts of the ith tape
will have index less than j. This means that for the tape i ofM , at most a 1/2i fraction of the total
number of shifts have index i. Because M̃ on an input of length n performs at most T (n) shifts for
each tape and because the highest possible index of a shift is at most dlog T (n)e, the total number
of steps of M̃ on an input of length n is

O

n+ k

dlog T (n)e∑
j=1

T (n)

2j−1
2j

 = O
(
T (n) log T (n)

)
,

40

1
L
L
a

1 0
L#
##
n #

R0

10
L#
LL
n#

L0

L
L
L
L

L
L

L
L

##aL

##
##

##
##

##LL

11 00 00 00

R1L1

L
L
L
L
L
L
L
L

L
L
L

L
L
L

L
L
L

L
L
L a s LL

##
##
##

##
##
##

##
##
##

##
##
##

11 00 00 00 00 00 00 00

R2L2

LLL. . . LLL . . .

Figure 3.3: IfM on input ananaswould not change the content of its tapes in the first two steps and
it would only move the second head one cell to the right and the first head two cells to the right, M̃
would have to make two left shifts of the content of the first tape and one left shift of the content of
the second tape to simulateM . In this figure we can see M̃ ’s input tape after simulating the two
steps ofM .

which completes the proof. �

Finally, the next corollary tells us that when reducing a multi-tape DTM to a 2-tape DTM, we
do not need to increase the tape alphabet to get the same performance.

Corollary 3.3.13. If a languageL ⊆ Σ∗ is decided in time T (n) by a multi-tape DTMM , then it is
also decided by some 2-tape DTM M̃ with the tape alphabet Σ∪{L} in time O

(
T (n) log T (n)

)
.

Proof. Proposition 3.3.12 gives us a two-tape Turing machine that decides L and runs in time
O
(
T (n) log T (n)

)
and Proposition 3.3.3 assures that this Turing machine can have the tape alpha-

bet Σ ∪ {L}. �

3.3.4 Non-Determinism and Determinism

In this short section we compare the non-deterministic Turing machines with the deterministic
ones. While the deterministic Turing machines can actually be satisfactory built (we only have to
use finite, but very long tapes), we do not know how to implement non-determinism efficiently.
What is more, we do not know how to prove (if true) that non-determinism cannot be effectively
implemented deterministically. This problem is also the main issue of the P versus NP problem.

However, non-determinism does not help us with deciding new languages, as the following
proposition tells.

Proposition 3.3.14. If a language L ⊆ Σ∗ is decided in time T (n) by a one-tape NTMM , then it
is also decided by some 3-tape DTM in time 2O(T (n)).

Proof. Let us describe a 3-tape DTM M̃ that decides L in time 2O(T (n)). The input tape of M̃ will
be reserved for storing the input and M̃ will never change the content of that tape. The second tape
of M̃ will be the simulation tape and M̃ will simulate all computations on a particular input ofM
on it, one by one. The third tape will help M̃ to remember what computations ofM were already
simulated.

If M = (Q,Σ,Γ,L, δ, q0, qacc, qrej), then the elements of Γ × Q × {−1, 1} represent all
potential moves ofM in each step. Let us fix some linear ordering of the elements from Γ×Q×
{−1, 1}. This means that we have a canonical ordering of non-deterministic choices ofM . When
M̃ will be simulating a step ofM , it will first simulate the non-deterministic choice with the lowest
number, that still leads to a computation that has not yet been considered.

41

On an input w of length n, M̃ first simulates the first step ofM on w, using the first possible
non-deterministic choice and it writes all the possible choices for the first step on the third tape
in the canonical ordering. Then it simulates the second step of M using the first possible non-
deterministic choice and it writes all the possible choices for this step (step one is fixed) on the
third tape. Then it simulates the third step ofM using the first possible non-deterministic choice
and it writes all the possible choices for this step (steps one and two are fixed) on the third tape.
It continues this way untilM halts. IfM accepts, M̃ also accepts, elseM clears the second tape
and prepares the third tape the following way. It first locates the last step of M where there was
more than one non-deterministic option to choose. Then it deletes all the information about the
steps that followed this step and it deletes the first option for this step (the one that was simulated).
If such a step does not exist, i.e., if for each step there was only one option on the third tape, M̃
rejects. Then M̃ simulatesM on w again, not using the transition function ofM but using the first
choices for each step as written on the third tape. When all the steps that have some information
on the third tape have been simulated, M̃ continues to simulate M using its transition function,
always choosing the first choice and writing all the possible non-deterministic choices ofM to the
third tape. IfM accepts, M̃ also accepts, elseM clears the second tape and prepares the third tape
as before. Then it simulatesM on w again using the third tape . . .

It is clear that M̃ simulates all the computations of M on w this way and it accepts w if and
only if there exists an accepting computation of M on w. Else it rejects w. For the simulation
of one computation ofM on w, M̃ needs O(T (n)) steps. However, it needs to simulate 2O(T (n))

computations, hence M̃ runs in time O
(
T (n)

)
2O(T (n)) = 2O(T (n)). �

Now we can see that all our models of Turing machines decide the same languages. We state it as
a corollary that the weakest model, namely the one-tape DTMs, can decide the same languages as
the strongest model, the multi-tape NTMs.

Corollary 3.3.15. If a language L ⊆ Σ∗ is decided in time T (n) by a multi-tape NTMM , then it
is also decided by some one-tape DTM in time 2O(T (n)2).

Proof. By Proposition 3.3.8, L is decided by some one-tape NTM in time O(T (n)2), by Propo-
sition 3.3.14 L is decided by a 3-tape DTM in time 2O(T (n)2) and again by Proposition 3.3.8 L is
decided by a one-tape DTM in time 2O(T (n)2). �

3.3.5 Reducing the Number of Non-Deterministic Options

We discussed in the previous section that we do not know how to efficiently simulate NTMs by
DTMs. The difference between the definition of a DTM and an NTM is only in that the non-
deterministic Turing machine can have more than one choice in each step. But what if we limit
these options to at most two? We say that an NTMM is a two-choice NTM if in each step it has
at most two possible non-deterministic choices. In the next proposition we show that a two-choice
NTM is just as powerful as an NTM.

Proposition 3.3.16. For k ≥ 1, if a language L ⊆ Σ∗ is decided in time T (n) by a k-tape NTM
M , then it is also decided by some k-tape two-choice NTM in time O(T (n)).

Proof. Let M̃ be the following k-tape two-choice NTM. It computes exactly asM , only that, for
each step ofM , it makes a constant number of additional steps during which nothing changes on
the tapes. The purpose of these steps is to choose a non-deterministic choice ofM . If in one step

42

M has r non-deterministic choices, it is enough that M̃ uses O(log r) non-deterministic steps to
consider all these choices. When M̃ selects a choice of M , it goes simulating a next step of M .
Because r depends only onM it holds r = O(1), thus M̃ accepts L in time O(T (n)). �

3.4 Complexity Classes

There are several possible ways to measure how hard it is to decide a language. Because we focus
on time complexity in this dissertation, we will divide the languages into time related complexity
classes, hence we will measure how fast they can be decided by Turing machines. Our classes
will be defined using multi-tape Turing machines because they are easier to construct. Because of
the linear speedup discussed in Section 3.3.2 it makes sense to define the classes using the big O
notation which hides a constant linear factor.

• For a function T : N→ R≥0, we define the complexity class DTIME(T (n)) as the class of
all languages L ⊆ Σ∗ that are decided by some multi-tape DTM in time O(T (n)).

• For a function T : N→ R≥0, we define the complexity class NTIME(T (n)) as the class of
all languages L ⊆ Σ∗ that are decided by some multi-tape NTM in time O(T (n)).

• Define the complexity class P =
⋃
DTIME(p(n)), where the union is over all polynomials

p : N → R>0. Note that P is the class of languages decidable in polynomial time by a
multi-tape DTM. Equivalently, by Proposition 3.3.8 P is the class of languages decided in
polynomial time by a one-tape DTM.

• Define the complexity classNP =
⋃
NTIME(p(n)), where the union is over all polynomials

p : N → R≥0. Note that NP is the class of languages decided in polynomial time by a
multi-tape NTM. Equivalently, by Proposition 3.3.8 NP is the class of languages decided in
polynomial time by a one-tape NTM.

• Define the complexity class co-NP as the class of languages L such that Σ∗\L ∈ NP. That
is, co-NP is the class of languages such that their complements are decided in polynomial
time by an NTM.

• Define the complexity class EXP =
⋃
DTIME(2p(n)), where the union is over all polyno-

mials p. Note that EXP is the class of languages decided in exponential time by a multi-tape
DTM and hence also by a one-tape DTM.

• Define the complexity class NEXP =
⋃
NTIME(2p(n)), where the union is over all polyno-

mials p. Note thatNEXP is the class of languages decided in exponential time by amulti-tape
NTM and hence also by a one-tape NTM.

• We say that a languageL ⊆ Σ∗ is decidable if there exists a Turingmachine that decides it. In
other words, the class of decidable languages (also known as the class of recursive languages
in the literature) is

⋃
NTIME(T (n)) where the union is over all functions T : N→ R≥0.

With these classes we set up some hierarchies of decidable languages, like:

DTIME(n) ⊆ DTIME(n2) ⊆ DTIME(n10) ⊆ P ⊆ DTIME(2n) ⊆ EXP

43

and
NTIME(n) ⊆ NTIME(n2) ⊆ NTIME(n10) ⊆ NP ⊆ NTIME(2n) ⊆ NEXP.

The inclusions are clearly true and we will prove in Theorem 4.2.1 and in Theorem 4.2.3 that they
are all strict. However, while we can say

DTIME(n) ⊆ NTIME(n), DTIME(n2) ⊆ NTIME(n2) . . . EXP ⊆ NEXP,

we do not know whether these inclusions are strict or not, except for the first one which was proven
strict by Paul, Pippenger, Szemerédi and Trotter [25]. As already discussed in the introduction, the
question whether P equals NP is a major unsolved problem in computational complexity theory
and a prize of one million US dollars is offered for the solution [23]. By Corollary 3.3.15 it holds
NP ⊆ EXP, however this inclusion is also not known to be strict.

3.4.1 Complexity Classes of Decision Problems

In Section 2.1.4 wemade a distinction between languages and decision problems. While a language
is a fixed subset L ⊆ Σ∗, a decision problem is a more general notion, defined by a set of instances
together with a subset of YES instances (no encoding is needed).

While we defined complexity classes only for languages, the same complexity classes are used
also for decision problems. When we say that a decision problem is in some complexity class, say
DTIME(n2), we have some natural encoding for the problem in mind and if L is the corresponding
language, we are actually claiming L ∈ DTIME(n2). For several complexity classes like P, NP or
co-NP all natural encodings are equivalent because we can change between natural encodings in
polynomial time.

3.4.2 The Complexity of Regular Languages

In the following proposition we show how hard, relative to the just defined complexity classes, are
regular languages. Note that we did not define regular languages as a time-related complexity class.
However, in Section 5.1.2 we show that we could do so, namely regular languages are exactly the
languages decided by linear-time one-tape NTMs.

Proposition 3.4.1. The class of regular languages strictly contains the class NTIME(1) and is
strictly contained in the class DTIME(n).

Proof. We showed in Lemma 3.3.1 that if a language L is in NTIME(1), then L is regular. Now
if we take the language L0 of binary strings that end with a 0, L0 is regular because it is given by
the regular expression {0, 1}∗{0} (see Theorem 2.2.7). However, any Turing machine that decides
L0 has to read the whole input up to the last symbol, thus it does not run in constant time. Hence,
L0 6∈ NTIME(1), which implies that the class of regular languages strictly contains the class
NTIME(1).

The class of regular languages is contained in the class DTIME(n) because finite automata are
just a restricted version of one-tape DTMs. To show that the inclusion is strict, let us consider the
problem Palindrome. In Section 2.2.1 we showed that this problem is not regular, however it can
easily be solved in linear time by a multi-tape DTM. �

44

3.4.3 Complexity of Computing Functions

We defined Turing machines like if their only purpose would be to solve decision problems. How-
ever, while solving a problem, one often has to compute some functions during the computations
and here we define the corresponding notions.

We say that a function f : Σ∗ → Σ∗ is computable, if there exists a DTMM that on any input
w ∈ Σ∗ halts in an accepting state with f(w) written on the input tape. This means that whenM
halts, the input tape is of the form

. . .LLLLL f(w) LLLLL

IfM runs in time T (n), then we say thatM computes the function f in time T (n).

Example. Let us show that we can convert the binary representation of a positive integer x to
unary and vice versa in time O(x). This is equivalent to claiming that we can compute the function

f : {0, 1}∗ → {0, 1}∗ f : w 7→
{

1x if w is the binary representation of a positive integer x
w else

in time O(|f(w)|) (i.e., linear in the length of the output) and the function

g : {0, 1}∗ → {0, 1}∗ g : w 7→ |w| (in binary)

in time O(n) (i.e., linear in the length of the input). To compute f we construct the following
two-tape DTMMf . On an input w, Mf first verifies whether w starts with the symbol 1. If not,
it accepts, else let x be the integer represented as w in binary. Mf copies x on the second tape in
binary leaving the first tape blank and then it starts subtracting 1 from it (using only the second
tape), each time writing an additional 1 on the first tape. It halts when there is only the symbol 0
left on the second tape. Clearly,Mf computes the function f .

We are going to bound the total time of the computation, as it is done in amortized analyses.
To subtract 1 from x, Mf needs O(log x) steps (which is the length of the representation of x in
binary). However, usually it needs just O(1) steps. To be more precise, the length of the binary
representation of x is blog xc+ 1 and the (blog xc+ 1)st digit is “changed” exactly once (when all
the other digits right of it are 0). The blog xcth digit gets changed at most twice, the (blog xc−1)st
digit gets changed at most 4 times . . . BecauseMf needs O(i) steps to change the ith digit, it makes

blog xc+1∑
i=1

2blog xc+1−i O(i)

steps overall. Considering that the sum
∞∑
i=1

21−ii

converges, we get that
blog xnc+1∑

i=1

2blog xc+1−i O(i) = O(2blog xc),

which is O(x). Hence,Mf computes f in time that is linear in the length of the output.
To show how to compute g in linear time, we construct a two-tape DTMMg that on an input w

first copiesw on the second tape, leaving only one 0 on the input tape. Then it increases the number
(in binary) on the input tape one by one, each time reducing the number of non-blank symbols on
the second tape by one. Mg halts when it runs out of non-blank symbols on the second tape. Using
the same analysis as forMf , it is clear thatMg runs in linear time. �

45

3.5 The Church-Turing Thesis

While in Section 3.3 we compared different models of Turing machines, in this section we discuss
how powerful the Turing machines are compared to other computational models, like models of
our computers and how the time classes defined above reflect the real world.

The Church-Turing thesis tells us that decidable problems are a superset of the decision prob-
lems that can be solved in the real world. The thesis is the following [2, Chapter 1]:

Every physically realizable computation device2—whether it is based on silicon, DNA,
neurons or some other alien technology—can be simulated by a Turing machine.

The thesis dates back for more than 70 years and it has still not been disproved. Because of its
informal nature it cannot be viewed as a theorem that can be proven, rather than a belief about the
nature of the world as we currently understand it.

The thesis is not just explanatory, it is also very useful. It tells us that if we can explain an
algorithm that solves some problem, then we can also construct a Turing machine that solves the
same problem. A stronger statement known as the strong version of the Church-Turing thesis [2,
Chapter 1] has also been proposed:

Every physically realizable computation device can be simulated by a deterministic
Turing machine with polynomial overhead, i.e., t steps on the device correspond to at
most tc steps on the DTM, where c is a constant that depends upon the model.

Unlike the standard Church-Turing thesis, its strong form is somewhat controversial, in particular
because of models such as quantum computers [2, Chapter 10], which do not appear to be efficiently
simulatable on DTMs. However, it is still unclear if reasonably big quantum computers can be
physically realized.

What supports the strong version of the Church-Turing thesis most is that idealized models of
our computers can be simulated by Turing machines with polynomial overhead [24, Chapter 2.8].
This fact is useful, for example, when proving that some problem is in P because we do not need
to describe a polynomial-time Turing machine that solves the problem, it is enough to just describe
an algorithm that would run in polynomial time on a computer and would solve the problem.

It is worth mentioning that Turing machines are somewhat stronger than real-world computers
because the latter have a limited amount of memory.

3.6 Encoding Turing Machines

There are several good ways of how to encode Turing machines. We present here the encoding
from the paper [11] of the author. Let a code of a k-tape NTMM = (Q,Σ,Γ,L, δ, q0, qacc, qrej)
be a code of a |Q| × |Q| matrix A, where A[i, j] is a (possibly empty) list of all the triples(

(a1, a2 . . . ak), (b1, b2 . . . bk), (d1, d2 . . . dk)
)
∈ Γk × Γk × {−1, 0, 1}k

such thatM can come in one step from the state qi to the state qj replacing the symbols a1, a2 . . . ak
below the heads by the symbols b1, b2 . . . bk (respectively) and moving the heads in the directions
d1, d2 . . . dk. In other words, A[i, j] is a list of all the triples(

(a1, a2 . . . ak), (b1, b2 . . . bk), (d1, d2 . . . dk)
)
∈ Γk × Γk × {−1, 0, 1}k

2We assume that the computation device takes a string from Σ∗ as input and it returns an output from Σ∗. This
assumption is shown important in [14].

46

such that (
(b1, b2 . . . bk), qj , (d1, d2 . . . dk)

)
∈ δ
(
(a1, a2 . . . ak), qi

)
.

We assume that the indices i and j range from 0 to |Q| − 1 and that the index 0 corresponds to the
starting state, the index |Q|−2 corresponds to the accepting state and the index |Q|−1 corresponds
to the rejecting state. We also assume that each symbol of Σ as well as the blank symbol have a
universal unique code over Σ.

It is clear that a code ofM is of length O(q2k3k|Γ|2k log |Γ|). However, for applications that
follow we will need arbitrary long codes, hence we define a padded code of M as a code of M ,
padded in front by any number of 0s followed by a redundant 1. Thus the padded code of an NTM
can be arbitrarily long. Note that given a padded code ofM , the code ofM can be constructed in
linear time.

An interesting property of our encoding is that we can compute compositions of Turing ma-
chines in linear time, as can be seen in Figure 3.4. The composition of NTMsM1 andM2 is the
NTM that starts computing asM1, but has the starting state ofM2 instead ofM1’s accepting state.
When the starting state ofM2 is reached, it computes asM2. IfM1 rejects, it rejects.

A1

A2

Figure 3.4: The code of a composition of two Turing machines. Suppose that we want to compute
the code of a composition of Turing machinesM1 andM2. Let A1 and A2 be the corresponding
matrices that were used to encodeM1 andM2. Then we can erase the last two lines of the matrix
A1 (they correspond to the halting states ofM1) and adjust A2 “below” A1 as shown in the figure.
Note that the column of the accepting state ofM1 coincides with the column of the starting state
ofM2. The last column of A1 that corresponds to the rejecting state ofM1 is flushed to the right.
To compute the code of the composition of two Turing machines, we have to compute the code of
this matrix, which can be done in linear time given the codes of A1 and A2.

3.6.1 Universal Turing Machine

Now that we know how to encode Turing machines, a natural thing to do is to consider an algorithm
to simulate them. The next two propositions describe two such algorithms.

Proposition 3.6.1. There exists a 3-tape NTMU (called the universal Turing machine) that given a
(code of a) multi-tape NTMM together with an inputw forM , it simulatesM onw and returns the
same asM on w. IfM runs in time T (n), then U on inputs (M,w) makes at most CM

(
T (|w|) +

|w|
)
steps for some constant CM depending only onM .

47

Proof. The universal Turing machine U computes as follows. On input (M,w), where M is a
multi-tape NTM that runs in time T (n), U first writes w on the second tape, leaving only the
description of M on the first tape. Then using the input tape and the third tape it transforms the
code ofM into a code of a 2-tape NTM M̃ that simulatesM on two tapes in time O(T (n)) and
uses the tape alphabet Σ ∪ {L}. This can be done by Corollary 3.3.11 because the corollary was
proven constructively. After this initial work, U has the code of M̃ on the input tape, w on the
second tape and the third tape is empty. Now U simulates M̃ step by step in the following way: it
keeps track of which state M̃ currently is in the first tape while having the content of the second
and the third tape as well as the positions of the heads on the second and the third tape exactly the
same as M̃ . To simulate a step of M̃ , U does some computation on the input tape to figure out a
next step of M̃ and then it simulates it. Hence, U returns the same as M̃ does on the inputw which
is the same asM on the input w.

IfM is fixed, then U makes O(|w|) steps before it starts to simulate M̃ and then for each step
of M̃ it makes a constant number (dependant only onM , not on w) of steps. Because M̃ runs in
time O(T (n)), U makes O

(
T (|w|) + |w|

)
steps. �

For deterministic Turing machines, the following proposition applies.

Proposition 3.6.2. There exists a 3-tape DTM U (called the deterministic universal Turing ma-
chine) that given a (code of a) multi-tape DTMM together with an input w forM , it simulatesM
on w and returns the same asM on w. IfM runs in time T (n), then U on inputs (M,w) makes
at most CM

(
T (|w|) log T (|w|) + |w|

)
steps for some constant CM depending only onM .

Proof. The proof is the same as for Proposition 3.6.1, only that Corollary 3.3.13 is used instead of
Corollary 3.3.11. �

3.7 Classes NP and co-NP

Let us give another characterization of the class NP.

Proposition 3.7.1. A language L ⊆ Σ∗ is in NP if and only if there exist positive integers k,D
and a polynomial-time DTMM such that for every w ∈ Σ∗

w ∈ L ⇐⇒ ∃u ∈ Σ∗ :
(
|u| ≤ |w|k +D

)
andM accepts the input (w, u).

If L ∈ NP and we have k,D and M as in the proposition, then for any w ∈ L and u ∈ Σ∗

such that
(
|u| ≤ |w|k + D

)
andM accepts the input (w, u), we call u a certificate for w. Before

we prove the proposition, let us give an example of use.

Example. Let us show that the decision problem Hamiltonian Cycle is in NP. First, we will
show this by definition of NP and then by using Proposition 3.7.1.

To prove that Hamiltonian Cycle ∈ NP by definition, we have to construct a polynomial-
time NTM M̃ that decides the problem Hamiltonian Cycle. What M̃ does is the following: on
an input w which represents a graph on n vertices, it non-deterministically chooses a sequence of
n vertices and then it deterministically verifies whether this sequence forms a Hamiltonian cycle.
If so, it accepts, else it rejects. We can make M̃ to run in polynomial time, which implies that
Hamiltonian Cycle ∈ NP.

48

To prove that Hamiltonian Cycle ∈ NP using the new characterization from
Proposition 3.7.1, we just need to give the appropriate certificate for each graph that admits a Hamil-
tonian cycle: the easiest one is just the cycle itself. Now let us show why this is good enough. Let
us take a multi-tape DTMM that given a code of a graphG together with a code of a sequence u of
its vertices, decides whether u is a Hamiltonian cycle of G. We can makeM to run in polynomial
time. If we take k = D = 1 and consider that the code of a Hamiltonian cycle of G is not longer
than the code of G (assuming a natural encoding), it is clear that

w encodes a Hamiltonian graph

⇐⇒

∃u ∈ Σ∗ :
(
|u| ≤ |w|+ 1

)
andM accepts the input (w, u),

hence Hamiltonian Cycle ∈ NP. �

Now let us prove the proposition.

Proof. If L ∈ NP then there exists a one-tape NTM M̃ that decides L in polynomial time. Let
M be a multi-tape DTM that given an input (w, u) where w, u ∈ Σ∗, it simulates exactly one
computation of M̃ on the input w following non-deterministic choices encoded in u. If u does not
encode a sequence of non-deterministic choices, thenM rejects. How this can be done so thatM
runs in polynomial time is evident in the proof of Proposition 3.3.14. Let us define integers k and
D so that, for all n, it will hold:

nk +D ≥ the length of a longest code of a sequence of choices in a computation of M̃
on inputs of length n.

Note that such k and D exist because M̃ runs in polynomial time and thus makes only polyno-
mially many non-deterministic choices. Because M̃ accepts w if and only if there is an accepting
computation of M̃ on w, we have

w ∈ L ⇐⇒ ∃u ∈ Σ∗ :
(
|u| ≤ |w|k +D

)
andM accepts the input (w, u).

To show the if part of the proposition, let L, M , k and D be as in the proposition and let an
NTM M̃ be defined as follows. On an input w of length n, M̃ first computes nk + D and it non-
deterministically chooses a string u ∈ Σ∗ of length at most nk+D. Then it simulatesM on (w, u)
and it accepts if and only ifM accepts. Clearly, M̃ runs in polynomial time and decides L. �

3.7.1 Reductions and Complete problems

If we compare the classes P, NP and co-NP, we get the Figure 3.5. Although we do not know
whether P = NP, we can say something about which problems in NP are hard if P 6= NP. Such
problems are called NP-complete.

Reductions

A language L1 ⊆ Σ∗ is reducible to a language L2 ⊆ Σ∗ if there exists a computable function
f : Σ∗ → Σ∗ called a reduction such that for every w ∈ Σ∗,

w ∈ L1 ⇐⇒ f(w) ∈ L2.

49

NP

P

co-NP

Figure 3.5: The complexity classes P, NP and co-NP. While P ⊆ NP ∩ co-NP, we do not know
whether the inclusion is strict. We also do not know whether NP ⊆ co-NP or co-NP ⊆ NP

although it is widely believed that none of these two options are true.

In the literature there are more types of reductions. However, wewill only use the type of reductions
we defined, which are also known as Karp reductions or multi-one reductions in the literature.

If f is computable in polynomial time by a DTM, we say that f is a polynomial-time reduction
and that L1 is polynomial-time reducible to L2.

Complete Problems

A language L ⊆ NP is called NP-complete if

1. L ∈ NP and

2. Each language L̃ ∈ NP is polynomial-time reducible to L.

A decision problem is called NP-complete if its corresponding language is NP-complete. Note
that, at this point, we did not prove that NP-complete problems actually exist. This will be done
later in Proposition 3.7.4.

The following proposition tells that, if P 6= NP, NP-complete languages cannot be solved in
deterministic polynomial time.

Proposition 3.7.2. If some NP-complete language can be decided in polynomial time by a DTM,
then P = NP.

Proof. Let L be an arbitrary language inNP and suppose that anNP-complete language L0 can be
solved in polynomial time by a DTMM0. Because L0 is NP-complete there exists a polynomial-
time reduction f that reduces L to L0. Let us consider the following deterministic algorithm to
decide L:

On an input w, compute f(w) and then runM0 on f(w).

Because f runs in polynomial time, the length of f(w) is polynomial in the length of w and be-
causeM0 also runs in polynomial time, this algorithm decides L in deterministic polynomial time.
Because L ∈ NP was arbitrary, it follows P = NP. �

A language L ∈ co-NP is called co-NP-complete if

1. L ∈ co-NP and

2. Each language L̃ ∈ co-NP is polynomial-time reducible to L.

50

Recall that a language L is in NP if and only if its complement L is in co-NP. The same is true
for complete languages.
Proposition 3.7.3. A language L ⊆ Σ∗ is NP-complete if and only if L is co-NP-complete.

Proof. Let L be NP-complete and let L′ be an arbitrary language in co-NP. By definition, L ∈
co-NP and L′ ∈ NP. Because L is NP-complete, there exists a polynomial-time reduction f of L′
to L. It is easy to see that f is also a reduction of L′ to L, which proves that L is co-NP-complete.
The proof of the if part of the proposition is symmetric. �

A possible (and widely believed) relation between the classes P, NP, co-NP and the complete
problems is shown in Figure 3.6.

NP

P

co-NP

NP-complete co-NP-complete

Figure 3.6: The complexity classes P, NP and co-NP together with complete problems. Note
that if there would be an NP-complete problem in P, the whole figure would collapse to P. Be-
cause of the symmetry, the same would happen if there would be a co-NP-complete problem in P.
We leave to the reader to show that if there would be a problem that would be NP-complete and
co-NP-complete, then NP = co-NP.

We still did not give any example of a complete problem. However, an NP-complete language
is not hard to find, especially if we consider that all languages in NP are given by some NTM. Let
us define a decision problem NP-Halt as:

Given an NTMM and an input w forM , doesM make more than 2|w|+ 1 steps on
some computation on the input w?

Proposition 3.7.4. The problem NP-Halt is NP-complete.

Proof. The problem NP-Halt is in NP because its every YES-instance (M,w), where w is an
input for an NTMM , has a certificate: a sequence of first 2|w| + 2 non-deterministic choices of
M on input w for whichM makes 2|w|+ 2 steps or more.

To show that NP-Halt is NP-complete, let L be some language in NP. By definition of NP
there exists an NTMM that decides L in non-deterministic time p(n) for some polynomial p. Let
us define an NTM M̃ that given an input of the form 0i1w where w ∈ Σ∗ and i ∈ N, it first erases
0i1 and then it simulatesM onw. The only difference withM is that instead of going to the accept
state, M̃ starts an infinite loop (e.g. its heads starts to move right forever). Note that

M accepts w ⇐⇒ M̃ on input 0p(|w|)1w starts an infinite loop on some computation

⇐⇒ M̃ on input 0p(|w|)1w makes more than 2
∣∣0p(|w|)1w∣∣+ 1

steps on some computation.

⇐⇒ (M̃, 0p(|w|)1w) ∈ NP-Halt.

51

Define a function f : Σ∗ → Σ∗ as

w 7→ a code of the pair (M̃, 0p(|w|)1w).

It is clear that f is computable in polynomial time. Hence, f is a polynomial-time reduction of L
to NP-Halt, which proves the proposition. �

Later in Section 6.2 we will give more examples of NP-complete problems (actually
co-NP-complete problems). While they will arise from natural (theoretic) questions, they will
speak about Turing machines, which are quite abstract. However, there are very many more natural
practical NP-complete problems, one of them being Hamiltonian Cycle. In this dissertation, we
will not prove that this problem is NP-complete, the reader can find the proof for that in e.g. Garey
and Johnson [12], where also several other natural NP-complete problems are described.

52

Chapter 4

Diagonalization and Relativization

Diagonalization is a well known proof method. In this chapter we use it to prove that some explicit
problems are not decidable and to prove separation of several complexity classes. In Section 4.3 we
define a new type of Turingmachines, namely oracle Turingmachines, and prove that the separation
results in this chapter hold also for oracle Turing machines with a fixed oracle. Such results are
said to be relativizing. We finish the chapter with Theorem 4.3.3 which tells that if we will ever
solve the P versus NP question, the result will not relativize.

We begin this section with examples of two famous proofs that use diagonalization, none of
which is closely related to computer science. We present them to show the main idea of diagonal-
ization: observing a diagonal.

Example. For the first example we take the Cantor’s proof that there exists no surjection of N into
the positive real numbers which proves that the set R>0 has “more” elements than N. Suppose for
the purpose of contradiction that a surjective function f : N → R>0 exists. This allows us to list
the real numbers f(0), f(1), f(2) . . . using their decimal representation one below the other so that
the decimal points are aligned. We may assume that all numbers have infinitely many decimals,
some of them having last decimals equal to zero.

xn1,1xn1−1,1xn1−2,1 · · ·x2,1x1,1 .y1,1y2,1y3,1 · · ·
xn2,2xn2−1,2 · · ·x2,2x1,2 . y1,2y2,2y3,2 · · ·

· · ·x2,3x1,3 . y1,3y2,3y3,3 · · ·
· · ·x2,4x1,4 . y1,4y2,4y3,4y4,4 · · ·

· · · . · · · . . .
· · ·x2,ix1,i . y1,iy2i · · · yi,i · · ·
· · · . · · ·

Nowdefine the following real number r = 0.ỹ1,1ỹ2,2ỹ2,2ỹ2,2 · · · , where ỹi,i = yi,i+5 mod 10.
Because r is nowhere in the above list, f could not be surjective. �

Example. For the second example we take Russell’s paradox. Not to go into formal logic, let us
observe the following naive description of what a set is:

53

Everything that can be written as S = {x;ϕ(x)}, where ϕ is some formula that can
be either true or false, is a set. Additionally, for each object x, if ϕ(x), then we write
x ∈ S and we say that x is an element of S.

We claim that such a description of a set is not appropriate. For each ordered pair of sets, the
first set is either an element of the second or it is not (see Table 4.1). Now the following set has its
diagonal entry “negated”:

SR = {S; S 6∈ S}.

We see that SR has ∈ on the diagonal of Table 4.1 if and only if SR 6∈ SR, which is a contradiction.
Hence, one has to be more careful when defining what a set is. �

S1 S2 S3 · · · Sλ · · ·
S1 6∈ ∈ 6∈ · · · ∈ · · ·
S2 6∈ 6∈ 6∈ · · · ∈ · · ·
S3 6∈ ∈ ∈ · · · 6∈ · · ·
...

...
...

...
Sλ ∈ ∈ ∈ · · · 6∈ · · ·
...

...
...

...

Table 4.1: A table of whether the set in the leftmost column is an element of the set in the top row2.
Although there are more than countably many sets, we started indexing them with integers so that
we were able to draw a picture.

4.1 Halting Problems

Since we can encode Turing machines as finite strings (see Section 3.6), there are only countably
many of them. However, there are uncountably many languages over Σ∗, which implies that most
of them are undecidable. In this section we will present a famous explicit undecidable problem,
the halting problem. Because we will present several variations of the halting problem, the title of
this section is in plural.

The halting problem D-Halt is the following.

Given a multi-tape DTMM and an input w forM , doesM halt on the input w?

There are several variations of the problem, like the more general problem Halt, which is

Given a multi-tape NTMM and an input w forM , doesM halt on all computations
on the input w?

And the more specific problem D-Halt1, which is

Given a one-tape DTMM and an input w forM , doesM halt on the input w?

2In ZFC theory there would be only 6∈ on the diagonal because of Axiom of regularity.

54

Analogously we also define the problem Halt1. In essence these problems are the same, because
given a Turing machine of one type, we can transform it into a Turing machine of another type
using the transformations described in Section 3.3. Note that these transformations preserve the
finiteness of a computation on any input. To prove that all these problems are undecidable, it is
enough to prove that the problem D-Halt1 is undecidable because a Turing machine that would
solve any of the problems Halt, D-Halt or Halt1 would also solve the problem D-Halt1.

Theorem 4.1.1. The problem D-Halt1 is undecidable.

Proof. Because there are countably many one-tape DTMs, we can index them by positive integers.
Additionally, for each Turing machineMj let 〈Mj〉 denote the lexicographically first of the codes
ofMj . Then, for each ordered pair of one-tape DTMs (Mi,Mj),Mi either halts on the input 〈Mj〉
or it does not halt (see Table 4.2).

M1 M2 M3 · · · Mi · · ·
M1 ∞ ∞ ↓ · · · ↓ · · ·
M2 ∞ ↓ ↓ · · · ↓ · · ·
M3 ↓ ∞ ∞ · · · ∞ · · ·
...

...
...

...
Mi ↓ ↓ ↓ · · · ∞ · · ·
...

...
...

...

Table 4.2: A table of whether the one-tape DTM in the leftmost column halts (↓) or it runs forever
(∞) on an input which is the lexicographically first code of the one-tape DTM in the top row.

Suppose for the purpose of contradiction that a one-tape DTMH exists that solves the problem
D-Halt1. Let us observe the diagonal entry in Table 4.2 of the following one-tape DTMM :

On an input w,M first runs H to verify whether the one-tape DTMMw encoded as
w halts on the input w. If it does,M starts an infinite loop, else it halts.

ThusM halts on the input w if and only ifMw does not halt on the input w. It follows thatM halts
on the input 〈M〉 if and only if M does not halt on the input 〈M〉. This implies that the Turing
machine H cannot exist. �

The fact that the halting problem is undecidable has consequences also in real-world applications.
Because we canwrite a program that simulates Turingmachines on a given input, the undecidability
of D-Halt tells us that there is no automated procedure (i.e., a Turing machine) that would solve
the problem:

Given a code of a program in Java and an input for it, would the program ever
terminate if we would run it on that input, or would it run forever?

55

4.1.1 Proving Undecidability of Problems

In Section 3.7.1 we defined reductions of languages. It is clear that if we find a reduction of an
undecidable problem to some other problem, this proves that the other problem is undecidable. We
illustrate this method by proving that even a simpler problem than D-Halt1 is undecidable. Define
the problem D-Halt1

ε as

Given a one-tape DTMM , doesM halt on the empty input ε?

We will use the well known fact that this problem is undecidable a lot in Section 6.1, thus we state
it as a lemma.

Lemma 4.1.2. The problem D-Halt1
ε is undecidable.

Proof. Let us give a reduction of the problem D-Halt1 to the problem D-Halt1
ε . On an input

(M,w) where w is an input of a one-tape DTM M , construct a one-tape DTM M̃ which on the
empty input first writes w on the tape and then it computes asM .

It is clear that M̃ halts on input ε if and only ifM halts on the input w, which proves that we
reduced the problem D-Halt1 to the problem D-Halt1

ε . �

4.2 Time Hierarchy Theorems

In this section we prove the following two hierarchies:

DTIME(n) (DTIME(n2) (DTIME(n10) (P (DTIME(2n) (EXP

and
NTIME(n) (NTIME(n2) (NTIME(n10) (NP (NTIME(2n) (NEXP.

We will first introduce the notion of a time constructible function and then we will use these func-
tions to prove the hierarchies.

4.2.1 Time Constructible Functions

A function f : N → N is time constructible if the function f̃ : w 7→ 1f(|w|) is computable by a
DTM that runs in time O(f(n)). Note that it does not matter whether f̃ gives the output in unary
(as in the case of our definition) or in binary because we can transform binary to unary and vice
versa in time that is linear in the length of the unary representation (see Section 3.4.3).

Example. Many simple functions such as n, nblog nc, dn
√
ne, n2, n10, 2n, n! are clearly time

constructible. To compute, say, the value nblog nc given the input of length n, we first transform
1n into binary in time O(n). The length of the binary representation of n is blog nc+ 1. Then we
compute in polynomial time (in the length of the binary representation of n which is O(log n)) the
binary representation of nblog nc. Hence, the binary representation of nblog nc can be computed
in linear time. �

56

4.2.2 The Deterministic Time Hierarchy

The following theorem, called also the deterministic time hierarchy theorem, tells that DTMs that
are allowed to run for a relatively small factor longer, can decide strictly more languages.

Theorem 4.2.1. For any time constructible function f : N → N such that n = o(f(n)) and for
any function g : N→ N such that g(n) log g(n) = o(f(n)), there exists a language

L ∈ DTIME(f(n))\DTIME(g(n)).

Proof. We assume that there are infinitely many padded codes for each DTM, thus each DTM has
arbitrary long padded codes. For a padded code w of a DTMM , letMw denote the DTMM . Let
us observe ordered pairs (Mwi , wj) where wi and wj are padded codes of DTMs. For each such a
pair,Mwi either accepts the input wj or it rejects it (see Table 4.3).

w1 w2 w3 · · · wi · · ·
Mw1 accept reject accept · · · accept · · ·
Mw2 reject reject accept · · · accept · · ·
Mw3 accept accept reject · · · accept · · ·
...

...
...

...
Mwi reject accept reject · · · reject · · ·
...

...
...

...

Table 4.3: A table of whether the DTMMwi in the leftmost column accepts an input wj in the top
row, where wi and wj are padded codes of DTMs. It suffices for our proof to have only (padded
codes of) DTMs that run in time O(g(n)) in this table. Because each DTM has infinitely many
padded codes, each DTM that runs in time O(g(n)) is present infinitely many times in the leftmost
column of the table.

LetM be the following 4-tape DTM: on an input w, which is a padded code of the DTMMw,
it first computes 1f(|w|) and stores it on the fourth tape. Then it computes just as the deterministic
universal 3-tape Turing machine from Proposition 3.6.2 on the input (Mw, w), i.e., it efficiently
simulatesMw on the input w. For each step thatM makes, it erases one symbol 1 from the fourth
tape. The fourth tape thus serves as a counter and when there are no more ones on it, M rejects.
If the simulation ofMw finished when there was still at least one symbol 1 on the fourth tape,M
returns the opposite of whatMw would return, i.e., ifMw rejectsw thenM accepts, elseM rejects.
Let L be the language decided byM .

We see that M runs in time O(f(n)), hence L ∈ DTIME(f(n)). It is enough to prove that
L 6∈ DTIME(g(n)). If L ∈ DTIME(g(n)), then there exists a DTM M⊥ that decides L in time
O(g(n)). Let us observe the diagonal entries forM⊥ in Table 4.3.

For a padded code w ofM⊥,M on the input w makes at most

O
(
g(|w|) log g(|w|) + |w|) = o(f(|w|)

)
steps when simulatingM⊥ on w (see Proposition 3.6.2). Thus, for long enough padded codes w of
M⊥,M halts becauseM⊥ halts and not becauseM would run out of 1s on the fourth tape. Hence,
ifw is long enough,M on the inputw simulates all the steps ofM⊥ onw and it returns the opposite
asM⊥ does. It follows thatM accepts w if and only ifM⊥ rejects w, which is a contradiction with
the definition ofM⊥, because it should accept exactly the same inputs asM . �

57

Corollary 4.2.2. For any integer k ≥ 1,

DTIME(nk) (DTIME(nk log2 n) (DTIME(nk+1).

4.2.3 The Non-Deterministic Time Hierarchy

The deterministic time hierarchy gave us

DTIME(n) (DTIME(n2) (DTIME(n10) (P (DTIME(2n) (EXP,

however the same idea does not go through to prove the inclusions

NTIME(n) (NTIME(n2) (NTIME(n10) (NP (NTIME(2n) (NEXP.

While it is easy to flip the answer of a DTM after the simulation:

If the DTM goes to qacc, reject, else accept,

this is not so easy in the non-deterministic case because there are several possible computations on
each input. To flip the answer of an NTM, we would have to know if all of the computations on
the input are rejecting or if there exists an accepting computation. Nevertheless, it turns out that
we can overcome this difficulty by a method called lazy diagonalization.

Theorem 4.2.3. For any time constructible function f : N → N such that n = o(f(n)) and for
any function g : N→ N such that g(n+ 1) = o(f(n)), there exists a language

L ∈ NTIME(f(n))\NTIME(g(n)).

Note that this theorem gives a more strict hierarchy for non-deterministic classes than Theo-
rem 4.2.1 does for deterministic classes, because in this theorem there is no log(g(n)) factor in
g(n + 1) = o(f(n)). Such a strong hierarchy was proven first by Seiferas, Fischer, and Meyer in
1978 [27] and the proof was simplified by Žák in 1983 [31]. However, we use the idea for the proof
from Fortnow and Santhanam [8].

Proof. Recall from Section 3.3.5 the definition of a two-choice NTM which is an NTM that has at
most two possible non-deterministic choices in each step. In the proof of this theorem, we will use a
special encoding for pairs (M,y), whereM is a two-choice NTM and y ∈ {0, 1}∗. If u is a binary
code of a multi-tape two-choice NTMM , then let iu be the positive integer that is represented as
1u in binary. Now the pair (M,y) is encoded as 1iu01m0y, wherem is any non-negative integer.
Hence, each pair (M,y) has arbitrarily long codes and, given such a code, we can get the code of
M in linear time. For a code w of the pair (M,y), letMw denote the NTMM .

Let us observe the ordered pairs (Mxi , xj) where xi and xj are codes of (Mxi , ε) and (Mxj , ε),
respectively. For each such a pair,Mxi either accepts the input xj or it rejects it (see Table 4.4).

Let a constantC ∈ N be such that f can be computed in timeCf(n) and letM be the following
4-tape NTM. On an input w = 1i01m0y, it first computes 1f(|w|) and stores it on the fourth tape.
Denote x = 1i01m0 and letM compute f(|x|−1), but only if the computation does not take more
than Cf(|w|) steps. If it does,M rejects. Then we have two cases.

(i) If |y| < f(|x|−1), thenM computes just as the universal 3-tape (non-deterministic) Turing
machine from Proposition 3.6.1 on the inputs (Mw, w0) and (Mw, w1), i.e., it simulatesMw

on the inputsw0 andw1 one after another. For each step thatM makes, it erases one symbol

58

x1 x2 x3 · · · xi · · ·
Mx1 reject reject accept · · · accept · · ·
Mx2 accept reject accept · · · reject · · ·
Mx3 accept accept reject · · · accept · · ·
...

...
...

...
Mxi reject accept reject · · · accept · · ·
...

...
...

...

Table 4.4: A table of whether the two-choice NTMMxi in the leftmost column accepts the input xj
in the top row, where xi and xj are codes of (Mxi , ε) and (Mxj , ε), respectively. It suffices to have
only NTMs that run in time O(g(n)) in this table. Because each two-choice NTMM has infinitely
many codes of (M, ε), each two-choice NTM that runs in time O(g(n)) is present infinitely many
times in the leftmost column of the table.

1 from the fourth tape. The fourth tape thus serves as a counter and when there are no more
ones on it,M rejects. If the two simulations ofMw finished when there was still at least one
symbol 1 on the fourth tape,M accepts if and only ifMw accepted both inputs w0 and w1
on the two simulated computations.

(ii) If |y| ≥ f(|x| − 1), then M simulates the computation of Mw on the input x determined
by the non-deterministic choices encoded by y. Because Mw is two-choice, y encodes |y|
non-deterministic choices. Again, the fourth tape serves as a counter and for each step that
M makes, it erases one symbol 1 from the fourth tape. If the simulation of Mw finished
when there was still at least one symbol 1 on the fourth tape and ifMw rejects the input x
on the computation encoded by y,M accepts the input w, else it rejects it. If the counter on
the fourth tape ever hits 0 or if y does not encode enough non-deterministic choices ofMw

to finish with the simulation,M rejects.

Let us show how M can efficiently do the simulation in case (ii). A straightforward deter-
ministic simulation would not suffice because the simulation of the deterministic universal
Turing machine has too much overhead.

• First, M computes a code of a DTM M̃ that computes as follows: given a pair of
strings (x1, y1), M̃ first copies y1 to a non-input tape and then it computes the same as
Mw on x1 using the non-deterministic choices encoded by y1, only that ifMw accepts,
then M̃ rejects and ifMw rejects, then M̃ accepts. If y1 does not encode enough non-
deterministic choices, M̃ rejects.
ClearlyM can construct such M̃ that uses O(1) steps to simulate one step ofMw, only
in the beginning of a computation it uses O(n) steps to copy y1 to a special tape so that
it can read it in parallel while simulatingMw. Note that the number of steps needed to
construct M̃ depends only onMw and is independent ofm and y.

• Next,M computes as the universal (non-deterministic) Turing machine from Proposi-
tion 3.6.1 and simulates M̃ on the input (x, y).

Let L be the language decided by M . We see that M runs in time O(f(n)), hence L ∈
NTIME(f(n)).

59

It is enough to prove that L 6∈ NTIME(g(n)). If L ∈ NTIME(g(n)), then there exists some
NTMM⊥ that decides L in time O(g(n)). By Proposition 3.3.16 we may assume thatM⊥ is two-
choice, hence M⊥ is present in Table 4.4. The next two paragraphs are technical and are used to
find an appropriate code for the pair (M⊥, ε) such that that its diagonal entry in Table 4.4 cannot
take any value. If the reader wants to skip the technicalities, we recommend jumping to the last
paragraph of the proof.

Let x = 1i01m0 be a code of the pair (M⊥, ε). Because n = o(f(n)), there exists an infinite
increasing sequence of integersm < m1 < m2 < m3 < · · · such that f(i+mj + 1) < f(ξ) for
all positive integers j and ξ > i+mj + 1, i.e., f takes only bigger values than f(i+mj + 1) for
bigger arguments. Note that if we only consider the codes x = 1i01mj0 for (M⊥, ε), the Turing
machineM on the inputs xy for y ∈ {0, 1}∗ always computes f(|x| − 1), because it has enough
time.

Next, we show that for large enough mj , M on inputs w = xy where x = 1i01mj0 and
y ∈ {0, 1}∗ never runs out of 1s on the fourth tape. By Proposition 3.6.1, M makes at most
O(g(|w|+ 1)) = o(f(|w|)) steps when simulatingM⊥ on the inputs w0 and w1 in case (i), where
the constant behind the little o can depend onM⊥. Hence, for large enoughmj ,M does not halt in
case (i) because it would run out of 1s on the fourth tape. In case (ii),M has to simulate O(g(|x|))
steps of the computation ofM⊥ on the input x, where the computation is determined by the non-
deterministic choices given by y. AlthoughM has to simulate just one fixed computation, it uses
non-determinism to do it faster as we described in the description of M . This way M simulates
O(g(|x|)) steps ofM⊥ in time

O
(
g(|x|) + |x|+ |y|

)
= o

(
f(|x| − 1)

)
+ O

(
|y|
)
,

which is o(f(|w|)) because f(|x|−1) < f(|w|) by the definition ofmj . This implies that, for large
enoughmj ,M does not run out of time on the fourth tape. Additionally, because |y| ≥ f(|x|−1),
and because M needs only to simulate O(g(|x|)) = o(f(|x| − 1) steps of M⊥, for large enough
mj , y encodes enough non-deterministic choices for the simulation.

To finish the proof, let mj be big enough so that, for any input w = xy where x = 1i01mj0
and y ∈ {0, 1}∗,M on input w

• never runs out of time on the fourth tape and

• if we have case (ii),M simulatesM⊥ until the end (i.e., y encodes enough non-deterministic
choices).

Considering the diagonal entry for x in Table 4.4, we get

M⊥ accepts the input x
⇐⇒M accepts the input x
⇐⇒M accepts the inputs x0 and x1

⇐⇒M accepts all the inputs xy where y ∈ {0, 1}2

⇐⇒M accepts all the inputs xy where y ∈ {0, 1}3

⇐⇒M accepts all the inputs xy where y ∈ {0, 1}f(|x|−1)

⇐⇒M⊥ rejects x on all computations
⇐⇒M⊥ rejects x,

which is a contradiction. �

60

Corollary 4.2.4. For any integer k ≥ 1,

NTIME(nk) (NTIME(nk log(log n)) (NTIME(nk log n) (NTIME(nk+1).

4.3 Relativization

In the previous section we managed to separate several complexity classes by efficiently simulating
Turing machines. In all the simulations that were analyzed, we did not care about how a simulated
Turing machine computes, we just simulated each step using a Turing machine of the same kind.
This waywewere able to build a hierarchy of non-deterministic classes and a hierarchy of determin-
istic classes. However, we still do not know how to compare deterministic and non-deterministic
complexity classes like P and NP. In this section we present a well known result that using only
brute force simulations, we cannot solve the P versus NP problem.

4.3.1 Oracle Turing Machines

Oracle Turing machines are a much stronger model of computation than the standard Turing ma-
chines and the Church-Turing thesis does not hold for them. They compute relative to some oracle
which is a language over Σ∗. In particular, their computation is just as a computation of a standard
Turing machine only that, time to time, they can “ask the oracle” whether some string from Σ∗ is
in the oracle. Hence, oracle Turing machines can decide any undecidable language L if they com-
pute with the help of the oracle L. If some result (lemma, proposition, theorem . . .) about Turing
machines together with its proof is also valid for oracle Turing machines with the oracle O, for all
oracles O ⊆ Σ∗, then we say that the result relativizes because it is valid relative to any oracle.
Later in Section 4.3.4 we prove that a solution to the P versus NP problem must not relativize.

Oracle Turing machines are usually defined (see e.g. [2, Chapter 3.4]) to be just as normal
Turingmachines, only with an additional tape called the oracle tapewhich serves for oracle queries:
to query the oracle, the oracle Turing machine just writes a string from Σ∗ on the oracle tape and
then enters a special query state. Then in one step it magically enters one of two special states,
depending on whether the content on the oracle tape was a string from the oracle or not.

However, such a definition will not suffice for us. We want to define oracle Turing machines in
such a way that we will be able to have one-tape oracle Turing machines and that we will be able
to analyze crossing sequences3 of such machines. This will be used later to show that the results
in Chapter 5 relativize and to argue that using only methods from Chapter 6 we cannot solve the
P versus NP problem. However, our definition of the oracle Turing machine will be polynomially
equivalent to the standard one in the sense that, using the same oracle, our oracle Turing machine
that runs in time T (n) can be simulated by a standard oracle Turing machine in time T (n)k for
some constant k, and vice versa.

A k-tape non-deterministic oracle Turing machine (abbreviated as k-tape NOTM) is a 10-tuple
M = (Q,Σ,Γ,L,�, δ, q0, qacc, qrej, qyes), where

Q . . . a finite set of states,

Σ . . . the input alphabet fixed in Section 2.1.3,

Γ = Σ ∪ {L} . . . a (fixed) tape alphabet,
3Crossing sequences are defined in Chapter 5.

61

L ∈ Γ\Σ . . . a blank symbol,

�6∈ Γ . . . an oracle symbol,

δ : (Γ ∪ {�})× Γk−1 ×Q\{qacc, qrej} → P(Γk ×Q\{qyes} × {−1, 0, 1}k)\{∅}

. . . a transition function and

q0, qacc, qrej, qyes ∈ Q . . . pairwise distinct starting, accepting, rejecting and YES states.

Note that an NOTM has the same elements as an NTM with an additional special state qyes, an
additional symbol� and it has a fixed tape alphabet (the reason for the latter is given below). The
NOTMM always computes relative to some oracle O ⊆ Σ∗ and we denote byMO the NOTMM
with the oracle O. Its computation is just as by an ordinary NTM with the following distinctions:

• On the input tape, there is always exactly one special symbol� that divides the input tape
into the left part, called the oracle part and the right part, called the standard part of the
tape. All other tapes always contain only symbols from Γ.

• Before a computation begins, the symbol� is in cell−1, just left of the input (see Figure 3.1)
and it remains in this cell after each step of the computation. If the transition function wants
to replace it with some other symbol, the new symbol is ignored.

• The major difference in the computation of an NOTM compared to an NTM is the following.
When MO reads the symbol � on the input tape and then wants to move the head on the
input tape to the right, “magic” happens.

– If there is a string fromO written left next to the symbol� followed to the left by only
blank symbols, thenMO ignores the transition function δ in this step and it goes to the
state qyes, moving the head on the input tape for one cell to the right (where it should
go without magic) and changing nothing on the other tapes.

– Else, it keeps computing as the transition function δ dictates.

Note that (normal) Turing machines with the tape alphabet Σ ∪ {L} are oracle Turing machines
with the oracle which is the empty language (up to the symbol� on the input tape) because such
oracle Turing machines never go to the state qyes. The reason for why we decided to fix the tape
alphabet of oracle Turing machines to Σ∪{L} lies in Section 3.3.1 where we discussed reductions
of tape alphabets. The results in this section trivially relativize if the tape alphabet is Σ ∪ {L},
however if we allowed a general tape alphabet Γ ⊃ Σ, we would have troubles reducing it to
Σ ∪ {L} without making considerably more steps.

A k-tape deterministic oracle Turing machine (abbreviated as k-tape DOTM) M is the same
as a k-tape NOTM only that in each stepM has only one possible move.

Relativized Complexity Classes

For a fixed oracle O, all complexity classes from Section 3.4.1 could be defined also with oracle
Turing machines. The classes obtained this way are called relativized and are denoted with the
superscript O. This way we get the classes DTIMEO(T (n)), NTIMEO(T (n)), PO, NPO, co-NPO

. . . For example, the class PO is the class of languages decidable in polynomial time by a multi-tape
DOTM with the oracle O. We also define relativized classes of complete problems for NPO and
co-NPO by using polynomial-time (standard) DTMs for reductions.

62

4.3.2 Encodings of Oracle Turing Machines

NOTMs can have the same encoding as the ordinary NTMs (see Section 3.6) with the exception of
the symbol� and the state qyes that need to be marked somehow. It is worth noting that an oracle
is not part of the code of the oracle Turing machine. While in Section 3.6 we stated that using our
encoding we can compute the composition of two NTMs in linear time, we do not claim the same
for NOTMs, mainly because of the state qyes which makes it harder to define a composition of two
NOTMs. However, in our applications (Section 6.2.3) it will always be the case that the first Turing
machine in a composition of two Turing machines will not need an oracle, hence it can be treated
as an NTM and in such a case we can compute a composition of an NTM and an NOTM in linear
time.

Note that an NOTM with an oracle O can be simulated by an NOTM with the same oracle.

4.3.3 Results that Relativize

In this sectionwe arguewhy all results so far in this chapter relativize andwe discuss how statements
from Chapter 3 should change in order to hold also for oracle Turing machines. We will not give
rigorous proofs of the corresponding results with oracle Turing machines, we will just comment
on how the proof or the statement of a result should be adjusted.

Results from Section 3.3

In Section 3.3 we compared how different attributes of Turing machines influence time complexity.
While most of the statements and the proofs remain essentially the same if we use oracle Turing
machines with a fixed oracle, there are some exceptions.

• Lemma 3.3.1 relativizes.

• In Subsection 3.3.2 we analyzed linear speedup. The proofs of those results do not relativize
because we cannot compress the content on the oracle part of the input tape.

• In Proposition 3.3.8 we simulated a multi-tape Turing machineM on a one-tape Turing ma-
chine M̃ with a quadratic overhead. The same cannot be done so easily with oracle Turing
machines because it is hard to keep track of the position of the head on the oracle part of
the input tape, especially with the tape alphabet Σ ∪ {L}. However, for oracle Turing ma-
chines, we can prove a slightly weaker result, namely a multi-tape Turing machine M can
be simulated on a one-tape Turing machine M̃ with a cubic overhead. This can be proven
by simulating all tapes of M on the standard part of the tape of M̃ and copying the oracle
queries to the oracle part of the tape when queried. Now ifM runs in time T (n), then be-
cause copying a query of size ` to the oracle part of the tape takes O(`2) steps on one-tape
oracle Turing machines, we get that M̃ runs in time O(T 3(n)).

The same holds for Corollary 3.3.9.

• In Proposition 3.3.10 we simulated a multi-tape NTMM that runs in time T (n) on a 2-tape
NTM. We used a bigger tape alphabet than Σ ∪ {L}, however this was not necessary. The
input can be stored on the second tape and the content of the second tape can be encoded in
binary. To show that the result relativizes, the input tape should only be used to simulate the
input tape ofM . When simulating non-input tapes ofM , the role of the input tape and the
second tape should exchange in order for the head on the input tape to avoid the oracle part of

63

the tape. Not to produce too much overhead when exchanging the role of the input tape and
the second tape, we should start with ` = (the length of the input) and, if T (n0) < n0 + 1
for some n0 ∈ N, we should use Lemma 3.3.2.

• In Proposition 3.3.12 we simulated a multi-tape DTM M on a 2-tape DTM. The way the
proof is written it cannot be straightforwardly relativized since the input tape is used in both
directions to simulate all the tapes of M . Hence, the result can be changed a bit: we can
simulate a multi-tape DOTM M that runs in time T (n) on a 3-tape DOTM that runs in
time O

(
T (n) log T (n)

)
. This result can be obtained by simulating the input tape separately

and the rest of the tapes as in Proposition 3.3.12. Thus, we do not need other symbols than
Σ∪{L} on the input tape. On the other two tapes we can encode each new symbol in binary
and the same proof goes through.

The same remark holds for Corollary 3.3.13.

• In the proof of Proposition 3.3.14, we used the input tape only for storing the input. It can
as well be used to query oracles, so the result relativizes.

On the other hand, the proof of Corollary 3.3.15 does not relativize, because we have to
reduce a multi-tape Turing machine to a one-tape Turing machine. However, the same proof
gives that if a language L ⊆ Σ∗ is decided in time T (n) by a multi-tape NOTMM , then it
is also decided by some one-tape DOTM in time 2O(T (n)3).

• Proposition 3.3.16 relativizes.

Universal Oracle Turing Machines

In the proof of Proposition 3.6.1 we describe a universal 3-tape NTM U . If we change the purpose
of the first and the second tape of U , this result relativizes. Similarly, Proposition 3.6.2 relativizes,
however the resulting universal DTM has 4 tapes.

Results Proven by Diagonalization

It is clear that the undecidability of the halting problem relativizes (for each oracle we get another
halting problem). What is more, the deterministic and the non-deterministic time hierarchy theo-
rems relativize (the proofs are essentially the same as in the non-relativized setting). Hence, we
have the following strict inclusions for each oracle O:

DTIMEO(n) (DTIMEO(n2) (DTIMEO(n10) (PO (DTIMEO(2n) (EXPO

and

NTIMEO(n) (NTIMEO(n2) (NTIMEO(n10) (NPO (NTIMEO(2n) (NEXPO.

4.3.4 Limits of Proofs that Relativize

In this section we prove that a solution to the P versus NP problem must not relativize. More
specifically, we will exhibit two oracles A and B such that PA = NPA and PB 6= NPB . Such
oracles were first found by Baker, Gill and Solovay [3].

Lemma 4.3.1. There exists an oracle A ∈ EXP such that PA = NPA.

64

Proof. Let A be a language corresponding to the following decision problem:

Given a one-tape DTMM and an input w forM , doesM accept the input w in at
most 2|w| steps?

First, we prove that EXP ⊆ PA. Let L be a language from EXP and letM be a one-tape DTM
that decides L in time 2p(n) for some polynomial p : N → N. Let M̃ be a one-tape DTM that on
inputs of the form 0i1w where w ∈ Σ∗ and i ∈ N, it first erases 0i1 and then it computes exactly
asM on w. Now the following DOTMM1 decides L with the use of oracle A in polynomial time.
MA

1 on an input w writes a code x of the pair (M̃, 0p(|w|)1w) on the oracle part of the input tape
and then it accepts if x ∈ A, else it rejects. It is clear thatMA runs in polynomial time. Using the
inequality 1 + x ≤ 2x for x ∈ N, we get

w ∈ L =⇒M accepts w in at most 2p(|w|) steps

=⇒ M̃ accepts 0p(|w|)1w in at most 2p(|w|) + p(|w|) + 1 steps

=⇒ M̃ accepts 0p(|w|)1w in at most 2p(|w|)+1+|w| steps

=⇒MA
1 accepts w

and

w 6∈ L =⇒M rejects w in at most 2p(|w|) steps

=⇒ M̃ rejects 0p(|w|)1w in at most 2p(|w|) + p(|w|) + 1 steps

=⇒ M̃ rejects 0p(|w|)1w in at most 2p(|w|)+1+|w| steps

=⇒MA
1 rejects w.

Hence, L ∈ PA which implies EXP ⊆ PA.
It is clear that A ∈ EXP: to verify whether a given one-tape DTMM accepts a given input w

in at most 2|w| steps, we first compute 2|w| and then simulateM on the input w for 2|w| steps. We
return the same asM returns or, ifM does not halt, we reject.

Next, we show that NPA ⊆ EXP. Let L be a language from NPA and letM1 be an NOTM that
decidesLwith the help of the oracleA in time p(n) for some monotonically increasing polynomial
p : N→ N. Now the following DTMM decidesL in exponential time. M on an inputw simulates
all possible computations of MA

1 on the input w and, for each oracle query of MA, it computes
the output itself. There are 2O(p(|w|)) possible computations ofMA

1 on input w, henceM needs to
simulate at most p(|w|)2O(p(|w|)) steps of MA

1 altogether. Because A ∈ EXP, A can be decided
by a DTM in time O(2p̃(n)) for some polynomial p̃. Because each oracle query that needs to be
answered forMA

1 on the input w is at most p(|w|) long,M spends O(2p̃(p(|w|))) steps answering
it. Hence, M needs to simulate at most exponentially many steps of MA

1 and each step can be
simulated in exponential time (in the length of the input). This implies thatM runs in exponential
time, hence L ∈ EXP.

To sum up, we have proven

EXP ⊆ PA ⊆ NPA ⊆ EXP,

which implies PA = NPA. �

Lemma 4.3.2. There exists an oracle B ∈ EXP such that PB 6= NPB .

65

Proof. We will actually prove a bit stronger statement. We will exhibit an oracle B ∈ EXP and a
language L ∈ NPB such that, for each function f : N→ R≥0 such that f(n) = o(2n), it will hold
L 6∈ DTIMEB(f(n)). It is clear that this implies PB 6= NPB .

Let us have some enumeration of DOTMs such that each DOTM appears infinitely many times
in the sequenceM1,M2,M3 . . . and given an index i in binary, we can construct a code ofMi in
time O(log i), i.e., in linear time. Such an enumeration can be obtained in the following way. If
u is a padded binary code of a DOTMM , then let iu be the positive integer that is represented as
1u in binary. We say that iu representsM and we defineMiu = M . For all integers that do not
represent a DOTM, we define that they represent some fixed DOTM, like for example a DOTM
that rejects every input in one step.

Algorithm 1: B
Input: w ∈ Σ∗

1 B = ∅
/* B will be a �growing� oracle that will contain only strings of size

at most |w| and at most one string of each size. */

2 S = ∅
/* S will be a set of all oracle queries inside the following for

loop. */

3 for i = 1, 2 . . . |w| do
4 SimulateMB

i on the input 1i for 2i−1 steps (or untilMB
i halts) and add all oracle

queries ofMB
i on this computation to S.

/* Note that we are making a sort of diagonalization: The machine

MB
i has the same index as the input length, which determines

also the bound for the number of steps. */

5 if MB
i rejects during the simulation then

6 Let x be the lexicographically first string from Σi that is not in S
/* Note that the string x always exists because S has at most

20 + 21 + 22 + · · ·+ 2i−1 = 2i − 1

elements and there are at least 2i strings in Σi. */

7 B = B ∪ {x}
/* Note that because x 6∈ S, for j ≤ i, adding x to B does not

change the computation of MB
j on the input 1j in the first

2j−1 steps. */

8 if w ∈ B then accept
9 else reject

Figure 4.1: Algorithm B that defines the oracle B.

Consider the algorithm B in Figure 4.1 and let B be the language decided by Algorithm B.
Note that if the for loop in Algorithm B would run forever (not until i = |w|), then the set B from
the algorithm would “converge” to the language B. What is more, for each i, the DOTMMi with
the oracle B in the first 2i−1 steps on the input 1i computes the same as in the algorithm where the
oracle B is only partially built.

66

It is clear that the Algorithm B runs in exponential time, hence B ∈ EXP. Now define the
language

L = {1m;m ∈ N and there exists a string x ∈ Σm such that x ∈ B}.

Clearly, L ∈ NPB; the certificate for 1m ∈ L is x ∈ Σm ∩ B. Let f : N → R≥0 be a function
such that f(n) = o(2n). The only thing left to prove is that L 6∈ DTIMEB(f(n)).

If L ∈ DTIMEB(f(n)), then there exists a DOTM M with oracle B that decides L in time
O(f(n)). Because f(n) = o(2n) and because M is represented by infinitely many integers, we
can choose a large enough k so thatM = Mk andMk on inputs of length k makes at most 2k−1

steps. By Algorithm B, we have thatMB
k rejects the string 1k if and only if B contains a string of

length k, which is true if and only if 1k ∈ L by the definition of L. This is a contradiction with the
fact thatMB

k decides L. �

Together, Lemma 4.3.1 and Lemma 4.3.2 imply the following theorem.

Theorem 4.3.3. There exist oracles A and B in EXP such that PA = NPA and PB 6= NPB .

67

68

Chapter 5

Crossing Sequences

While the Chapters 2, 3 and 4 of the dissertation discussed results that are at least mentioned in
most standard textbooks, this chapter is more specific. It speaks about crossing sequences, a notion
that is defined only for one-tape Turing machines and it helps us to understand why one-tape Turing
machines are weaker than multi-tape Turing machines. In particular, crossing sequences help us
to prove that deciding the problem Palindrome takes at least quadratic time on one-tape Turing
machines, while linear time is enough on multi-tape Turing machines (see Proposition 5.1.10).

We begin by introducing the notion of crossing sequences and then we present the standard
cut-and-paste technique that is used in most of the results in this chapter, at least implicitly. We
prove that one-tape Turing machines that run in time o(n log n) actually run in linear time and
accept a regular language. The main theorem in this section, called the compactness theorem
(Theorem 5.2.1), tells essentially that to verify whether a given one-tape Turing machine runs in a
specified linear time bound, we only need to verify that it does not run for too long on short inputs.

All the main results in this chapter relativize. We actually defined the oracle Turing machines
in such a way that the results in this chapter would relativize. Although we will only talk about
NTMs and DTMs, we will mention NOTMs where there needs to be a special notice.

5.1 Definition and Basic Results

For a one-tape Turing machineM , we can number the cells of its tape with integers so that the cell
0 is the one whereM starts its computation. Using this numbering we can number the boundaries
between cells as shown in Figure 5.1.

boundaries: . . . −3 −2 −1 0 1 2 3 4 5 . . .

cells: . . . −3 −2 −1 0 1 2 3 4 5 . . .

Figure 5.1: Numbering of tape cells and boundaries of a one-tape Turing machine. The shaded
part is a potential input of length 4. If the Turing machine is an oracle Turing machine, there is the
symbol� in the cell −1.

Intuitively, a crossing sequence generated by a one-tape NTMM after t steps of a computation
ζ on an input w at a boundary i is a sequence of states ofM in whichM crosses the ith boundary
of its tape when considering the first t steps of the computation ζ on the input w. We assume that,

69

in each step,M first changes the state and then moves the head. A more formal definition is given
in the next paragraph.

Suppose that a one-tape NTM M in the first t ∈ N ∪ {∞} steps of a computation ζ on an
input w crosses a boundary i of its tape at steps t1, t2 . . . (this sequence can be finite or infinite). If
M was in a state qj after the step tj for all j, then we say thatM produces the crossing sequence
Cti (M, ζ,w) = q1, q2 . . . and we denote its length by |Cti (M, ζ,w)| ∈ N ∪ {∞}. The sequence
alternates left-moves and right-moves and begins with a left move if and only if i ≤ 0. Note that
Cti (M, ζ,w) contains all information that the machineM carries across the ith boundary of the tape
in the first t steps of the computation ζ. If we denote Ci(M, ζ,w) = C|ζ|i (M, ζ,w), the following
trivial identity holds because the head ofM must move in each step:

|ζ| =
∞∑

i=−∞
|Ci(M, ζ,w)|.

5.1.1 The Cut-and-Paste Technique

Let τ be the tape of a one-tape NTM M with some symbols written on it. We can cut the tape
on finitely many boundaries to get tape segments τ1, τ2 . . . τk so that τ = τ1τ2 · · · τk, where τ1 is
left infinite, τk is right infinite and the other segments are finite. We can also start with a tuple of
segments τ̃1, τ̃2 . . . τ̃l and glue them together to get the tape τ̃ = τ̃1τ̃2 · · · τ̃l. This can be done if
τ̃1 is left infinite, τ̃l is right infinite, other segments are finite and exactly one of the segments has
a prescribed location for the cell 0 (where M starts its computation). We consider a tape in the
same way as an input, i.e., we can give a tape toM and it will start computing on it as its transition
function determines. Hence, ifM is given a tape τ , then for a step t of a computation ζ ofM on
τ , the crossing sequence generated at a boundary i is denoted Cti (M, ζ, τ). Although a tape can
be filled with random symbols, in our main applications it will correspond to some input w being
written on it.

Because the crossing sequences contain all the information the Turing machine carries across
some boundary of the tape, the next proposition is very intuitive. The proof is a slight generalization
of a result of Hennie [17].

Proposition 5.1.1. LetM be a one-tape NTM and let τ1τ2 and τ̃1τ̃2 be two tapes. Let t be a step
of a computation ζ ofM on the tape τ1τ2 and let t̃ be a step of a computation ζ̃ ofM on the tape
τ̃1τ̃2. Suppose that the segments τ1 and τ2 are joined at a boundary i > 0 and the segments τ̃1 and
τ̃2 are joined at a boundary ĩ > 0. If

Cti (M, ζ, τ1τ2) = C t̃
ĩ
(M, ζ̃, τ̃1τ̃2),

then there exists a computation ζ12̃ ofM on the tape τ1τ̃2 and a step t12̃ ∈ N ∪ {∞} such that,

a) the crossing sequences generated byM at the corresponding boundaries of the segment τ1

in the first t steps of the computation ζ and in the first t12̃ steps of the computation ζ12̃ are
identical,

b) the crossing sequences generated byM at the corresponding boundaries of the segment τ̃2

in the first t̃ steps of the computation ζ̃ and in the first t12̃ steps of the computation ζ12̃ are
identical.

70

What this proposition (together with its proof) tells is that, for tapes τ1τ2 and τ̃1τ̃2 and for
computations ζ and ζ̃ of an NTMM as in the proposition, we can cut the tapes and glue them to
get the tape τ1τ̃2 and there will exist a computation ofM on the tape τ1τ̃2 that will act as ζ on the
part τ1 and as ζ̃ on the part τ̃2 for the first few steps. If t = |ζ| and t̃ = |ζ̃|, then there will exist a
computation ofM on the tape τ1τ̃2 that will act as ζ on the part τ1 and as ζ̃ on the part τ̃2 until the
end of the computation.

Proof. Let C = q1, q2 . . . be the crossing sequence produced byM on the tape τ1τ2 at the boundary
i after the first t steps of the computation ζ. This means that the boundary i is crossed to the right
in the state q1 for the first time and that the tape segment τ2 is such that the head ofM can return
across the ith boundary in the state q2. Then the head ofM is on the left side of the boundary i and
it does not know anything about the other side of the boundary except that it was able to “return
the head” whenM went to the state q2. ThenM computes on the left side of the boundary i until
it again crosses the ith boundary in the state q3 and the right side of the boundary i is such thatM
can cross back in the state q4 . . . The analogous situation is happening during the computation ζ̃
of M on the tape τ̃1τ̃2. Hence, the tape segments τ2 and τ̃2 are such that if M enters them from
the left in the state q1, then there exist computations ofM such thatM can leave these segments
in the state q2. IfM then again enters in the state q3,M can cross back in the state q4 . . . The same
philosophy is for the left tape segments τ1 and τ̃1. They are such thatM can leave them in the state
q1 and ifM enters back in the state q2, it can leave them again in the state q3 . . .

Hence, there exists a computation ζ12̃ ofM on the tape τ1τ̃2 and t12̃ ∈ N ∪ {∞} such that a)
and b) hold. The computation ζ12̃ is just as ζ on the tape segment τ1 in the first t steps and ζ̃ on the
tape segment τ̃2 in the first t̃ steps. �

Note that the conditions i > 0 and j > 0 cause the cell 0 to be in the left tape segments, which
makes it possible to swap the right tape segments. The same result also holds if we put i, j ≤ 0.
However, for i, j ≤ 0 (or i, j ≤ −1) the result does not hold for NOTMs, because changes in the
oracle part of the tape influence a computation when crossing the boundary 0.

The following corollary is now trivial.

Corollary 5.1.2. Let τ1τ2τ3 be the tape of a one-tape NTMM . Suppose that the segments τ1 and
τ2 are joined at a boundary i > 0 and the segments τ2 and τ3 are joined at a boundary j. IfM
on a computation ζ on the tape τ1τ2τ3 produces the same crossing sequence at the boundaries i
and j after t ∈ N ∪ {∞} steps then, for each n ∈ N, there exists a computation ζn ofM on the
tape τ1(τ2)nτ3 and a step tn ∈ N∪ {∞} such thatM on the tape τ1(τ2)nτ3 on the first tn steps of
the computation ζn produces the same crossing sequences at the corresponding boundaries of the
segments τ1, τ3 and of each copy of the segment τ2 as in the first t steps of the computation ζ on
the tape τ1τ2τ3.

Note that the condition i > 0 could be replaced by j ≤ 0. In other words, if the same crossing
sequence appears on both ends of some tape segment that does not contain the cell 0, then we can
remove this segment or add extra copies of it next to each other without affecting the result of the
computation. The same result holds also for NOTMs, but only for i > 0.

Proof. Consider two copies of the tape τ1τ2τ3, one with τ1 and τ2 joined into a left segment and
one with τ2 and τ3 joined into a right segment and apply Proposition 5.1.1. The corollary follows
by induction. �

71

5.1.2 One-Tape Turing Machines that Run in Time o(n log n)

In this section we prove that a one-tape NTM (and also an NOTM) that runs in time o(n log n)
actually runs in linear time (Corollary 5.1.6) and that it accepts a regular language (Corollary 5.1.7).

The next lemma, implicit in Kobayashi [20], and in Tadaki, Yamakami and Lin [29] tells what
is so special with one-tape NTMs that run in time o(n log n).

Lemma 5.1.3. Let T : N→ R>0 be a function such that T (n) = o(n log n) and let

g(n) =

{
n logn
T (n) ; n ≥ 2

1 ; n = 0, 1.

Then, for any integer q ≥ 2, there exists a constant c such that any one-tape NTM with q states
that runs in time T (n), on each computation on each input produces only crossing sequences of
lengths bounded by c. What is more, c can be any constant satisfying c ≥ max{T (0), T (1)} and
the following inequality:

3
qn(log q)/g(n)1/2 − 1

q − 1
≤ n− 3− n

g(n)1/2
+ c

g(n)1/2

log n
(5.1)

for all n ≥ 2.

Note that since lim
n→∞

g(n) = ∞, then, for any q ≥ 2, there exists a constant
c ≥ max{T (0), T (1)} such that Inequality (5.1) holds for all n ≥ 2. The lemma holds also
for one-tape NOTMs.

Proof. LetM be a one-tape NTMwith q states that runs in time T (n). Let c ≥ max{T (0), T (1)}
be such that Inequality (5.1) holds for all n ≥ 2 and suppose thatM produces a crossing sequence
of length more than c on some input. Let w be a shortest such input, let ζ be the corresponding
computation and let n0 = |w|. Note that n0 ≥ 2 since c ≥ max{T (0), T (1)}. Suppose w was
given toM andM followed the steps of the computation ζ.

Let h be the number of boundaries from {1, 2 . . . n0−1} at which crossing sequences of lengths
less than (log n0)/g(n0)1/2 were produced. Then we have

n0 log n0

g(n0)
= T (n0) > c+ (n0 − 2− h)

log n0

g(n0)1/2

and hence

h > n0 − 2− n0

g(n0)1/2
+ c

g(n0)1/2

log n0

≥ 3
qn

(log q)/g(n0)1/2

0 − 1

q − 1
+ 1

= 3
q(logn0)/g(n0)1/2+1 − 1

q − 1
+ 1.

Moreover, a simple counting shows that there are at most

q(logn0)/g(n0)1/2+1 − 1

q − 1

72

distinct crossing sequences of lengths less than (log n0)/g(n0)1/2.
Hence, by the pigeonhole principle, there exist at least four boundaries in {1, 2 . . . n0 − 1} at

which the same crossing sequence C was produced. Now if a crossing sequence of length more
than c was produced at some boundary i ∈ Z, we can find two boundaries in {1, 2 . . . n0 − 1} at
which C was produced, such that i does not lie between them. If we cut away the substring of w
between those two boundaries, we get an input forM of length less than n0 on whichM produces
a crossing sequence of length more than c. This contradicts the selection of w and completes the
proof of the lemma. �

This lemma has some interesting consequences.

Corollary 5.1.4. If a one-tape NTMM runs in time T (n) = o(n log n), then there exists a constant
D, such thatM on each input w visits at most |w|+D cells.

Proof. By Lemma 5.1.3, the length of crossing sequences produced byM is bounded by a constant
and thusM produces only constantly many distinct crossing sequences. If K is this constant, let
us prove thatM visits at mostK cells to the right of the input.

Suppose that this is not true for some input w. If we runM on w, then there are at least two
boundaries with index greater than or equal to |w|, say i and j, that produce the same non-empty
crossing sequence. At the beginning of the computation we only have blank symbols between those
two boundaries, thus all boundaries i + k|j − i| for k ∈ N produce the same crossing sequence.
This is a contradiction withM running in finite time, thusM visits at mostK cells to the right of
the input.

The same way we can show thatM visits at most K cells to the left of the input, which com-
pletes the proof. �

While the above corollary holds also for NOTMs, we have to be more careful with the last sentence
of the proof because it claims something about the oracle part of the tape. Actually, if M is an
NOTM, a different argument is needed to show that it visits only O(1) cells to the left of an input.

Corollary 5.1.5. If a one-tape NOTM M runs in time T (n) = o(n log n), then there exists a
constant D, such thatM on each input w visits at most |w|+D cells.

Proof. Weare only left to show thatM visitsO(1) cells to the left of each input. Suppose that this is
not true. Hence, for each cell with a negative index,M visits this cell on some computation on some
input. Recall that by Lemma 5.1.3,M produces only constantly many distinct crossing sequences.
Hence, there exist a crossing sequence C, non-empty inputs w0, w1 . . . and computations ζ0, ζ1 . . .
of M on these inputs such that M produces the crossing sequence C at the boundary 1 on each
of these computations and, for each i ∈ N, M visits the cell −i on the computation ζi. For each
i ∈ N, let wi = aiw̃i for ai ∈ Σ and w̃i ∈ Σ∗. By Proposition 5.1.1 it follows thatM on inputs
a0w̃0, a1w̃0, a2w̃0 . . . visits each of the cells with a negative index on appropriate computations,
because left of the boundary 1 M can compute as ζ0, ζ1, ζ2 . . . and right from the boundary 1 it
can compute as ζ0. This is a contradiction with the fact thatM makes at most T (|w0|) steps on the
inputs a0w̃0, a1w̃0, a2w̃0 . . . which are all of length |w0|. �

This corollary is interesting also because it implies that a one-tape NOTM that runs in time
o(n log n)makes only a constant number of distinct oracle queries on all computations on all inputs.
This furthermore implies that an oracle query can be computed in constant time, which implies that
a language that is decided by some one-tape NOTM that runs in time o(n log n) can also be decided

73

by a (standard) one-tape NTM in time o(n log n). This claim will be even more strengthened by
Proposition 5.1.7.

The next corollary, proven also by Pighizzini [26], tells us that time o(n log n) for one-tape
Turing machines actually means linear time. It holds also for NOTMs.

Corollary 5.1.6. If a one-tape NTM runs in time o(n log n), then it runs in linear time.

Proof. Let M be a one-tape NTM that runs in time o(n log n). The main observation is that M
on each input w on each computation ζ halts exactly after

∑
|C| steps, where the sum is over all

crossing sequences C produced at boundaries of the tape. From Lemma 5.1.3 it follows that each
addend is bounded by a constant and from Corollary 5.1.4 it follows that there are at most |w|+D
of them for some constant D. �

Finally, we show that one-tape NTMs that run in time o(n log n) accept only regular languages.
The idea of the proof is fromPighizzini [26] and it holds also for NOTMs because a one-tapeNOTM
that runs in time o(n log n) can be simulated by a one-tape NTM that runs in time o(n log n) (see
the text before Corollary 5.1.6).

Proposition 5.1.7. If a one-tape NTM runs in time o(n log n), then it decides a regular language.

Proof. LetM be a one-tape NTM that runs in time o(n log n) and let L be the language thatM
decides. We may assume that, for all n, M on inputs of length n in the last step of each of its
computations crosses the boundary n of its tape (in one of its halting states). This can be assumed
becauseM can, for example, in the first O(n) steps mark the cell with the last symbol of an input
(using additional symbols) and when the computation is finished, M can search for this cell (in
linear time by Corollary 5.1.4) and halt while moving its head to the neighboring cell on the right.

Let us describe an NFA M̃ = (Q,Σ, δ, qs, F) that decides L. By Lemma 5.1.3, the length of
crossing sequences produced byM is bounded by a constant and thusM produces only constantly
many crossing sequences. Let S be the set of these crossing sequences and let F ⊆ S be the subset
of S of such crossing sequences that end with an accepting state. Note that the crossing sequences
from F can only be produced at the rightmost boundary of some input. Define Q = S ∪ {qs} for
some new state qs and, ifM accepts input ε, add qs to F . The definition of δ is the following.

• For each C ∈ S and for each a ∈ Σ, let there exist an edge from qs to C with the weight a if
there exists some input w ofM that begins with the symbol a and a computation ζ ofM on
w such thatM produces the crossing sequence C at the boundary 1 on computation ζ.

• For each C1, C2 ∈ S and for each a ∈ Σ, let there exist an edge from C1 to C2 with the weight
a if there exists some input w ofM with the (i > 1)th symbol a and a computation ζ ofM
onw such thatM on computation ζ produces the crossing sequence C1 at the boundary i−1
and the crossing sequence C2 at the boundary i.

It is clear that ifM accepts an input w, then M̃ also accepts the input w: M̃ just follows the
sequence of states that are crossing sequences produced by an accepting computation ofM on w
at boundaries 1, 2 . . . |w|.

Now suppose that M̃ accepts an input w̃.

• If |w̃| = 0, then w̃ = ε andM accepts w̃.

74

• If |w̃| = 1, then M̃ accepts |w̃| in one step, hence there exists an edge from qs to some
C ∈ F . This implies that there exists an input w ofM that begins with w̃ andM produces
the crossing sequence C at the boundary 1 on some computation. Because C ends with the
accepting state and because M always finishes its computation at the end of its input, it
follows that |w| = 1 which implies w̃ = w andM accepts the input w̃.

• If |w̃| = k > 1, then let w̃ = ã1ã2 . . . ãk where, for each i, ãi ∈ Σ. Let qs, C1, C2 . . . Ck
be a sequence of states of M̃ that on the input w̃ lead to an accepting state Ck ∈ F . By
the definition of M̃ there exists an input w1 that begins with the symbol ã1 such thatM on
the input w1 produces the crossing sequence C1 on some computation ζ1 at the boundary 1.
Similarly, for each 1 < j ≤ k there exists an input wj with the non-first symbol ãj such
thatM on the input wj on some computation ζj produces the crossing sequences Cj−1 left
of the symbol ãj and the crossing sequence Cj right of the symbol ãj . Note that because
Ck ends with an accepting state and the computation ζk produces the crossing sequence Ck
on the right of the symbol ãk, this symbol is the last symbol of the input wk. Let ζ be the
computation ofM on the input w̃ that computes as

– ζ1 when the head ofM is over the first symbol of w̃ or left of it,
– ζj when the head ofM is over the jth symbol of w̃ for 1 < j < k,
– ζk when the head ofM is over the last symbol of w̃ or right of it.

It is clear thatM on the computation ζ produces the crossing sequences C1, C2. . .Ck at the
boundaries 1, 2 . . . k, respectively. Hence, the computation ζ ofM on the input w̃ is accept-
ing.

To sum up, the NTMM and the NFA M̃ accept the same language L, thus L is regular. �

An “algorithmic” version of the above proof will be given later in Theorem 5.2.10.

5.1.3 Simple Applications

In this section we prove lower and upper bounds on the number of steps required to solve the
problems Compare Length and Palindrome by one-tape Turing machines. The lower bounds
will be proven with the help of crossing sequences.

The problem Compare Length was defined in Section 1.1 and it asks whether a given string
is of the form 0k1k for some k ∈ N. Let Lc be the corresponding language

Lc = {0k1k; k ∈ N} ⊆ Σ∗.

The problem Palindrome was defined in Section 2.2.1 and it asks whether a given string is a
palindrome. We denote by Lp ⊆ Σ∗ the language of palindromes. In Section 2.2.1 we proved that
the language Lp is not regular and in the next lemma we use crossing sequences to show that the
language Lc is not regular either.

Lemma 5.1.8. The language Lc is not regular.

Proof. If the language Lc was regular, then it would be recognized by some DFA, hence there
would exist a one-tape DTMM that would decide Lc and would generate only crossing sequences
of length 1 at all boundaries on all inputs. Hence, there would exist two different integers k1, k2 > 0

75

such that the crossing sequence produced byM on the input 0k11k1 at the boundary k1 would be
the same as the crossing sequence produced byM on the input 0k21k2 at the boundary k2. Because
both of these inputs are accepting,M also accepts the input 0k11k2 by Lemma 5.1.1 which gives a
contradiction. �

The next proposition gives a tight bound on how fast a one-tape Turing machines can solve the
problem Compare Length. Together with Proposition 5.1.7 it also implies that the time bounds
Θ(n log n) are the tightest that allow a one-tape Turing machine to recognize a non-regular lan-
guage.

Proposition 5.1.9. The language Lc = {0k1k; k ∈ N} can be decided in time O(n log n) by a
one-tape DTM, but not in time o(n log n) by any one-tape NOTM with any oracle.

Proof. Because Lc is not regular, it cannot be solved in time o(n log n) by any one-tape NOTM
with any oracle by Proposition 5.1.7. Hence we only have to prove the upper bound. To do so,
letM be the following one-tape DTM. On an input w of length n, M first verifies in O(n) steps
whether the input is of the form 0k1` for some k, ` ∈ N and if not, it rejects. Additionally, M
writes some special symbols like # in the cell left and in the cell right of the input to mark the
input part of the tape. In all steps that follow,M will pass through the input part of the tape from
one symbol # to the other one, each time making O(n) steps. In one pass,M can verify whether
k and ` are of the same parity. If not, it rejects, else, it erases dk/2e zeros and dl/2e ones in one
pass by erasing every second 0 and every second 1. Now there are exactly bk/2c zeros and bl/2c
ones remaining on the tape. M again verifies the parity of bk/2c and bl/2c and if they are distinct,
M rejects. If they are the same,M erases one half of 0s and one half of 1s that are left on the tape.
It continues this way until there are still some 0s and 1s on the tape. If at the end all 0s and all 1s
have been erased, thenM accepts, else it rejects. What isM actually doing is verifying whether
the digits of the binary representation of the numbers k and l match (starting from the last digit).
For each digitM needs O(n) steps, hence O(n log n) altogether. �

The next proposition tells that the problem Palindrome is harder to solve on one-tape Turing
machines than the problem Compare Length. This result can be found in Kozen [21, Chapter 1].
The idea of the proof is from Hennie [17]. The proposition holds for NOTMs as well.

Proposition 5.1.10. If an NTMM decides the language of palindromes Lp, then it does not run
in time o(n2).

Proof. Let an NTM M with q states decide the language of palindromes. Let us observe, for a
fixed integer k > log q, the inputs of the form

a10a20 . . . 0ak0b10b20 . . . bk0110bk0bk−10 . . . 0b10ak0ak−10 . . . 0a1 (5.2)

where ai, bi ∈ Σ for all i. Note that two symbols 1 are consecutive only in the middle of the
observed palindromes. Let us fix an accepting computation ofM on each of these inputs (because
they are palindromes, such a computation exists).

First note that, over all inputs of the form (5.2) and over all boundaries 1, 2, . . . 4k (these are
the boundaries on the left of the two consecutive ones), M produces pairwise distinct crossing
sequences. If not, then there exist inputs

a10a20 . . . 0ak0b10b20 . . . bk0110bk0bk−10 . . . 0b10ak0ak−10 . . . 0a1

76

and
c10c20 . . . 0ck0d10d20 . . . dk0110dk0dk−10 . . . 0d10ck0ck−10 . . . 0c1

such that we can cut them somewhere on the left of the two consecutive ones and cross-join them,
which would result in an input accepted byM . However, such crossbreeding inputs are not palin-
dromes.

Next, we claim that there exist symbols a1, a2 . . . ak ∈ Σ such that, for each b1, b2 . . . bk ∈ Σ,
M on the fixed accepting computations on inputs

a10a20 . . . 0ak0b10b20 . . . bk0110bk0bk−10 . . . 0b10ak0ak−10 . . . 0a1

produces only crossing sequences of length more than

k − dlog qe
dlog qe

at boundaries 2k, (2k + 1), (2k + 2) . . . (4k − 1), which are the boundaries between the symbols
bi and symbols 0. If this is true, thenM on such inputs makes at least

2k
k − dlog qe
dlog qe

= Ω(k2)

steps, hence it does not run in time o(n2).
To prove that the desired symbols a1, a2 . . . ak ∈ Σ exist, let us assume the contrary. Then,

for each of the 2k possible beginnings a10a20 . . . 0ak, there exist symbols b1, b2 . . . bk ∈ Σ and a
boundary from {2k, (2k + 1), (2k + 2) . . . (4k − 1)} such that a crossing sequence of length at
most

k − dlog qe
dlog qe

is produced on it. Note that these “short” crossing sequences have to be pairwise distinct over all
observed inputs. Because there are only

1 + q + q2 + · · ·+ q(k−dlog qe)/dlog qe =
qk/dlog qe − 1

q − 1

distinct crossing sequences of length at most

k − dlog qe
dlog qe

,

which is strictly less than 2k, we came to a contradiction. �

We have a tight bound on how fast a one-tape Turing machines can solve the problem Palin-
drome.

Corollary 5.1.11. The language of palindromes Lp can be decided in time O(n2) by a one-tape
DTM, but not in time o(n2) by any one-tape NOTM with any oracle.

Proof. The lower bound is proven by Proposition 5.1.10 and the upper bound follows by the fol-
lowing algorithm that can be implemented in O(n2) time on a one-tape DTM. Given an input w,
verify whether the first symbol and the last symbol are the same and delete them. If they were not
the same, reject, else continue comparing the first and the last symbol until there is only one or no
symbols left. Then accept. �

77

Interestingly, the complement of the problem Palindrome can be solved faster then the prob-
lem itself by one-tape NTMs.

Proposition 5.1.12. The complement Lp of the language of palindromes Lp can be decided in time
O(n log n) by a one-tape NTM, but not in time o(n log n) by any one-tape NOTM with any oracle.

Proof. Because regular languages are closed under complementation, the language Lp is not reg-
ular and the lower bound follows. For the upper bound, consider the following algorithm that can
be implemented in O(n log n) time on a one-tape NTM. Given an input w, non-deterministically
guess the middle of the input and mark it. If |w| is even, then insert a new (arbitrary) symbol
between the middle two symbols and mark it. Next, non-deterministically choose and mark one
symbol left from the middle and one symbol right from the middle. If the symbols are the same,
reject, else we have the situation as in Figure 5.2. Everything until now can be done in linear time.
Next, verify whether there are equally many symbols of the input left from #1 as they are right
from #2 and if not, reject. This can be done deterministically in time O(n log n) as in the proof of
Proposition 5.1.9. Next, verify whether there are equally many symbols between #1 and # as they
are between # and #2 and if not, reject. Else, accept. Again, this can be done deterministically
in time O(n log n) as in the proof of Proposition 5.1.9. It is clear that there exists an accepting
computation if and only if the input was not a palindrome. �

.L L#1 # #2

Figure 5.2: Suppose that a one-tape NTM guessed the middle symbol# (wrongly) and the symbols
#1 and #2 left and right from the middle symbol. The shaded part is the input.

5.2 The Compactness Theorem

In this section, we present the compactness theorem proven by the author in [11]. Simply put, if we
want to verify that an NTMM runs in time Cn + D, we only need to verify the number of steps
thatM makes on inputs of some bounded length. The result can also be found, in a weaker form,
in [10].

The main technique used to prove the compactness theorem is the cut-and-paste technique
explained in Section 5.1.1. We show that a Turing machine that runs in timeCn+D must produce
some identical crossing sequences on each computation, if the input is long enough. Thus, when
considering some fixed computation, we can partition the input on some parts where identical
crossing sequences are generated, and analyze each part independently. We prove that it is enough
to consider small parts of the input.

Later in Section 5.2.3 we prove some supplementary results to the compactness theorem.
Among other we give an explicit upper bound on the length of the crossing sequences that are
produced by a one-tape NTM that runs in time Cn + D. We also give an algorithm that takes a
one-tape NTM M and integers C,D ∈ N as input and, if M runs in time Cn + D, returns an
equivalent NFA.

78

5.2.1 Computation on a Part

Before we formally state the compactness theorem, let us define tM (w, C). Intuitively, tM (w, C) is
the maximum number of steps that a one-tape NTMM makes on a part w of an imaginary input,
if we only consider such computations on whichM produces the crossing sequence C at both (the
left and the right) boundaries ofw. To define it more formally, we will describe a valid computation
of M on a part w with frontier crossing sequence C = (q1, q2 . . . ql). A similar but slightly less
general definition was given also by Pighizzini [26]. We will use the term standard case to refer to
the definition of a computation of an NTM on a given input (not on a part). Assume |w| = n ≥ 1
and letM = (Q,Σ,Γ,L, δ, q0, qacc, qrej).

• A valid configuration is a 5-tuple (C1, w̃, i, q̃, C2), where C1 is the left crossing sequence, w̃
is some string from Γn, 0 ≤ i ≤ n− 1 is the position of the head, q̃ ∈ Q is the current state
ofM and C2 is the right crossing sequence. Intuitively, C1 and C2 are the suffixes of C that
still need to be matched.

• The starting configuration is ((q2, q3 . . . ql), w, 0, q1, (q1, q2 . . . ql)). As in the standard case,
we imagine the input being written on the tape ofM with the first symbol in the cell 0 (where
also the head of M is). The head will never leave the portion of the tape where the input
is written. Note that q1 is missing in the left crossing sequence because we pretend that the
head just moved from the cell -1 to the cell 0.

• Valid configurations A = (C1A, wA, i, qA, C2A) and B = (C1B, wB, j, qB, C2B) are succes-
sive, if one of the following holds:

– the transition function of M allows (wA, i, qA) to change into (wB, j, qB) as in the
standard case, C1A = C1B and C2A = C2B ,

– i = j = 0, C1A is of the form (q̃, qB, C1B), wA = aw̃, wB = bw̃, (q̃, b,−1) ∈ δ(qA, a)
and C2A = C2B , or

– i = j = n − 1, C2A is of the form (q̃, qB, C2B), wA = w̃a, wB = w̃b and (q̃, b, 1) ∈
δ(qA, a) and C1A = C1B .

• There is a special ending configuration that can be reached from configurations of the form

– ((ql), aw̃, 0, q̃, ()), if (ql, b,−1) ∈ δ(q̃, a) for some b ∈ Γ or
– ((), w̃a, n− 1, q̃, (ql)), if (ql, b, 1) ∈ δ(q̃, a) for some b ∈ Γ.

• A valid computation ofM on the part w with frontier crossing sequence C is any sequence
of successive configurations that begins with the starting configuration and ends with the
ending configuration.

Similar to the standard case, we can define Ci(M, ζ,w, C) to be the crossing sequence generated by
M on the computation ζ on the part w ∈ Σn with the frontier crossing sequence C at the boundary
i (1 ≤ i ≤ n− 1) . We define

|ζ| = |C|+
n−1∑
i=1

|Ci(M, ζ,w, C)|

as the length of the computation ζ (on the part w). Figure 5.3 justifies this definition.
We define tM (w, C) ∈ N

⋃
{−1} as the length of the longest computation ofM on the part w

with the frontier crossing sequence C. If there is no valid computation ofM on the part w with the
frontier crossing sequence C or |C| =∞, then we define tM (w, C) = −1.

79

boundaries: 0 |w1| |w1|+ |w| |w1|+ |w|+ |w2|

w1 w w2

Figure 5.3: Suppose an input w1ww2 is given toM , |w1|, |w| ≥ 1 and let a computation ζ produce
the same crossing sequence C at boundaries |w1| and |w1| + |w|. If ζ1 is the corresponding com-
putation ofM on the part w, thenM on the computation ζ spends exactly |ζ1| steps on the part w.
What is more, if the input w1w2 is given to M (we cut out w) and we look at the corresponding
computation ζ2 extracted from ζ thus forming a crossing sequence C at the boundary |w1|, then
|ζ2| = |ζ| − |ζ1|. Such considerations will be very useful in the proof of the compactness theorem.

5.2.2 The Compactness Theorem

For a positive integer n and a one-tape NTMM , define

Sn(M) = {Cti (M, ζ,w); |w| = n, 1 ≤ i ≤ n, ζ computation on input w, t ≤ |ζ|}.

Thus Sn(M) is the set of all possible beginnings of the crossing sequences thatM produces on the
inputs of length n at the boundaries 1, 2 . . . n.

Theorem 5.2.1 (The compactness theorem). LetM be a one-tape NTMwith q states and letC,D ∈
N. Denote ` = D + 8qC , r = D + 12qC and S =

⋃`
n=1 Sn(M). It holds:

M runs in time Cn+D if and only if

a) for each input w of length at most ` and for each computation ζ ofM on w, it holds |ζ| ≤
C|w|+D and

b) for each C ∈ S and for each part w of length at most r, for which tM (w, C) ≥ 0, it holds
tM (w, C) ≤ C|w|.

Before going to the proof, let us argue that the theorem is in fact intuitive. If a Turing machine
M runs in time Cn+D, then a) tells us thatM must run in that time for small inputs and b) tells
us that on small partsw that can be “inserted” into some input from a),M must make at mostC|w|
steps. For the opposite direction, one can think about constructing each input forM from several
parts from b) inserted into some input from a) at appropriate boundaries, which results in running
time Cn+D.

The following lemma already proves one direction of the compactness theorem.

Lemma 5.2.2. Let all assumptions be as in Theorem 5.2.1. If b) does not hold, then there exists
some input z of length at most `+ (Cr +D)r such thatM makes more than C|z|+D steps on z
on some computation.

Proof. If b) does not hold, then there exists some finite crossing sequence C ∈ S , a part w of
length at most r and a valid computation ζ1 ofM on the part w with the frontier crossing sequence
C, such that |ζ1| ≥ C|w|+ 1. From the definition of S we know that there exist strings w1 and w2

such that |w1| ≥ 1 and |w1| + |w2| ≤ ` and a computation ζ2, such that C is generated by M at
the boundary |w1| on the input w1w2 on the computation ζ2 after some number t of steps. As in
Figure 5.3, we can now insert w between w1 and w2. In fact we can insert as many copies of w

80

between w1 and w2 as we want, because the crossing sequence C will always be formed between
them.

Let us look at the input z = w1w
Cr+Dw2 forM . Let ζ be a computation ofM on z that on the

part w1 (and left of it) and on the part w2 (and right of it) it acts like the first t steps of ζ2, and on
the copies of w it acts like ζ1. Note that after ζ spends t steps on the parts w1 and w2, the crossing
sequence C is generated at the boundaries |w1|, (|w1|+ |w|) . . . (|w1|+ (Cr+D)|w|) and by that
timeM makes at least t+ (Cr +D)(C|w|+ 1) steps. Using t ≥ 1 and r ≥ ` ≥ |w1|+ |w2|, we
see thatM makes at least

C(Cr +D)|w|+ C(|w1|+ |w2|) +D + 1 = C|z|+D + 1

steps on the computation ζ on the input z. Because |w| ≤ r and |w1| + |w2| ≤ `, we have
|z| ≤ `+ (Cr +D)r and the lemma is proven. �

Next, we prove the main lemma for the proof of the other direction of the compactness theorem.

Lemma 5.2.3. Let C andD be non-negative integers,M a one-tape q-state NTM and w an input
forM of length n. Assume that, on some computation on the input w after at most Cn+D steps,
each crossing sequence produced byM at the boundaries 1, 2 . . . n appears at most k times. Then
n ≤ D + 4kqC .

Proof. Let M make at least t ≤ Cn + D steps on a computation ζ on the input w and suppose
that each crossing sequence produced byM on ζ after t steps at the boundaries 1, 2 . . . n appears
at most k times. We know that Cn+D ≥ t ≥

∑n
i=1 |Cti (M, ζ,w)|, thus

n ≤ D + (C + 1)n−
n∑
i=1

|Cti (M, ζ,w)|

= D +
n∑
i=1

(C + 1− |Cti (M, ζ,w)|)

≤ D +
C+1∑
j=0

n∑
i=1

|Cti (M,ζ,w)|=j

(C + 1− j)

≤ D +
C+1∑
j=0

kqj(C + 1− j)

≤ D + 4kqC ,

where the last inequality follows by a technical lemma proven next. �

Lemma 5.2.4. For every q ≥ 2 and C ∈ N, it holds

C∑
j=0

qj(C − j) =
qC+1 − (C + 1)q + C

(q − 1)2
≤ 4qC−1.

81

Proof.

C∑
j=0

qj(C − j) = C

C∑
j=0

qj − q d
dq

 C∑
j=0

qj

= C

qC+1 − 1

q − 1
− q d

dq

(
qC+1 − 1

q − 1

)
=
qC+1 − (C + 1)q + C

(q − 1)2
.

It is easy to see that, for q ≥ 2, it follows

qC+1 − (C + 1)q + C

(q − 1)2
≤ qC+1

(q − 1)2

≤ 4qC−1. �

Before going into the proof of the compactness theorem, let us recall the definition of w(i, j)
which is the substring of a stringw, containing symbols from ith to jth, including ith and excluding
jth (we start counting with 0). Alternatively, if w is written on a tape of a Turing machine, w(i, j)
is the string between the ith and jth boundary.

Proof of the compactness theorem (Theorem 5.2.1). If M runs in time Cn + D, then a) obvi-
ously holds and b) holds by Lemma 5.2.2. Now suppose that a) and b) hold. We will make a proof
by contradiction, so suppose thatM does not run in time Cn + D. Let w be a shortest input for
M such that there exists a computation of M on w of length more than C|w| + D. Denote this
computation by ζ and let n = |w|, t = Cn+D.

Before we continue, let us give an outline of what follows in one paragraph. Our first goal
is to find closest boundaries j1 and j2 such that M produces the same crossing sequence C =
Ct+1
j1

(M, ζ,w) = Ct+1
j2

(M, ζ,w) at them after the (t)th and the (t + 1)st step of the computation
ζ (see Figure 5.4). Then using the fact that w is a shortest input for M such that there exists
a computation of M on w of length more than C|w| + D, we argue that tM (w(j1, j2), C) >
C|w(j1, j2)|. Now the most important part ofw is between the boundaries j1 and j2, so we want to
cut out the superfluous parts to the left of j1 and to the right of j2 (see Figure 5.5). After the cutting
out we get an inputw1w(j1, j2)w2 on whichM on the computation corresponding to ζ on the time-
step corresponding to t generates the crossing sequence C at boundaries |w1| and |w1|+j2−j1 and
all other crossing sequences are generated at most 3 times at boundaries 1, 2 . . . (|w1|+ j2 − j1 +
|w2|): once left from w(j1, j2), once at the boundaries of w(j1, j2) and once right from w(j1, j2).
Using Lemma 5.2.3 twice, we see that |w1w2| ≤ ` and |w1w(j1, j2)w2| ≤ r, which implies C ∈ S
and |w(j1, j2)| ≤ r. This contradicts b) because tM (w(j1, j2), C) > C|w(j1, j2)|.

As we stated in the above outline, our first goal is to find boundaries j1 and j2. From a) it follows
that n > ` = D+4 ·2qC , so by Lemma 5.2.3 there exist at least three identical crossing sequences
produced byM on the input w on the computation ζ after t steps at the boundaries 1, 2 . . . n. Let
these crossing sequences be generated at boundaries i1 < i2 < i3 (see Figure 5.4). Because
Cti1(M, ζ,w) and Cti3(M, ζ,w) are of equal length, the head ofM is, before the (t+1)st step of the
computation ζ, left of the boundary i1 or right of the boundary i3. Without the loss of generality
we can assume that the head is right from i3 (if not, we can rename i1 = i2 and i2 = i3 and
continue with the proof). Thus, no crossing sequence at the boundaries i1, (i1 + 1) . . . i2 changes
in the (t + 1)st step of the computation ζ. Let i1 ≤ j1 < j2 ≤ i2 be closest boundaries such that

82

Ct+1
j1

(M, ζ,w) = Ct+1
j2

(M, ζ,w). Then the crossing sequences Ctj(M, ζ,w), for j1 ≤ j < j2, are
pairwise distinct and do not change in the (t+ 1)st step of the computation ζ.

boundaries: 0 i1 j1 j2 i2 i3 n

Figure 5.4: Finding boundaries j1 and j2. The shaded area represents the input w. First, we
find boundaries i1, i2 and i3 at which the same crossing sequence is generated after t steps of the
computation ζ. Because the crossing sequences generated at the boundaries i1, i2 and i3 are of the
same length, after t steps of the computation ζ the head ofM is on some cell left of the boundary
i1 or on some cell right of the boundary i3, hence either the crossing sequences generated at the
boundaries between (and including) i1 and i2 remain intact in the (t+1)st step of the computation ζ,
either the crossing sequences generated at the boundaries between (and including) i2 and i3 remain
intact in the (t+ 1)st step of the computation ζ. Without loss of generality we may assume that the
former holds. We choose i1 ≤ j1 < j2 ≤ i2 to be closest boundaries such that Ct+1

j1
(M, ζ,w) =

Ct+1
j2

(M, ζ,w).

Let ζ1 be the computation on part w(j1, j2) with frontier crossing sequence C that corresponds
to ζ and let ζ2 be a computation on input w(0, j1)w(j2, n) such that its first t + 1 − |ζ1| steps
correspond to the first t+ 1 steps of ζ. Because the input w(0, j1)w(j2, n) is strictly shorter than
n,M makes at most C(|w(0, j1)|+ |w(j2, n)|) +D steps on any computation on this input, thus

t+ 1− |ζ1| ≤ |ζ2|
≤ C(|w(0, j1)|+ |w(j2, n)|) +D.

From t = Cn+D and n = |w(0, j1)|+ |w(j2, n)|+ j2 − j1 it follows that

|ζ1| ≥ t+ 1− C(|w(0, j1)|+ |w(j2, n)|)−D
= C(j2 − j1) + 1,

thus tM (w(j1, j2), C) > C|w(j1, j2)|.
Next, we will cut out some pieces of w to eliminate as many redundant parts as possible (if

they exist), while leaving the part of w between the boundaries j1 and j2 intact. Redundant parts
are those where identical crossing sequences are generated on the computation ζ after t steps. We
will cut out parts recursively and the result will not necessarily be unique (see Figure 5.5).

Suppose that Ctk(M, ζ,w) = Ctl (M, ζ,w) for 1 ≤ k < l ≤ j1 or j2 ≤ k < l ≤ n. Cut out the
part of w between the kth and lth boundary. Let w′ be the new input. Let the boundaries j′1 and j′2
for the input w′ correspond to the boundaries j1 and j2 for the input w. Let ζ ′ be a computation on
w′ that corresponds to ζ (at least for the first t steps of ζ) and let t′ be the step in the computation
ζ ′ that corresponds to the step t of the computation ζ. Now recursively find new k and l. The
recursion ends when there are no k, l to be found.

From the recursion it is clear that at the end we will get an input for M of the form w0

= w1w(j1, j2)w2, where |w1| ≥ 1. Let ζ0 be a computation that corresponds to ζ after the cutting
out (at least for the first t steps of ζ) and let t0 be the step in ζ0 that corresponds to t. If we denote
n0 = |w0|, then it holds t0 ≤ Cn0 +D because either there was nothing to remove and w0 = w,
t0 = t, or w0 is a shorter input than w and t0 ≤ Cn0 + D must hold by the minimality in the

83

boundaries: 0 k1 l1 j1 j2 k2 k3 l2 l3

w(j1, j2)

Figure 5.5: Cutting out parts of w to the left and to the right of w(j1, j2). If M on the input
w (shaded) on the computation ζ after t steps produces the same crossing sequence at bound-
aries k1 and l1, then we can cut out w(k1, l1). The same holds also for pairs (k2, l2) and (k3, l3).
What is more, we can cut out both w(k1, l1) and w(k2, l2) if Ctk1(M, ζ,w) = Ctl1(M, ζ,w) and
Ctk2(M, ζ,w) = Ctl2(M, ζ,w). However, we cannot cut out both w(k2, l2) and w(k3, l3) because
they overlap, and we may get a different outcome if we cut out w(k2, l2) or w(k3, l3).

definition of w. From the construction it is clear that M on input w0 on computation ζ0 after t0
steps generates the crossing sequence C at the boundaries |w1| and |w1|+ j2 − j1. What is more,
the crossing sequences at the boundaries 1, 2 . . . |w1| are pairwise distinct. The same is true for the
crossing sequences at the boundaries (|w1| + 1), (|w1| + 2) . . . (|w1| + j2 − j1) and the crossing
sequences at the boundaries (|w1|+ j2− j1), (|w1|+ j2− j1 + 1) . . . n0. Because t0 ≤ Cn0 +D,
we get that n0 ≤ D + 4 · 3qC = r by Lemma 5.2.3, hence |w(j1, j2)| ≤ r.

Denote w̃ = w1w2 and ñ = |w1| + |w2|. Let the computation ζ̃ on w̃ be a computation that
corresponds to ζ0 (at least for the first t0 steps of ζ0) and let t̃ be the time step of ζ̃ that corresponds
to the time step t0 of ζ0. Because ñ < n0 ≤ n and becausew is a shortest input forM that violates
the bound Cn+D,M makes at most Cñ+D steps on any computation on the input w̃, thus also
on the computation ζ̃. Note that no three crossing sequences from {C t̃i (M, ζ̃, w̃); 1 ≤ i ≤ ñ} are
identical, thus by Lemma 5.2.3, ñ ≤ D+ 4 · 2qC = `. Because C t̃|w1|(M, ζ̃, w̃) = C, it follows that
C ∈ S, which together with |w(j1, j2)| ≤ r and tM (w(j1, j2), C) > C|w(j1, j2)| contradicts b).�

5.2.3 Supplementary Results to the Compactness Theorem

In this section we prove several corollaries of the results in the previous section, Section 5.2.2,
which supplement the compactness theorem. For all positive integers C and D, we will show that
a one-tape NTM runs in time Cn + D if and only if it runs in that time on short inputs. We will
use this to construct an algorithm that takes integers C,D ∈ N and a one-tape NTMM as inputs
and if M runs in time Cn + D, returns an equivalent finite automaton. We will also give some
results that hold if we have a q-state one-tape NTMM that runs in time Cn+D, most notable an
explicit upper bound on the length of crossing sequences thatM can produce and a description of
a structure on Σ∗ that is induced byM .

The following corollary reveals why we use the name compactness theorem. It is because it
implies that a fixed linear running time of a Turing machine has to be verified only on finitely many
inputs.

Corollary 5.2.5. For positive integers C and D and for the polynomial

p(C,D) = 1 + C +D + CD +D2 + CD2,

a one-tape q-state Turing machine runs in time Cn + D if and only if, for each input of length
n ≤ 144p(C,D)q2C , it makes at most Cn+D steps.

Proof. The only if part is trivial and the if part follows by Theorem 5.2.1 and Lemma 5.2.2. �

84

Corollary 5.2.6. Let all assumptions be as in Theorem 5.2.1. If the NTMM runs in time Cn+D,
then it only produces crossing sequences of length at most C`+D.

Proof. Let C be a crossing sequence produced by M on a computation ζ on the input w. Let us
use induction on the length of |w| to prove that |C| ≤ C` + D. If |w| ≤ `, then |C| ≤ C|w| + D
and hence |C| ≤ C` + D. If |w| > ` then by Lemma 5.2.3 there exist at least three boundaries
from {1, 2 . . . |w|} such that M on the computation ζ produces the same crossing sequence at
them. We can choose two of these three boundaries i < j, such that the crossing sequence C is
produced at some boundary that is not strictly between them. If we cut outw(i, j) fromw, then the
computation that corresponds to ζ on the input w(0, i)w(j, |w|) produces the crossing sequence C
at some boundary. By the induction hypothesis, |C| ≤ C`+D. �

Corollary 5.2.7. Let all assumptions be as in Theorem 5.2.1. If the NTM M runs in time Cn +
D and it produces a crossing sequence C on a computation ζ on an input w at some boundary
1, 2 . . . |w|, then C ∈ S.

To tell the corollary in other words, if theNTMM runs in timeCn+D, thenS =
⋃∞
n=1 Sn(M).

Proof. We use induction on the length |w|. If |w| ≤ `, the corollary follows by the definition of
the set S . If |w| > `, then by Lemma 5.2.3 there exist at least three boundaries from {1, 2 . . . |w|}
such thatM on the computation ζ produces the same crossing sequence at them. We can choose
two of these three boundaries i < j, such that the crossing sequence C is produced at some bound-
ary from {1, 2 . . . |w|} that is not strictly between them. If we cut out w(i, j) from w, then the
computation that corresponds to ζ on the input w(0, i)w(j, |w|) produces the crossing sequence C
at some boundary from {1, 2 . . . |w(0, i)w(j, |w|)|}. By the induction hypothesis, C ∈ S. �

Corollary 5.2.8. Let all assumptions be as in Theorem 5.2.1. If the NTMM runs in time Cn+D
then, for every string w ∈ Σ∗, for every computation ζ of M on the input w and for every two
indices 1 ≤ i < j ≤ |w| such that the crossing sequences produced byM on the computation ζ at
the boundaries i, i+ 1 . . . (j − 1) are pairwise distinct, it holds j − i ≤ r.

Proof. We use induction on the length |w|. If |w| ≤ r, the corollary holds. If |w| > r then by
Lemma 5.2.3 there exist at least four boundaries i1 < i2 < i3 < i4 from {1, 2 . . . |w|} at which
the same crossing sequence is produced byM on the computation ζ on the input w. Because the
crossing sequences produced at the boundaries i, i + 1 . . . (j − 1) are pairwise distinct, it either
holds i2 ≤ i or i3 ≥ j. Hence, we can cut out one of the substrings w(i1, i2) or w(i3, i4) from w
such that the substring w(i, j) remains intact. ThenM on the new input on the computation that
corresponds to ζ produces pairwise distinct crossing sequences at the boundaries corresponding to
i, i+ 1 . . . (j − 1). Because the new input is shorter than w, it holds j − i ≤ r by induction. �

The above corollary has an interesting implication. Recall Proposition 5.1.7 which stated that every
one-tape NTM that runs in time o(n log n) decides a regular language. Now suppose that an NTM
M with q states runs in time Cn+D and it decides a language L. In the proof of Proposition 5.1.7
we explained how an NFA M̃ can be defined so that it will accepted the language L. The states
of M̃ were all possible crossing sequences thatM can produce, hence M̃ could have up to qΩ(qC)

states. What Corollary 5.2.8 tells is that every (non-self-intersecting) path in the graph of M̃ is at
most r = O(qC) states long.

The next simple corollary induces a structure on Σ∗ that is related to some one-tape linear-time
NTM.

85

Corollary 5.2.9. Let all assumptions be as in Theorem 5.2.1. If the NTMM runs in time Cn+D,
then for every string w ∈ Σ∗ and for every computation ζ ofM on the input w, at least one of the
following holds:

1. |w| ≤ ` or

2. there exist indices 1 ≤ i < j ≤ |w| such that j − i ≤ r andM on the computation ζ on the
input w produces the same crossing sequence at boundaries i and j.

This corollary could be rephrased as follows. If a one-tape NTM M runs in time Cn + D,
then we can construct every string from Σ∗ the following way. Begin with some string w0 ∈ Σ∗ of
length at most ` and a computation ζ0 ofM on w0. Next, choose a boundary from {1, 2 . . . |w0|}
and insert some part y0 ∈ Σ∗ of length at most r at this boundary, where tM (y0, C0) ≥ 0 and C0

is the crossing sequence produced by M on ζ0 at the chosen boundary. Let w1 be the obtained
string and let ζ1 be a computation of M on w1 that computes as ζ0 on the parts of w0. Because
tM (y0, C0) ≥ 0, the computation ζ1 exists. Next, choose a boundary from {1, 2 . . . |w1|} and
insert some part y1 ∈ Σ∗ at this boundary, where tM (y1, C1) ≥ 0 and C1 is the crossing sequence
produced byM on ζ1 at the chosen boundary. Continue in this a way for finitely many steps.

Proof. Suppose |w| > `. By Lemma 5.2.3 it holds thatM on the computation ζ produces some
crossing sequence at least at three boundaries from {1, 2 . . . |w|}. Let i < j be such two boundaries
at which the same crossing sequence C is produced and the crossing sequences produced at the
boundaries i, i+ 1 . . . (j − 1) are pairwise distinct. By Corollary 5.2.8 it holds that j − i ≤ r. �

We finish this chapter with an algorithmic adornment of Proposition 5.1.7.

Theorem 5.2.10. There exists an algorithm that takes integers C,D ∈ N and a one-tape NTMM
as inputs and, ifM runs in time Cn+D, it returns an equivalent NFA.

By Proposition 2.2.2, the algorithm could as well return an equivalent DFA. This result rel-
ativizes, however the algorithm has to use the same oracle as the input NOTMs. To prove the
relativized version, note that, given a one-tape NOTM that runs in time Cn+D, we can construct
an equivalent one-tape NTM that runs in time C̃n + D̃ for some C̃, D̃ ∈ N using ideas from the
proof of Corollary 5.1.5 (see also the paragraph after the corollary).

Proof. Let integers C,D ∈ N and a one-tape NTMM with q states be given. We can use Corol-
lary 5.2.5 to verify whetherM runs in timeCn+D. If this is the case, we can define an equivalent
NFA M̃ = (Q,Σ, δ, qs, F) as in the proof of Proposition 5.1.7, only that this time we do it con-
structively.

We may assume that, for all n,M on inputs of length n in the last step of each of its computa-
tions crosses the boundary n of its tape (in one of its halting states). For ` = D+ 8qC , let S be the
set of all the crossing sequences up to the length C`+D. Note that the set of crossing sequences
that can be produced by M is a subset of S by Corollary 5.2.6. Let F ⊆ S be the subset of S
of such crossing sequences that are formed by an NTM M on some input w on some accepting
computation at the boundary |w|. Note that by Corollary 5.2.7 we can search for such crossing
sequences by only considering inputs of length at most `. DefineQ = S ∪{qs} for some new state
qs and, ifM accepts the input ε, add qs to F . The definition of δ is the following.

• For each C ∈ S and for each a ∈ Σ, there is an edge from qs to C with the weight a if there
exists some input w of M that begins with the symbol a and a computation ζ of M on w

86

such thatM produces the crossing sequence C at the boundary 1 on the computation ζ. By
Corollary 5.2.9 it is enough to consider only inputs of length at most `, because longer inputs
can be appropriately shortened.

• For each C1, C2 ∈ S and for each a ∈ Σ, there is an edge from C1 to C2 if there exists a valid
computation ofM on the part a with frontier crossing sequences C1 and C2. Although such
a computation was formally defined only for C1 = C2, the definition for C1 6= C2 is intuitive
and analogous.

Clearly, M̃ can be constructed from C,D andM .
First suppose that M accepts an input w. If |w| = 0 then M̃ accepts w, else there exists

an accepting computation ζ of M on w that produces crossing sequences C1, C2 . . . C|w| at the
boundaries 1, 2 . . . |w|. By the comments in the definition of M̃ there exists a computational path
qs, C1, C2 . . . C|w| for M̃ on the input w where C|w| ∈ F which means that M̃ accepts w.

Now suppose that M̃ accepts an input w. If |w| = 0 then M accepts w, else there exists an
accepting computational path qs, C1, C2 . . . C|w| for M̃ on the input w. We claim that we can build
a computation of M on w that produces the crossing sequences C1, C2 . . . C|w| at the boundaries
1, 2 . . . |w|. For each non-first symbol a of w, we know that there exists a computation on the part
a that produces the desired left and right crossing sequence. We also know that there exists an
input w0 that begins with the same symbol as w and a computation ζ0 of M on w0 such that M
forms the crossing sequence C1 at the boundary 1. Furthermore, because C|w| ∈ F , we know that
there exists an input w1 and an accepting computation ζ1 ofM on w1 that produces the crossing
sequence C|w| at the boundary |w1|. Now the computation ofM on w that produces the crossing
sequences C1, C2 . . . C|w| at the boundaries 1, 2 . . . |w| is the following: on the first symbol and left
of this symbol it computes like ζ0, right from the last symbol it computes as ζ1 and above each of
the non-first symbols of w it computes as the desired computation. Hence, M accepts w, which
implies thatM and M̃ accept the same language. �

87

88

Chapter 6

Verifying Time Complexity of Turing
Machines

This chapter contains the main results of the author [10, 11]. For a function T : N → R≥0, we
show the following in the first part of the chapter, Section 6.1.

• The problem of whether a given multi-tape Turing machine runs in time T (n) is undecidable
if and only if, for all n ∈ N, T (n) ≥ n+ 1 (Theorem 6.1.3).

• The problem of whether a given one-tape Turing machine runs in time T (n) is undecidable
if T (n) = Ω(n log n) and T (n) ≥ n+ 1 for all n ∈ N (Theorem 6.1.5).

• The problem of whether a given one-tape Turing machine runs in time T (n) is decidable if
T is “nice” and T (n) = o(n log n) (Theorem 6.1.10).

• The problem of whether a given one-tape or multi-tape Turingmachine runs in timeO(T (n))
is undecidable for all reasonable functions T (Theorem 6.1.6).

All these results hold for deterministic as well as non-deterministic Turing machines. In the second
part of the chapter, Section 6.2, we prove Theorem 1.2.1, which is stated in the introduction. It
characterizes computational complexity of the problems of verifying whether a given one-tape
Turing machine runs in time Cn + D, for parameters C,D ∈ N. In Section 6.2.5 we argue that
our techiques relativize.

6.1 Decidability Results

First, we define the problems that will be in our interest in this section. For a class of functions
F ⊆ {T : N→ R≥0}, define the problem HaltF as

Given a multi-tape NTM, does it run in time T (n) for some T ∈ F?

and the problem D-HaltF as

Given a multi-tape DTM, does it run in time T (n) for some T ∈ F?

The problems Halt1
F and D-Halt1

F are defined analogously for one-tape Turing machines as in-
puts.

89

If F has only one element, we write Halt{T} = HaltT (n), thus HaltT (n) is the problem of
whether a given multi-tape NTM runs in time T (n). If F is the class of polynomials, we write
HaltF = HaltP, thus HaltP is the problem of whether a given multi-tape NTM runs in polyno-
mial time. For a function T : N → R≥0, if F = {f : N → R≥0; f(n) = O(T (n))}, we write
HaltF = HaltO(T (n)), thus HaltO(T (n)) is the problem of whether a given multi-tape NTM runs
in O(T (n)) time.

Problems Halt1
T (n), Halt1

P
and Halt1

O(T (n)) are defined similarly for one-tape NTMs and the
problems D-HaltT (n), D-Halt1

T (n), D-HaltP, D-Halt1
P
, D-HaltO(T (n)) and D-Halt1

O(T (n)) are
defined similarly for DTMs. We will prove undecidability results only for the problems involving
DTMs and decidability results only for the problems involving NTMs. This implies that all the
results in this section hold for DTMs as well as for NTMs.

6.1.1 Folkloric Results and Extended Considerations

In this section we prove that all the “basic” problems D-Halt1
F are undecidable (hence also all

basic problems D-HaltF are undecidable), we give a tight bound on the function T for which the
problems HaltT (n) and D-HaltT (n) are decidable and we prove undecidability of D-Halt1

T (n) for
all functions T (n) = Ω(n log n) with T (n) ≥ n+ 1.

Let us begin with an easy positive result. It gives a reason for why we need the technical
condition T (n) ≥ n+ 1 when proving undecidability results.

Lemma 6.1.1. Let T : N → R≥0 be a function such that, for some n0 ∈ N, it holds T (n0) <
n0 + 1. Then the problem HaltT (n) is decidable.

Proof. Let n0 be such that T (n0) < n0 + 1 and let a multi-tape NTM M be given. We will
describe an algorithm which decides whether M runs in time T (n), thus proving decidability of
HaltT (n):

• First, check if the length of each computation ofM on inputs of lengths n ≤ n0 is at most
T (n). If not, reject. Else, let Tw be the length of a longest computation ofM on inputs of
length n0 and suppose this maximum is achieved on an input w.

• If Tw ≤ T (n) for all n > n0, accept. Else, reject.

To prove finiteness and correctness of the algorithm, note that ifM makes at most T (n0) steps
on all computations on inputs of size n0, then by Lemma 3.3.1M never reads the (n0+1)st symbol
of any input. In this caseM makes at most Tw steps on each computation on inputs of length more
than n0. Moreover, for each n ≥ n0, there exists an input of length n on whichM makes exactly
Tw steps on some computation (all inputs that begin withw are such). There are only finitely many
possibilities for Tw because Tw ≤ T (n0), thus the last line of the algorithm can be done in constant
time. �

The following lemma proves the converse of Lemma 6.1.1.

Lemma 6.1.2. Let T : N → R≥0 be a function such that, for all n ∈ N, it holds T (n) ≥ n + 1.
Then the problem D-HaltT (n) is undecidable.

Proof. We will describe a reduction of the complement of the problem D-Halt1
ε to the problem

D-HaltT (n). Because the problem D-Halt1
ε is undecidable by Lemma 4.1.2, this implies that

D-HaltT (n) is also undecidable. The reduction is as follows.

90

Given a one-tape DTM H , construct a 2-tape DTM H̃ that on the input tape always moves its
head to the right and halts when it reaches a blank symbol and on the work tape it simulatesH on
input ε. If H halts, H̃ starts an infinite loop (and does not halt when it reaches a blank symbol on
the input tape). It is clear that H̃ runs in time T (n) if and only if H does not halt on the empty
input. �

Combining Lemma 6.1.1 and Lemma 6.1.2 we get a tight bound on a function T for when the
problems HaltT (n) and D-HaltT (n) are decidable.

Theorem 6.1.3. For a function T : N → R≥0, the problem HaltT (n) is undecidable if and only
if the problem D-HaltT (n) is undecidable if and only if, for all n ∈ N, T (n) ≥ n+ 1.

Proof. Combine Lemma 6.1.1 and Lemma 6.1.2. �

There is no such a sharp bound for one-tape Turingmachines as it is n+1 for multi-tape. As dis-
cussed in the introduction, the decidability of D-Halt1

T (n) changes roughly at T (n) = Θ(n log n)

and the next lemma will be the main tool in proving undecidability of D-Halt1
T (n) for T (n) =

Ω(n log n). In the proof of the lemma we will see how timekeeping and simulating another Turing
machine can be done fast on one-tape Turing machines.

Lemma 6.1.4. Let T : N → R≥0 be a function such that T (n) = Ω(n log n) and, for all n ∈ N,
it holds T (n) ≥ n+ 1. Then there exists an algorithm that takes as input a one-tape DTMH and
returns a one-tape DTM H̃ such that

H(ε) =∞ ⇐⇒ H̃ runs in time T (n) ⇐⇒ H̃ always halts.

In the statement of the lemma we used the notation H(ε) = ∞ to denote that H does not halt on
input ε.

Proof. Because T (n) = Ω(n log n), there exist constants C, n0 ∈ N such that 6 ≤ C ≤ n0 and,
for all n ≥ n0, it holds

T (n) ≥ 3n logC n+ 6n+ 1.

For an arbitrary one-tape DTMH with a tape alphabet Γ, let us describe a new one-tape DTM
H̃:

• The tape alphabet of H̃ is Γ
⋃

Γ′
⋃
{&,#}, where Γ′ = {a′; a ∈ Γ}. Without loss of

generality we can assume that the sets {&,#}, Γ and Γ′ are pairwise disjoint.

• On an input w of length n, H̃ first reads the input and if n < n0, accepts in n + 1 steps. If
n ≥ n0, then H̃ overwrites the input with

#1n−1#,

leaving the head above the last written one. This all can be done in n + 1 steps.

• H̃ will never again write or overwrite the symbol #, which will serve as the left and the right
border for the head. From now on, the head will move exactly from the right # to the left #
and vice versa. Thus we only need to count how many times the head will pass from one #
to another and multiply the result with n to get how many steps were done. A transition of
the head form one # to another will be called a (head) pass.

91

• Form = dlogC ne, H̃ can transform its tape into

#LmL′L&n−3−m#

in the next 2m + 2 head passes1.
This can be done if on each pass to the right, H̃ turns C − 1 successive 1s into symbols &,
leaves the next symbol 1, turns the next C − 1 successive 1s into &s . . . until it comes to #.
Also when passing to the right, it adds another blank symbol after the rightmost previously
written blank symbol. When passing to the left it changes nothing. When there are no more
1s, it makes two additional passes to writeL′L after the previously written blank symbols.
Until this point we did not need any information about H .

• The tape is now prepared for the simulation of H on input ε. The symbols from Γ tell us
how the tape ofH looks like and the (only) symbol from Γ′ tells us the current head position
in H . Because H̃ will simulate at most m steps of H , it will need at most m tape cells to
the left of L′. H̃ will also not run out of blank symbols to the right of the symbol from Γ′,
because during the simulation the symbols & will gradually get replaced by blank symbols.

• The simulation goes as follows: in each pass, H̃ turns C − 1 successive &s into blank
symbols, leaves out the next symbol&, turns the nextC−1 successive&s into blank symbols
. . . and when the head comes to the “simulation part” of the tape, it simulates one step ofH
if and only if the head of H would move in the same direction as the head of H̃ is currently
moving. Thus H̃ simulates at least one and at most two steps of H in two head passes.

• If H̃ runs out of &s on its tape before the simulation ofH has finished, it halts (e.g. goes in
qacc). Else, H̃ starts an infinite loop so that H̃(w) =∞.

• From 6 ≤ C ≤ n0 ≤ n it follows that n− 3−m ≥ Cm−2, so H̃ needs at leastm− 1 head
passes to erase all &s.
Thus if H̃ halts, this means that H does not complete its computation on input ε in bm−1

2 c
steps. In this case H̃ makes at most m head passes from the beginning of the simulation
until it halts and thus makes at most T (n) steps altogether on the input w.
If H̃ does not halt, this means that H halts on input ε.

Note that sincem = Ω(log n) 6= O(1) it holds that

H(ε) =∞ ⇐⇒ H̃ runs in time T (n) ⇐⇒ H̃ always halts.

To sum up, we have described a desired one-tape DTM H̃ and it is clear from the description
that there exists an algorithm that constructs it from H . �

The following theorem is a direct corollary of Lemma 6.1.4.

Theorem 6.1.5. Let T : N→ R≥0 be a function such that T (n) = Ω(n log n) and, for all n ∈ N,
it holds T (n) ≥ n+ 1. Then the problem D-Halt1

T (n) is undecidable.

Proof. Given a one-tape DTM H , let H̃ be a one-tape DTM that runs in time T (n) if and only if
H(ε) =∞. By Lemma 6.1.4 we can construct it from H , thus we can reduce the complement of
the problem Halt1

ε to the problem Halt1
T (n). �

1Note that Cm−1 ≤ n− 1 < Cm.

92

For the last thing in this section, we prove that all “basic” problems D-Halt1
F (and hence also

D-HaltF) are undecidable.

Theorem 6.1.6. Let F ⊆ {f : N → R≥0} be a class of functions that contains arbitrarily large
constants. Then the problem D-Halt1

F is undecidable.

Proof. Define the class F = {T ∈ F , T (n) ≥ n+ 1 for all n} and consider two separate cases:

1. If for all functions T ∈ F , it holds T (n) 6= Ω(n log n), then the following is a reduction of
D-Halt1

ε to D-Halt1
F . Given a one-tape DTM H , construct a one-tape DTM H̃ that works

as follows on an input w:

• H̃ simulates |w| steps of H on input ε.
• If H halts in less than |w| steps, then H̃ also halts and does not make any additional
steps.
• Else, H̃ makes at least additional |w| log |w| arbitrary steps and halts.

This can easily be done, for example, by using the input portion of the tape only for counting
steps and the left portion of the tape for simulation of (H on input ε). We do not need H̃ to
efficiently simulate H , but it is necessary that H̃ runs in constant time if H halts on ε.
It is clear that H halts on input ε if and only if H̃ runs in constant time, which happens if
and only if H̃ runs in time T̃ (n) for some function T̃ (n) that is not Ω(n log n).
Now if H̃ ∈ D-Halt1

F , then there exists a function T ∈ F , such that H̃ runs in time T (n).
If T ∈ F , then T (n) 6= Ω(n log n), thusH halts on input ε. If T 6∈ F , then by the definition
of F there exists n0 such that T (n0) < n0 + 1, which by Lemma 3.3.1 implies that H̃ runs
in constant time and consequentially H halts on input ε, which implies H ∈ Halt1

ε .
If H̃ 6∈ D-Halt1

F , then H̃ does not run in constant time because F contains arbitrarily large
constants. So H does not halt on input ε and hence H 6∈ Halt1

ε .
So we have proven H̃ ∈ D-Halt1

F ⇐⇒ H ∈ D-Halt1
ε .

2. If for some function T ∈ F it holds T (n) = Ω(n log n), then the following is a reduction of
the complement of D-Halt1

ε to D-Halt1
F .

For an arbitrary one-tape DTM H , use Lemma 6.1.4 to construct a one-tape DTM H̃ that
runs in time T (n) if and only if H̃ always halts which is if and only if H(ε) = ∞. This
implies that H(ε) =∞ if and only if H̃ runs in time T̃ (n) for some function T̃ ∈ F . �

Some well known corollaries follow from Theorem 6.1.6, namely that the problems D-HaltP,
D-Halt1

P
, D-HaltO(T (n)) andD-Halt1

O(T (n)) for T (n) = Ω(1) are undecidable. Consequentially,
the problems D-HaltO(1) and D-Halt1

O(1) are undecidable.

6.1.2 One-Tape Turing Machines and an o(n log n) Time Bound

Until this point we know that, for T (n) = Ω(n log n), we can solve Halt1
T (n) if and only if, for

some n0 ∈ N, it holds T (n0) < n0 + 1. It remains to see that Halt1
T (n) is decidable for all nice

functions T (n) = o(n log n). But first, we have to define “nice”.
For a function f : N → R≥0, we say that f computably converges to∞ if, for each K ∈ N,

we can construct nK ∈ N (i.e. the function K 7→ nK is computable) such that, for all n ≥ nK , it
holds f(n) ≥ K.

93

Manageable Functions

We say that a function f : N → R≥0 is manageable if there exists a Turing machine that, given
A0, A1 . . . Ak ∈ N\{0} and B0, B1 . . . Bk ∈ N, it decides whether the inequality

f(A0 + x1A1 + x2A2 + · · ·+ xkAk) < B0 + x1B1 + x2B2 + · · ·+ xkBk

holds for some x1, x2 . . . xk ∈ N.
Note that there are only integers on the right-hand side of the inequality. Thus the following

holds.

Lemma 6.1.7. A function f : N → R≥0 is manageable if and only if its integer part bfc is
manageable. �

The next proposition gives examples of manageable functions.

Proposition 6.1.8. Let f : N→ N be a computable function. If

• f is linear (i.e. of the form Cn+D) or

• f(n)
n computably converges to∞,

then f is manageable.

Proof. The case when f is linear is easy and is left for the reader, so suppose that f(n)
n computably

converges to∞. The next algorithm proves manageability of f :

• Let A0, A1 . . . Ak ∈ N\{0} and B0, B1 . . . Bk ∈ N be given.

• Find C ∈ N such that, for all i = 0, 1 . . . k, it holds CAi ≥ Bi.

• Find nC such that f(n) ≥ Cn for all n ≥ nC . This can be done because f(n)
n computably

converges to∞.

• For i = 1, 2 . . . k, let yi ∈ N be such that A0 + yiAi ≥ nC .
It follows that the inequality

f(A0 + x1A1 + x2A2 + · · ·+ xkAk) ≥ B0 + x1B1 + x2B2 + · · ·+ xkBk

holds for x1, x2 . . . xk ∈ N if there exists an index i such that xi ≥ yi.
Indeed, xi ≥ yi implies A0 + x1A1 + x2A2 + · · · + xkAk ≥ nC , which implies f(A0 +
x1A1 + x2A2 + · · ·+ xkAk) ≥ C(A0 + x1A1 + x2A2 + · · ·+ xkAk).

• Check if the inequality

f(A0 + x1A1 + x2A2 + · · ·+ xkAk) < B0 + x1B1 + x2B2 + · · ·+ xkBk

holds for some non-negative integers x1 < y1, x2 < y2 . . . xk < yk. �

We just proved (using also Lemma 6.1.7) that n, 3n+ 2, n
√

log n, n2, 2n are all manageable
functions. The next lemma tells us that the integer part of a manageable functions cannot be too
complicated.

Lemma 6.1.9. An integer part bfc of a manageable function f : N → R≥0 is a computable
function.

Proof. For n ∈ N, the following algorithm computes bfc(n):

• If n = 0 return bf(0)c. Else, return the largest i for which f(n) ≥ i. �

94

The decidability Result

In this section we prove that the problem Halt1
T (n) is decidable for all nice functions T (n) =

o(n log n).

Theorem 6.1.10. For any manageable function T : N → R>0, for which the function n logn
T (n)

computably converges to∞, the problem Halt1
T (n) is decidable.

Note that Theorem 6.1.10 tells us that we can solve the problem Halt
(n+1)

√
log(n+2)

as well
as the problems HaltCn+D for constants C,D ∈ N. The following lemma makes an introduction
to the proof of the theorem.

Lemma 6.1.11. Let T : N→ R>0 be a function for which bT c is computable and the function

g(n) =

{
n logn
T (n) ; n ≥ 2

1 ; n = 0, 1

computably converges to∞. Then given q ∈ N, we can compute a constant upper bound on the
length of the crossing sequences produced by any q-state one-tape NTM that runs in time T (n).

Proof. By Lemma 5.1.3, we only need to construct a constant c ≥ max{T (0), T (1)} which
satisfies the inequality

3
qn(log q)/g(n)1/2 − 1

q − 1
≤ n− 3− n

g(n)1/2
+ c

g(n)1/2

log n
(6.1)

for the given q and all n ≥ 2. The construction of c can go as follows:

• Use computable convergence of g to find N ∈ N such that for all n ≥ N it holds g(n) ≥
4(log q)2. Increase N if necessary so that, for all n ≥ N , it also holds

√
n ≤ 1

12n and
g(n) ≥ 16.

It is easy to see that Inequality (6.1) holds for all n ≥ N independently of the value of c ≥ 0.

• Use computability of bT c to find such c ∈ N that Inequality (6.1) holds for 2 ≤ n < N .

Note that g(n) ≥ 1
bT (n)c+1 for n ≥ 2.

• Increase c to get c ≥ max{T (0), T (1)}. �

The following proof is simpler than the proof from [10] because we use the compactness the-
orem.

Proof of Theorem 6.1.10. Let T : N → R>0 be a manageable function for which the function
n logn
T (n) computably converges to∞. Because T is manageable, bT c is computable by Lemma 6.1.9.
The following algorithm verifies whether a one-tape NTMM with q states runs in time T (n), thus
solving Halt1

T (n).

• Use Lemma 6.1.11 to construct an upper bound C ∈ N on the length of the crossing se-
quences produced by any one-tape Turing machine with q states that runs in time T (n).

95

• Compute

K =
qC+1 − 1

q − 1
,

which is an upper bound on the number of distinct crossing sequences produced by any one-
tape Turing machine with q states that runs in time T (n).

• Define D = 2KC + C.
Note that any one-tape NTM with q states that runs in time T (n) also runs in time Cn+D
(see Corollaries 5.1.4 and 5.1.6).

• Use Corollary 5.2.5 to verify whetherM runs in time Cn+D. If not, reject.

• Define ` = D + 8qC and r = D + 12qC and construct the set S =
⋃`
n=1 Sn(M). The

notation is the same as in the compactness theorem (Theorem 5.2.1).

• Construct the set

X =
{

(w, ζ); |w| ≤ ` and ζ is a computation ofM on the input w
}
.

• For each crossing sequence C ∈ S, construct the set

YC =
{

(w, ζ); |w| ≤ r and ζ is a computation ofM on the part w
with the frontier crossing sequence C

}
.

By the compactness theorem, the set YC can be constructed in finite time because for each
(w, ζ) ∈ YC it holds |ζ| ≤ C|w|.
The main observation (and the key idea of the algorithm) is that every pair (w, ζ) where ζ
is a computation ofM on an input w can be constructed in the following way: Begin with
some pair (w0, ζ0) ∈ X and insert on appropriate places pairs from sets YC (an appropriate
place for an element of YC is where a crossing sequence C is generated). This follows by
Corollaries 5.2.7 and 5.2.9.
Hence, we divided the computations ofM into finitely many parts and we computed all of
them. Now we must only verify whether putting these parts together can causeM to run for
too long on some input.

• For each pair (w0, ζ0) ∈ X and for all the choices of subsets
(
ỸC ⊆ YC

)
C∈S ,

– Verify whether some input w̃ can be constructed together with a computation ζ̃ ofM
on w̃ by starting from (w0, ζ0) and inserting one by one on appropriate places all the
pairs (w, ζ) from all the sets ỸC . It is enough to restrict that each pair (w, ζ) from each
set ỸC is used exactly once, which gives a finite number of options.
∗ If not, continue with the for loop.
In this case it is impossible to use only and all parts from sets ỸC at once in a
construction of a pair (w̃, ζ̃) as described above.

– Use manageability of T to check whether the inequality

|ζ0|+
∑
C∈S

∑
(w,ζ)∈ỸC

kC,(w,ζ)|ζ| ≤ T

|w0|+
∑
C∈S

∑
(w,ζ)∈ỸC

kC,(w,ζ)|w|

holds for all kC,y ∈ N\{0}. If it does not, reject.

96

Note that in the argument of T on the right-hand side of the inequality, we have the length of
some string constructed by starting with (w0, ζ0) ∈ X and inserting kC,(w,ζ) pairs (w, ζ) ∈
ỸC on appropriate places. On the left-hand side we have the length of the corresponding
computation ofM on such an input. The comments before this step imply that all compu-
tations on non-empty inputs are considered this way and the condition before the inequality
assures that it is possible to use only and all parts from sets ỸC at once.

• accept.

The comments inside the description of the algorithm show its finiteness and correctness. �

6.2 Complexity Results

Because we can essentially only verify time bounds o(n log n) for a given one-tape Turing machine
and because such Turing machines actually run in linear time, linear time bounds are the most
natural time bounds for one-tape Turing machines that are algorithmically verifiable. The purpose
of this section is to prove Theorem 1.2.1, stated in the introduction, that gives sharp complexity
(lower and upper) bounds for the problems Halt1

Cn+D and D-Halt1
Cn+D. Before we go into the

proofs, let us give the main proof ideas in two paragraphs.
We use the compactness theorem to prove the upper bound (Proposition 6.2.1). To prove the

lower bounds, we make reductions from hard problems whose hardness is proven by diagonaliza-
tion. The diagonalization in Proposition 6.2.7 (non-deterministic lower bound) is straightforward
and the diagonalization in Proposition 6.2.5 (co-non-deterministic lower bound) is implicit in the
non-deterministic time hierarchy. The reductions are not so trivial and we describe the main idea
in the following paragraph.

Suppose that a one-tape non-deterministic Turing machine M solves a computationally hard
problem L. Then, for any input w, we can decide whether w ∈ L by first constructing a one-
tape Turing machine Mw that runs in time Cn + D if and only if M rejects w and then solving
the complement of Halt1

Cn+D for Mw. If we can construct Mw efficiently, then because L is
computationally hard we get a complexity lower bound for solving the complement of Halt1

Cn+D.
The machineMw is supposed to simulateM on w, but only for long enough inputs because we do
not want to violate the running time Cn+D. Hence, on the inputs of length n,Mw will first only
measure the input length using at most (C − 1)n + 1 steps to assure that n is large enough, and
then it will simulate M on w using at most n steps. If M accepts, Mw starts an infinite loop. It
turns out that the main challenge is to make Mw effectively measure the length of the input with
not too many steps and also not too many states. The latter is important because we do not want
the inputMw for Halt1

Cn+D to be blown up too much, so that we can prove better lower bounds.
We leave the details for Section 6.2.3. Let us mention also Section 6.2.4, where we argue that our
method of measuring the length of the input is optimal, which implies that using our methods, we
cannot get much better lower bounds.

6.2.1 Encoding of One-Tape Turing Machines

To simplify things, let us fix a tape alphabet Γ, hence we will actually be analyzing the problems
Halt1

Cn+D(Σ,Γ). This enables us to have the codes of q-state one-tape Turing machines of length
Θ(q2). Because q now describes the length of the code up to a constant factor, we can express the

97

complexity of algorithms with a q-state one-tape NTM (or DTM) as input in terms of q instead of
n = Θ(q2).

Let us state the properties that should be satisfied by the encoding of one-tape Turing machines.

• Given a code of a q-state one-tape NTMM , a multi-tape NTM can simulate each step ofM
in O(q2) time. Similarly, given a code of a q-state one-tape DTMM , a multi-tape DTM can
simulate each step ofM in O(q2) time.

• A code of a composition of two one-tape Turing machines can be computed in linear time
by a multi-tape DTM.

• The code of a q-state one-tape Turing machine has to be of length Θ(q2). This is a technical
requirement that makes arguments easier and it gives a concrete relation between the number
of states of a one-tape Turing machine and the length of its code. We can achieve this because
we assumed a fixed input and tape alphabet.

An example of such an encoding is given in Section 3.6. It is clear that we can easily convert
any standard code of a one-tape Turing machine to ours and vice versa.

6.2.2 The Upper Bound

Let us define the problem Halt1
n+ as

Given a one-tape NTMM and integers C,D ∈ N, doesM run in time Cn+D?

Hence, the problem Halt1
n+ is the same as the problem Halt1

Cn+D, only that C andD are parts
of the input. Recall that we use an overline to denote the complement of a problem.

Proposition 6.2.1. There exists a multi-tape NTM that solves Halt1
n+ in time O(p(C,D)qC+2)

for some quadratic polynomial p.

Proof. Let us describe a multi-tape NTMMmult that solves Halt1
n+.

• On the input (C,D,M), whereM is a q-state one-tape NTM, compute ` = D + 8qC and
r = D + 12qC .

• Non-deterministically choose an input of length n ≤ ` and simulate a non-deterministically
chosen computation ofM on it. IfM makes more than Cn+D steps, accept.

• Non-deterministically choose an input w0 = w1w2w3 such that |w1| ≥ 1, 1 ≤ |w2| ≤ r
and |w1| + |w3| ≤ `. Initialize C1 and C2 to empty crossing sequences and counters t0 =
C|w0|+D, t2 = C|w2|.

• Simulate a non-deterministically chosen computation ζ of M on the input w0. After each
simulated step t ofM , do:

– decrease t0 by one,
– if the head ofM is on some cell |w1| ≤ i < |w1|+ |w2|, decrease t2 by one,
– update the crossing sequences C1 = Ct|w1|(M, ζ,w0) and C2 = Ct|w1|+|w2|(M, ζ,w0).
– If t0 < 0, accept.

98

– Non-deterministically decide whether to do the following:
∗ If C1 = C2 and t2 < 0, accept. Else, reject.

– IfM halts, reject.

Note that the counter t0 counts the number of simulated steps, while the counter t2 counts
the number of steps done on the part w2.

It is clear thatMmult accepts if either a) or b) from the compactness theorem are violated and
it rejects ifM runs in time Cn+D and b) from the compactness theorem is not violated. Hence
Mmult correctly solves the problem Halt1

n+.
Because the condition C1 = C2 is verified at most once during the algorithm and

|C1|, |C2| ≤ C|w0|+D

≤ C(`+ r) +D

= O
(
(CD + C +D + 1)qC

)
,

testing whether C1 = C2 contributes O((CD+C+D+ 1)qC+1) time to the overall running time.
BecauseMmult needs O(q2) steps to simulate one step ofM ’s computation and it has to simulate
at most C(2`+ r) +D steps,Mmult runs in time O((CD + C +D + 1)qC+2). �

Corollary 6.2.2. The problemsHalt1
Cn+D andD-Halt1

Cn+D are in co-NP and their complements
can be solved in time O(qC+2) by a non-deterministic multi-tape Turing machine.

6.2.3 The Lower Bounds

Let us state again the idea that we use to prove the lower bounds in Theorem 1.2.1. Suppose a
one-tape non-deterministic Turing machine M solves a problem L. Then, for any input w, we
can decide whether w ∈ L by first constructing a one-tape Turing machineMw that runs in time
Cn + D if and only ifM rejects w and then solving Halt1

Cn+D forMw. If we choose L to be a
hard language, then we can argue that we cannot solve Halt1

Cn+D fast. The next lemma gives a
way to constructMw.

Lemma 6.2.3. Let C ≥ 2 andD ≥ 1 be integers, let T (n) = Knk +1 for some integersK, k ≥ 1
and letM be a one-tape q-state NTM that runs in time T (n). Then there exists an

O
(
T (n)2/(C−1) + n2

)
-time

multi-tape DTM that, given an input w forM , constructs a one-tape NTMMw such that

Mw runs in time Cn+D ⇐⇒ M rejects w.

Proof. Let us first describe the NTMMw. The computation ofMw on an input w̃ will consist of
two phases. In the first phase,Mw will use at most C − 1 deterministic passes through the input to
assure that w̃ is long enough. We will describe this phase in detail later.

In the second phase,Mw will write w on its tape and simulateM on w. Hence O(|w|) states
and O(T (|w|)) time are needed for this phase (note that q is a constant). IfM acceptsw,Mw starts
an infinite loop, else it halts. Let c be a constant such thatMw makes at most cT (|w|) steps in the
second phase before starting the infinite loop.

99

To describe the first phase, define

m =
⌈(
cT (|w|)(C − 2)!

)1/(C−1)
⌉

= O
(
T (|w|)1/(C−1)

)
.

In the first phase, the machineMw simply passes through the inputC−1 times, each time verifying
that |w̃| is divisible by one of the numbers m + i, for i = 0, 1 . . . (C − 2). If this is not the case,
Mw rejects. Else, the second phase is to be executed. It suffices to have m + i states to verify in
one pass if the length of the input is divisible bym+ i, so we can makeMw have

O

(
C−2∑
i=0

(m+ i)

)
= O ((C − 1)m)

= O(m)

states for the first phase such that it makes at most (C − 1)|w̃|+ 1 steps before entering the second
phase2. We assume thatMw erases all symbols from the tape in the last pass of the first phase so
that the second phase can begin with a blank tape.

If the second phase begins, we know that

|w̃| ≥ lcm{m, (m+ 1) . . . (m+ C − 2)}

≥ mC−1

(C − 2)!

≥ cT (|w|),

where we used the inequality

lcm{m, (m+ 1) . . . (m+ C − 2)} ≥ m ·
(
m+ C − 2

C − 2

)
proven in [7]. Hence,Mw makes at most |w̃| steps in the second phase if and only if it does not go
into an infinite loop. So we have proven that

Mw runs in time Cn+ 1 ⇐⇒ Mw runs in time Cn+D ⇐⇒ M rejects w.

To construct Mw, we first compute m which takes O(|w|) time and then in O(m2) time we
compute a TuringmachineM1 that does the first phase (the construction is straightforward). Finally
we composeM1 with the Turing machineM , only thatM first writesw on the tape andM , instead
of going to the accept state, starts moving to the right forever. BecauseM is not a part of the input
and because we can compute compositions of Turing machines in linear time, the description of
Mw can be obtained in O(m2 + |w|2) time, which is O

(
T (n)2/(C−1) + n2

)
. �

We now combine Corollary 6.2.2 and Lemma 6.2.3 to show that most problems Halt1
Cn+D

are co-NP-complete.

Proposition 6.2.4. The problems Halt1
Cn+D are co-NP-complete for all C ≥ 2 and D ≥ 1.

2The “plus one” in (C − 1)|w̃| + 1 is needed because each Turing machine makes at least one step on the empty
input. This is also the reason for why we needD ≥ 1 in the statement of the lemma.

100

Proof. Corollary 6.2.2 proves that these problems are in co-NP and Lemma 6.2.3 gives a reduction
of an arbitrary problem in co-NP to the above ones. �

The first lower bound for the problems Halt1
Cn+D follows. To prove it, we will use Lemma 6.2.3

to translate a hard problem to Halt1
Cn+D.

Proposition 6.2.5. For all positive integers C andD, the problem Halt1
Cn+D cannot be solved by

a multi-tape NTM in time o(q(C−1)/2).

Proof. For C ≤ 5, the proposition holds (the length of the input is Θ(q2)), so suppose C ≥ 6.
By the non-deterministic time hierarchy theorem (Theorem 4.2.3) there exists a language L and
a multi-tape NTM M that decides L and runs in time O(nC−1), while no multi-tape NTM can
decide L in time o(nC−1). We can reduce the number of tapes ofM to get a one-tape NTMM ′

that runs in time O(n2(C−1)) and decides L (Proposition 3.3.8). By Lemma 6.2.3 there exists a
multi-tape DTMMmult that runs in time O(n4) and given an input w forM ′, constructs a one-tape
qw-state NTMMw such that

Mw runs in time Cn+D ⇐⇒ M ′ rejects w.

Because the description ofMw has length O(|w|4), it follows that qw = O(|w|2).
If there was some multi-tape NTM that could solve Halt1

Cn+D in time o
(
q(C−1)/2

)
, then for

all w, we could decide whether w ∈ L in o(nC−1) non-deterministic time: first runMmult to get
Mw and then solveHalt1

Cn+D forMw. By the definition ofL this is impossible, hence the problem
Halt1

Cn+D cannot be solved by a multi-tape NTM in time o
(
q(C−1)/2

)
. �

For all of the remaining lower bounds, we need to reformulate Lemma 6.2.3 a bit. Recall from
Section 3.3.5 the definition of a two-choice NTM, which is an NTM that has at most two possible
non-deterministic choices in each step.

Lemma 6.2.6. Let C ≥ 2 and D ≥ 1 be integers and let T (n) = Knk + 1 for some integers
K, k ≥ 1. Then there exists a multi-tape DTMMmult, which given an input (M,w), where w is an
input for a one-tape two-choice q-state NTMM , constructs a one-tape DTMMw such that

Mw runs in time Cn+D ⇐⇒ M makes at most T (|w|) steps on any computation
on the input w.

We can makeMmult run in time

O
(
T (|w|)4/(C−1) + qκ + |w|2

)
for some integer κ ≥ 1, independent of C, D, K and k.

Proof. The proof is based on the same idea as the proof of Lemma 6.2.3. The main difference is
that this time we will have to count steps while we will simulate M and we will have to use the
symbols of an input of the DTMMw to simulate non-deterministic choices ofM .

Again, we begin with the description ofMw. The computation ofMw on an input w̃will consist
of two phases. In the first phase,Mw will use at most C− 1 deterministic passes through the input
to assure that w̃ is long enough. This phase will be the same as in Lemma 6.2.3, only that we will
need more states to measure longer inputs because the second phase will be more time consuming.

101

This time we define

m =

⌈((
cT (|w|)

)2
(C − 2)!

)1/(C−1)
⌉

= O
(
T (|w|)2/(C−1)

)
for some constant c defined later. In the first phase, the machine Mw simply passes through the
input C − 1 times, each time verifying that |w̃| is divisible by one of the numbers m + i, for
i = 0, 1 . . . (C − 2). If this is not the case,Mw rejects. Else, the second phase is to be executed.
It suffices to havem+ i states to verify in one pass if the length of the input is divisible bym+ i,
so we can makeMw have

O

(
C−2∑
i=0

(m+ i)

)
= O(m)

states for the first phase such that it makes at most (C − 1)|w̃|+ 1 steps before entering the second
phase. We also need that while the Turing machineMw passes through the input in the first phase,
it does not change it, except that it erases the first symbol of w̃ (if not,Mw would need n+ 1 steps
for one pass through the input). Additionally, if the input w̃ contains some symbol that is not 0 or
1,Mw rejects.

w̃ L L 0 w1 1 w2 1 . . . 1 wnL 12T (|w|)

Figure 6.1: The preparation for the simulation in the phase two. After the phase one, the head of
Mw could be on the left side of the input w̃ or on the right side of it, depending on the parity of C.
Let us assume thatC is even and hence the head ofMw is on the right side of w̃ after the phase one.
Before the simulation begins,Mw writes the following on the right side of w̃: LL0 followed by
w with the symbol 1 inserted between each two of its symbols. Then on the right of w it computes
2T (|w|) in unary so that we get the situation as shown in the figure. The input w̃ (without the first
symbol) is much longer compared to what is on the right side of it (phase one takes care for that).
If C is odd, we can look on the tape ofMw from behind and do everything the same as in the case
of C being even.

In the second phase,Mw will compute T (|w|) and simulateM on w for at most T (|w|) steps,
using the non-deterministic choices determined by w̃. IfM will not halt,Mw will start an infinite
loop, else it will halt. In Figure 6.1 we see howMw makes the preparation for the second phase.
Let us call the part of the tape with the symbols of w̃ written on it the non-deterministic part, the
part of the tape from 0 to wn the simulating part and the part of the tape with 12T (|w|) written on
it the counting part. During the simulation, the following will hold.

• In the simulating part, it will always be the case that the symbols from the tape ofM will be
in every second cell and between each two of them will always be the symbol 1, except on
the left of the cell with the head ofM on it where it will be 0.

• There will always be at least two blank symbols left of the simulating part and there will
always be at least one blank symbol right of the simulating part. This will be possible because
before each simulated step ofM , as explained below, the number of blank symbols left and

102

right of the simulating part will be increased by two for each side, hence when simulating a
step ofM , the simulating part can be increased as necessary.

• Before each simulated step ofM ,Mw will use the rightmost symbol of the non-deterministic
part of the tape to determine a non-deterministic choice forM and it will overwrite the two
rightmost symbols of the non-deterministic part of the tape with two blank symbols.

• Before each simulated step ofM ,Mw will overwrite the two leftmost symbols of the counting
part of the tape with two blank symbols.

• IfM halts before the counting part of the tape vanishes,Mw halts. Else,Mw starts an infinite
loop.

We see thatMw, if it does not go into an infinite loop, finishes the second phase in time O(T (|w|)2)
using O(|w| + q) states. Note that to achieve that, the counting part of the tape really has to be
computed and not encoded in the states, which takes O(T (|w|)2) steps. A possible implementation
of this would be to first write |w| in binary (|w| can be encoded in the states), then compute T (|w|)
in binary and extend it to unary.

To define the integer c that is used in the first phase, suppose thatMw makes at most (cT (|w|))2

steps in the second phase before starting the infinite loop. Note that c is independent ofM and w.
If the second phase begins, we know that

|w̃| ≥ lcm{m, (m+ 1) . . . (m+ C − 2)}

≥ mC−1

(C − 2)!

≥ (cT (|w|))2 ,

as in the proof of Lemma 6.2.3, thusMw makes at most |w̃| steps in the second phase if and
only if it does not go into an infinite loop. This inequality also implies that the non-deterministic
part of the tape in the phase two is long enough so that it does not vanish during the simulation of
M .

Now if M makes at most T (|w|) steps on all computations on the input w, then Mw runs in
time Cn+ 1. But if there exists a computation ζ on input w such thatM makes more than T (|w|)
steps on it, then because M is a two-choice machine, there exists a binary input w̃ for Mw such
that the non-deterministic part of the tape in the phase two corresponds to the non-deterministic
choices of ζ, henceMw on the input w̃ simulates more than T (|w|) steps ofM which means that
the counting part of the tape vanishes and thusMw does not halt on the input w̃. So we have proven
that

Mw runs in time Cn+ 1 ⇐⇒ Mw runs in time Cn+D ⇐⇒ M makes at most
T (|w|) steps on the input w.

Now let us describe a multi-tape DTMMmult that constructsMw from (M,w). First we prove
that, for some integer κ independent of C, D, K and k, the DTM Mmult can construct, in time
O(qκ + |w|2), a one-tape DTMM2 that does the second phase. To see this, letMT be a one-tape
DTM that given a number x in binary, its head never crosses the boundary −1 and it computes
T (x) in unary in time O(T (x)2). Note that MT does not depend on the input (M,w) for Mmult
and thus it can be computed in constant time. Now M2 can be viewed as a composition of three
deterministic Turing machines:

103

• The first DTMwrites down the simulating part of the tape, followed by |w|written in binary.
Mmult needs O(|w|2) time to construct this DTM.

• The second DTM isMT andMmult needs O(1) time to construct it.

• The third DTM performs the simulation ofM onw andMmult needs O(qκ) time to construct
it, where κ is independent of C, D, K and k.

Because the composition of Turing machines can be computed in linear time, we can constructM2

in time O(qκ + |w|2).
Because the first phase does not depend on M and we need O(m) states to do it, Mmult can

compute the DTMM1 that does the first phase in time

O(m2) = O
(
T (|w|)4/(C−1)

)
,

as in the proof of Lemma 6.2.3. SinceMw is the composition ofM1 andM2,Mmult can construct
Mw in time

O
(
T (|w|)4/(C−1) + qκ + |w|2

)
. �

Proposition 6.2.7. For all positive integers C andD, the problem D-Halt1
Cn+D cannot be solved

by a multi-tape NTM in time o(q(C−1)/4).

Proof. For C ≤ 9, the proposition holds (the length of the input is Θ(q2)), so suppose C ≥ 10.
Let κ be as in Lemma 6.2.6 and letM be the following one-tape NTM:

• On an input w which is a padded code of a one-tape two-choice NTMM ′, construct a one-
tape qw-state DTMMw such that

Mw runs in time Cn+D ⇐⇒ M ′ makes at most |w|κ(C−1) steps on the input
w.

ThemachineMw can be constructed by amulti-tape DTM in timeO(|w|4κ) by Lemma 6.2.6,
hence it can be constructed in time O(|w|8κ) by a one-tape DTM (as in Proposition 3.3.8).
It also follows that qw = O(|w|2κ).

• Verify whetherMw runs in time Cn+D. If so, start an infinite loop, else halt.

Now we make a standard diagonalization argument to prove the proposition. Suppose that
D-Halt1

Cn+D can be solved by a multi-tape NTM in time o(q(C−1)/4). Then it can be solved in
time o(q(C−1)/2) by a one-tape NTM (Proposition 3.3.8). Using more states and for a constant
factor more time, D-Halt1

Cn+D can be solved in time o(q(C−1)/2) by a one-tape two-choice NTM
(Proposition 3.3.16). If M uses this machine to verify whether Mw runs in time Cn + D, then
considering qw = O(|w|2κ) and C ≥ 10,M is a one-tape two-choice NTM that makes

O
(
|w|8κ

)
+ o

(
|w|κ(C−1)

)
= o

(
|w|κ(C−1)

)
steps on any computation on the input w, if it does not enter the infinite loop.

Let w be a padded code ofM . IfM makes at most |w|κ(C−1) steps on the input w, the Turing
machine Mw will run in time Cn + D which implies that M will start an infinite loop on some

104

computation on the input w, which is a contradiction. Hence, M must make more steps on the
input w than |w|κ(C−1) which implies thatMw does not run in time Cn + D and henceM does
not start the infinite loop, thus it makes o

(
|w|κ(C−1)

)
steps. It follows that

o
(
|w|κ(C−1)

)
> |w|κ(C−1)

which is impossible since the padding can be arbitrarily long. �

Corollary 6.2.8. For all positive integers C and D, the problem Halt1
Cn+D cannot be solved by

a multi-tape NTM in time o(q(C−1)/4).

Proof. The result follows by Proposition 6.2.7 because a Turing machine that solves Halt1
Cn+D

also solves D-Halt1
Cn+D. �

The following lemma is a “deterministic” analog of Lemma 6.2.3.

Lemma 6.2.9. Let C ≥ 2 andD ≥ 1 be integers, let T (n) = Knk +1 for some integersK, k ≥ 1
and letM be a one-tape two-choice q-state NTM that runs in time T (n). Then there exists an

O
(
T (n)4/(C−1) + n2

)
-time

multi-tape DTM that given an input w forM , constructs a one-tape DTMMw such that
Mw runs in time Cn+D ⇐⇒ M rejects w.

Proof. LetM ′ be a one-tape two-choice (q+ 1)-state NTM that computes just likeM only that it
starts an infinite loop wheneverM would go to the accepting state. It follows that

M ′ makes at most T (|w|) steps on the input w ⇐⇒ M rejects w.

Now we can use Lemma 6.2.6 to construct a DTMMw such that

Mw runs in time Cn+D ⇐⇒ M ′ makes at most T (|w|) steps on the input w
⇐⇒ M rejects w.

BecauseM andM ′ are fixed, we can constructMw in time

O
(
T (|w|)4/(C−1) + |w|2

)
by Lemma 6.2.6. �

We now combine Corollary 6.2.2 and Lemma 6.2.9 to show that D-Halt1
Cn+D is

co-NP-complete.

Proposition 6.2.10. The problems D-Halt1
Cn+D are co-NP-complete for all C ≥ 2 and D ≥ 1.

Proof. Corollary 6.2.2 proves that these problems are in co-NP and Lemma 6.2.9 gives a reduction
of an arbitrary problem in co-NP to the above ones. �

To prove the last lower bound, we use Lemma 6.2.9 to translate a hard problem to D-Halt1
Cn+D,

the same way as in Proposition 6.2.5.

Proposition 6.2.11. For all positive integersC andD, the problemD-Halt1
Cn+D cannot be solved

by a multi-tape NTM in time o(q(C−1)/4).

Proof. The proof is the same as the proof of Proposition 6.2.5, only that we use Lemma 6.2.9
instead of Lemma 6.2.3. �

To sum up this section, we have proven Theorem 1.2.1 which states

105

For all integers C ≥ 2 and D ≥ 1, all of the following holds.

(i) The problems Halt1
Cn+D and D-Halt1

Cn+D are co-NP-complete.
Proposition 6.2.4 and Proposition 6.2.10 prove this.

(ii) The problems Halt1
Cn+D and D-Halt1

Cn+D cannot be solved in non-deterministic time
o(q(C−1)/4).
Proposition 6.2.7 and Corollary 6.2.8 prove this.

(iii) The problems Halt1
Cn+D and D-Halt1

Cn+D can be solved in non-deterministic time
O(qC+2).
Corollary 6.2.2 proves this.

(iv) The problem Halt1
Cn+D cannot be solved in non-deterministic time o(q(C−1)/2).

Proposition 6.2.5 proves this.

(v) The problem D-Halt1
Cn+D cannot be solved in non-deterministic time o(q(C−1)/4).

Proposition 6.2.11 proves this. �

6.2.4 Optimality of Our Measuring of the Length of an Input

Let us again have a look at how we proved the lower bound in Proposition 6.2.5. A very similar
idea was also used to prove all the other lower bounds in Theorem 1.2.1, so what follows can be
applied to any of them.

Let a one-tape non-deterministic Turing machine M solve a problem L in time T (n). Then,
for any input w, we can decide whether w ∈ L by first constructing a one-tape Turing machine
Mw that runs in time Cn+D if and only ifM rejects w and then solving Halt1

Cn+D forMw. On
the inputs of length n, the Turing machineMw computed in two phases (see Lemma 6.2.3): in the
first phaseMw only measured the input length using at most (C − 1)n + 1 steps to assure that n
was large enough, specifically n = Ω(T (|w|)), and then in the second phase it simulatedM on w
using at most n steps. In our implementationMw used O(T (|w|)1/(C−1)) states for the first phase
and we claim that this is optimal.

If we want Mw to measure the length T (|w|) in the first phase using at most (C − 1)n + 1
steps, then for each computation on inputs of length T (|w|), it cannot produce the same crossing
sequence at two boundaries. By Lemma 5.2.3, Mw has Ω(T (|w|)1/(C−1)) states which implies
that our measuring of the length of the input was optimal. What is more, Lemma 5.2.3 is tight and
our method for proving lower bounds cannot give much better bounds.

6.2.5 Relativization in Theorem 1.2.1

While the upper bounds in Theorem 1.2.1 relativize, our lower bound proofs give slightly less
powerful lower bounds for NOTMs than for NTMs. The following list gives reasons and indicates
where one has to be careful when using NOTMs.

• The property of our encoding of one-tape NTMs that the composition of two NTMs can be
computed in linear time is not that clear for NOTMs because defining a composition of two
NOTMs is quite more technical, as it is discussed in Section 4.3.2. However, in relativized
versions of the proofs of our results it is always the case that the first Turing machine in a
composition of two oracle Turing machines does not need an oracle, hence it can be treated

106

as an NTM. In such a case we can compute a composition of an NTM and an NOTM in
linear time.

• In several results, for example in Lemma 6.2.3, we did the following: given an NTMM and
an input w for M , construct a one-tape NTM M̃ that computes in two phases: in the first
phase it makes several passes through the input and in the second phase it simulatesM on
w. Note that the simulation ofM on w can only be done on the left part of the input to be
able to make oracle queries, thus M̃ has to make an even number of passes in the first phase.
This results in comparable, but slightly weaker lower bounds.

• Note from Section 4.3.3 that if a multi-tape NOTM decides a language in time T (n), then
there exist a one-tape NOTM that decides the same language in time O(T (n)3). To prove
lower bounds, we used the better bound O(T (n)2) that holds for NTMs. This results in
comparable, but slightly weaker lower bounds for NOTMs.

• In Figure 6.1 we can see the tape of a one-tape NTM prepared for the simulation of another
one-tape NTM. A similar preparation could be done also in the case of NOTMs (only on the
left part of the input), however we may need more steps to simulate a computation because
we have to keep time somewhere on the tape, mark the head position (also on the oracle part
of the tape) and later possibly do an oracle query . . . This again results in comparable, but
slightly weaker lower bounds.

Because ourmethods from Section 6.2 can be applied also to NOTMs and they give comparably
good results, using only such methods cannot give the solution to the P versus NP problem.

6.2.6 An Open Problem

For D ∈ N, how hard are the problems Halt1
n+D and D-Halt1

n+D?

It is clear that we can solve the problems Halt1
Cn and D-Halt1

Cn, for C ∈ N, in constant time.
The answer is always no, since any Turing machine makes at least one step on the empty input.

It is also easy to see that we can solve the problems Halt1
D and D-Halt1

D, for D ∈ N, in
polynomial time. The algorithm would be to simulate a given one-tape Turing machineM on all
the inputs up to the length D and accept if and only if the time bound was not violated. Now, if
the algorithm rejects,M clearly does not run in time D and if it accepts, thenM never reads the
(D+ 1)st symbol of an input by Lemma 3.3.1 and hence it was enough to verify the running time
on inputs up to the length D.

For C ≥ 2 and D ≥ 1, good complexity bounds for Halt1
Cn+D and D-Halt1

Cn+D are given
in Theorem 1.2.1. Hence only the bounds for C = 1 are missing. For this case we can prove the
following proposition.

Proposition 6.2.12. The problems Halt1
n+1 and D-Halt1

n+1 are in P.

Proof. The main observation is that a one-tape NTM which runs in time n + 1 never moves its
head to the left, except possibly in the last two steps of a computation. To prove this, we suppose
the opposite. LetM be a one-tape NTM that runs in time n+ 1 and let w be an input forM such
that on some computation on w,M moves its head to the left for the first time in step t < n = |w|
and it makes at least two more steps afterwards. As can be seen in Figure 6.2,M makes more than
t+ 1 steps on some computation on the input w(0, t) of length t, which is a contradiction.

107

boundaries: 0 t n

w(0, t)

Figure 6.2: Suppose that a Turing machine M on input w of length n moves its head to the left
for the first time in step t (the head turns left just before crossing the boundary t) and letM make
at least two more steps after this step (we assume some fixed computation). ThenM on the input
w(0, t) makes at least t+ 2 steps.

Hence, to solve Halt1
n+1 and D-Halt1

n+1 it is enough to verify, for a given one-tape Turing
machineM , whether the head ofM never moves to the left, except possibly in the last two steps
of a computation. This can be verified in polynomial time. �

Does a similar proof go through for all problems Halt1
n+D?

108

Slovenski povzetek

Ta povzetek ima enako strukturo kot uvodno poglavje disertacije. Razdeljen je na tri dele. Prvi
del je namenjen širšemu krogu bralcev; v njem podamo motivacijo za probleme, ki jih obravna-
vamo v disertaciji, in opišemo, kako predstavljeni koncepti zrcalijo realnost. Drugi del je namenjen
bralcem, ki so seznanjeni z osnovami teorije računske zahtevnosti; v tem delu preletimo vsebino
vseh poglavij ter podamo glavne ideje dokazov pomembnejših rezultatov. Tretji del je namenjen
poznavalcem teorije računske zahtevnosti, ki jih zanima tudi sorodna literatura.

Kazalo
Motivacija . 110
Pregled disertacije . 112

Poglavje 6 . 112
Poglavje 5 . 114

Sorodna in uporabljena literatura . 116

109

Motivacija

Vse od pojava prvih računalnikov obstaja naravna opredelitev zahtevnosti računskih problemov:
problem je težak, če ga z računalnikom ni mogoče hitro rešiti. Ta empirična definicija dobi trde
temelje, če namesto računalnika vzamemo neki dobro definirani model računanja. Skozi zgodovino
se je izkazalo, da je Turingov stroj ravno pravšnji model. Lahko torej rečemo, da je problem težak,
če ga noben Turingov stroj ne more hitro rešiti.

Dobro osnovo za takšno obravnavo zahtevnosti problemov nam predstavljata dve tezi. Church-
Turingova teza pravi, da je množica funkcij, ki jih lahko računamo s Turingovim strojem, enaka
množici intuitivno izračunljivih funkcij. Teza ni matematična trditev in je zato ni mogoče formalno
dokazati, čeprav so nekateri poskusili storiti prav to [5]. Dober argument v prid tezi je predvsem
ta, da je moč s Turingovim strojem simulirati veliko znanih modelov računanja, tudi modele naših
računalnikov. Še več, simulacije so efektivne. To pomeni, da Turingov stroj ne naredi bistveno
več korakov kot simulirani model računanja. Ta ugotovitev je osnova za krepko različico Church-
Turingove teze, ki pravi, da so vsi “smiselni” modeli računanja polinomsko ekvivalentni Turingo-
vemu stroju (tj. so primerljivo hitri). Krepka različica teze med teoretiki ni tako splošno sprejeta
kot Church-Turingova teza in kvantni računalniki jo domnevno kršijo. Na tem mestu omenimo, da
sodobna tehnologija še ne omogoča izgradnje primerno velikih kvantnih računalnikov.

Turingovi stroji lahko izračunajo vse, kar lahko izračunajo teoretični modeli osebnih računal-
nikov, in to lahko storijo (teoretično) primerljivo hitro. Največja prednost Turingovih strojev pred
temi modeli pa je “enostavnost”. Da bi pokazali, kako preprosti so, na kratko predstavimo enotračni
deterministični Turingov stroj (enotračni DTS)M ; formalno definicijo najdemo v poglavju 3.1.6.
FizičnoM sestavljajo v obe smeri neskončen trak, glava in kontrolni mehanizem, ki omogoča, da
je stroj zmeraj v natanko enem izmed končnega števila stanj. Nekatera stanja so posebna: eno je
začetno, nekaj pa jih je končnih. Trak je razdeljen na celice, v vsaki celici je zapisan neki simbol
in nad natanko eno izmed celic je glava (glej sliko 1). M zmeraj začne računati v začetnem stanju,
pri čemer je na traku zapisan vhod (vsak simbol vhoda v svoji celici, ostale celice pa vsebujejo
tako imenovani prazni simbol L) in je glava nad prvim simbolom vhoda. V vsakem koraku glava
najprej prebere simbol zapisan pod njo na traku, ki skupaj s trenutnim stanjem popolnoma določi
naslednji korak stroja M tipa: prepiši simbol pod glavo z drugim simbolom, lahko tudi enakim,
premakni glavo za eno celico v levo ali v desno ter zamenjaj stanje. TorejM računa zelo lokalno,
saj je vsak naslednji korak določen le s trenutnim stanjem in simbolom pod glavo. Izračun se konča,
koM preide v eno izmed končnih stanj. Če se to nikdar ne zgodi, potem seM nikdar ne ustavi.
Rezultat izračuna je lahko stanje na traku ob koncu izračuna ali pa končno stanje, v katerem M
zaključi izvajanje. Kot smo že navedli, lahko tak stroj (navkljub enostavnosti) efektivno simulira
izračune sodobnih računalnikov.

. . . L L i n p u t L L . . .

Slika 1: Trak enotračnega DTS-ja M z vhodom input. Preden M začne računati, je v začetnem
stanju in njegova glava je nad simbolom i.

V disertaciji se ukvarjamo večinoma z odločitvenimi problemi, to so taki problemi, ki zahte-
vajo odgovor da ali ne. Podrobneje so predstavljeni v poglavju 2.1.4, tukaj bomo predstavili le tri
primere.

110

Primerjava dolžin . . . Ali je dani niz w oblike 00 . . . 011 . . . 1, kjer je število ničel enako
številu enic?

Hamiltonov cikel . . . Ali je dani enostavni neusmerjeni graf Hamiltonov3?

D-Halt1
ε . . . Ali se dani enotračni DTSM ustavi na praznem vhodu, tj. vhodu, ki

ne vsebuje nobenega simbola?

Najtežji problemi so taki, ki jih ni mogoče rešiti s Turingovimi stroji, in dobro poznano dejstvo
je, da je D-Halt1

ε tak problem (za dokaz glej poglavje 4.1.1). To dejstvo je zanimivo že samo
po sebi, za širšo javnost pa je najbrž bolj zanimiva njegova posledica, da ne obstaja računalniški
program, ki bi rešil problem:

Za dani program v programskem jeziku Java, ki ne sprejme nobenega vhoda, ali bi se
program kdaj ustavil, če bi ga pognali?

Torej je preverjanje pravilnosti programske kode naloga, ki je ne moremo povsem avtomatizirati.
Naravno je odločitvene probleme razvrstiti v razrede glede na to, kako hitro jih lahko rešimo s

Turingovimi stroji. Tako dobimo hierarhijo različnih razredov računske zahtevnosti, ki jo podrob-
neje opišemo v poglavju 4.2.2. Najbolj znani razred računske zahtevnosti je razred P, ki vsebuje
tiste odločitvene probleme, ki so rešljivi z enotračnimi Turingovimi stroji v polinomskem času.
Če povemo drugače, je odločitveni problem v razredu P natanko tedaj, ko obstaja polinom p in
enotračni DTS, ki reši problem in za vsak n naredi največ p(n) korakov na vhodih dolžine n.

Zelo znan razred odločitvenih problemov je tudi NP, ki vsebuje natanko tiste odločitvene pro-
bleme, katerih odgovore da lahko preverimo v polinomskem času z enotračnim DTS-jem, ki ob
vhodu sprejme še kratek niz, ki mu pravimo certifikat (nekakšen namig). Razred je natančno de-
finiran v poglavju 3.4; tukaj ga bomo raje predstavili na primeru. Problem Hamiltonov cikel je
v NP, saj za vsak graf, ki ima Hamiltonov cikel, obstaja certifikat, da je to res: zaporedje vozlišč,
ki tvori Hamiltonov cikel. Če ob vhodnem grafu dobimo še neko zaporedje vozlišč (kot certifikat),
lahko v polinomskem času preverimo, ali je to zaporedje Hamiltonov cikel ali ne. Po drugi strani
pa niso znani kratki certifikati, ki bi pomagali pri reševanju komplementa problema Hamiltonov
cikel, ki se glasi:

Ali je res, da dani enostavni neusmerjeni graf G ni Hamiltonov?

Ta problem je v razredu co-NP, ki vsebuje natanko komplemente odločitvenih problemov iz raz-
reda NP (odgovori da in ne so zamenjani). Obstaja mnogo znanih problemov, ki so v razredih
NP ali co-NP, ni pa znano, ali so tudi v razredu P. Eden takih je tudi problem Hamiltonov
cikel [12]. Medtem ko očitno velja P ⊆ NP ∩ co-NP, pa je vprašanje P ?

= NP že desetletja
osrednje vprašanje v teoriji računske zahtevnosti, ki je motiviralo številne znane rezultate na tem
področju. To vprašanje predstavlja enega izmed problemov, poznanih pod imenom Millennium
Prize Problems, in njegova rešitev je vredna milijon ameriških dolarjev [23]. Problem P

?
= NP

se je pojavil tudi v naslovu knjige Richarda J. Liptona [22] in objavljene so bile analize o tem, kaj
teoretiki menijo o njem [13]. Obstaja še veliko drugih naravnih razredov odločitvenih problemov,
za katere ni znano, v kakšni relaciji so s P, NP in med seboj. Naj omenimo le dve sorodni odprti
vprašanji, NP ?

= co-NP in P ?
= NP ∩ co-NP.

3Graf je enostaven, če nima vzporednih povezav in zank. Graf je Hamiltonov, če obstaja cikel, ki vsebuje vsa njegova
vozlišča.

111

Ker je veliko naravnih razredov odločitvenih problemov definiranih s pomočjo Turingovih stro-
jev, je temeljito poznavanje tega modela računanja raziskovalcu na področju računske zahtevnosti
lahko v veliko korist. Ena glavnih lastnosti Turingovih strojev je časovna zahtevnost. Glavni av-
torjevi rezultati [10, 11] v času doktorskega študija govorijo o tem, kako preveriti in ali je sploh
mogoče algoritmično preveriti časovno zahtevnost danega Turingovega stroja. Ti rezultati so pred-
stavljeni v poglavju 6.

Pregled disertacije

Osrednji rezultati v disertaciji so v poglavjih 5 in 6, ostala poglavja služijo predvsem za predsta-
vitev ozadja. V poglavju 6 predstavimo rezultate o preverjanju časovne zahtevnosti Turingovih
strojev. Medtem ko so rezultati v primeru večtračnih Turingovih strojev relativno enostavni, pa
za analizo časovne zahtevnosti enotračnih Turingovih strojev potrebujemo več različnih koncep-
tov. Eden glavnih so prekrižna zaporedja, o katerih je govora v poglavju 5. Večina rezultatov v
poglavjih 5 in 6 je avtorjevih [10, 11] in so podrobneje predstavljeni spodaj.

Preletimo najprej ostala poglavja. Poglavje 1 je uvodno in je v grobem angleška verzija tega
slovenskega povzetka. V poglavju 2 predstavimo osnovno notacijo, definiramo regularne jezike,
končne avtomate ter regularne izraze. Dokažemo tudi, da regularni izrazi in končni avtomati opi-
šejo natanko regularne jezike. V poglavju 3 definiramo več različnih modelov Turingovih strojev:
enotračne in večtračne, deterministične in nedeterministične. Definiramo tudi časovno pogojene
razrede odločitvenih problemov, med drugimi razreda P in NP. V pomembnem in zelo tehničnem
podpoglavju 3.3 analiziramo, kako zaostritve različnih parametrov Turingovih strojev vplivajo na
časovno zahtevnost razpoznavanja jezikov. Parametri, ki jih obravnavamo, so velikost tračne abe-
cede, število trakov in uporaba nedeterminizma.

V poglavju 4 dokažemo neodločljivost zaustavitvenega problema ter neodločljivost problema
D-Halt1

ε . Prav tako dokažemo izreka o deterministični in nedeterministični časovni hierarhiji. De-
finiramo tudi Turingove stroje z orakljem in sicer tako, da obstajajo tudi enotračni Turingovi stroji
z orakljem in da se tehnike dokazovanja, ki jih uporabljamo v poglavjih 5 and 6, enostavno prene-
sejo iz “navadnih” Turingovih strojev nanje. Tehnikam, ki jih lahko tako “prenesemo”, pravimo,
da relativizirajo. Na koncu poglavja 4 pokažemo, da le s tehnikami, ki relativizirajo, ne moremo
rešiti problema P ?

= NP.

Poglavje 6

To poglavje je zadnje in nosi enak naslov kot disertacija: Preverjanje časovne zahtevnosti Turin-
govih strojev. Vsi rezultati, ki jih bomo v tem povzetku poglavja predstavili, veljajo tako za de-
terministične Turingove stroje (DTS) kot za nedeterministične Turingove stroje (NTS), razen če
napišemo drugače.

Za funkcijo T : N → R>0 obstajata vsaj dva naravna tipa problemov preverjanja časovne
zahtevnosti, podane s pomočjo funkcije T (n):

• Ali je dani Turingov stroj časovne zahtevnosti O(T (n))?

• Ali je dani Turingov stroj časovne zahtevnosti T (n), tj. ali za vsak n dani Turingov stroj
napravi največ T (n) korakov na vsakem izračunu na vhodih dolžine n?

Teoretikom je že dolgo znano, da ne obstaja algoritem, ki bi preveril, ali je dani Turingov stroj
časovne zahtevnosti O(1). Torej je prvi problem neodločljiv za vse uporabne funkcije T . V iz-

112

reku 6.1.6 najdemo posplošitev tega rezultata. Po drugi strani pa je drugi problem odločljiv za vsako
konstantno funkcijo T (n) = C. Namreč, da bi preverili, ali je dani Turingov stroj časovne zah-
tevnosti C, ga moramo le simulirati na vhodih do dolžine C (za argumente glej dokaz leme 6.1.1).
Izkaže se celo, da lahko natančno karakteriziramo funkcije T , za katere je drugi problem odlo-
čljiv. Izrek 6.1.3 nam namreč pove, da je drugi problem odločljiv natanko tedaj, ko imamo izrojeni
primer T (n0) < n0 +1 za neki n0 ∈ N. Meja časovne zahtevnosti n+1 je posebna zato, ker je mi-
nimalna taka, ki omogoča večtračnemu Turingovemu stroju, da meri čas svojega izvajanja in hkrati
simulira drug Turingov stroj. Čas izvajanja lahko meri na vhodnem traku s tem, da glavo pomika v
desno, dokler ne prebere praznega simbola, na preostalih trakovih pa simulira drug Turingov stroj.

Ta strategija se podre, če se omejimo na enotračne Turingove stroje. Na slednjih moramo
merjenje časa ter simulacijo opraviti na istem traku in izkaže se, da za to v splošnem potrebujemo
Ω(n log n) časa. Da je Ω(n log n) dovolj, je razvidno iz dokaza izreka 6.1.5, ki pravi:

Naj za funkcijo T : N → R>0 velja T (n) = Ω(n log n) in naj za vsak n ∈ N velja
T (n) ≥ n + 1. Potem ni odločljivo, ali je dani enotračni Turingov stroj časovne
zahtevnosti T (n).

Po drugi strani pa nam izrek 6.1.10 pove, da je meja Θ(n log n) tesna:

Naj bo T : N → R>0 “lepa” funkcija, za katero velja T (n) = o(n log n). Potem je
odločljivo, ali je dani enotračni Turingov stroj časovne zahtevnosti T (n).

Meje časovne zahtevnosti reda Θ(n log n) so zanimive še zaradi nečesa. So minimalne take,
ki omogočajo enotračnim Turingovim strojem, da sprejmejo neregularen jezik. Vsak enotračni
Turingov stroj časovne zahtevnosti o(n log n) namreč odloči neki regularni jezik (trditev 5.1.7).
Po drugi strani pa obstaja neregularni jezik, ki ga sprejme neki enotračni Turingov stroj v času
O(n log n) (trditev 5.1.9).

Zanimivo je, da je vsak enotračni Turingov stroj časovne zahtevnosti o(n log n) tudi linearne
časovne zahtevnosti (posledica 5.1.6). Torej je linearna časovna zahtevnost najnaravnejša algo-
ritmično preverljiva časovna zahtevnost enotračnih Turingovih strojev. To dejstvo je motivacija
za drugi del zadnjega poglavja, v katerem analiziramo računsko zahtevnost naslednjih problemov,
parametriziranih s C,D ∈ N. Problem Halt1

Cn+D je sledeč:

Ali je dani enotračni NTS časovne zahtevnosti Cn+D?

Problem D-Halt1
Cn+D je sledeč:

Ali je dani enotračni DTS časovne zahtevnosti Cn+D?

Za lažjo analizo teh problemov fiksirajmo vhodno abecedo Σ, ki naj vsebuje vsaj dva simbola,
in tračno abecedo Γ ⊃ Σ. Posledično za večino klasičnih kodiranj enotračnih Turingovih strojev
velja, da je dolžina kode Turingovega stroja s q stanji O(q2). Da analizo še olajšamo, vzemimo
tako kodiranje, da bo dolžina kode enotračnega Turingovega stroja s q stanji Θ(q2). Primer takega
kodiranja je podan v poglavju 6.2.1. Ob teh predpostavkah lahko računsko zahtevnost proble-
mov Halt1

Cn+D in D-Halt1
Cn+D izražamo s parametrom q, ki do konstantnega multiplikativnega

faktorja določa dolžino vhoda. Računsko zahtevnost teh problemov nam zelo natančno opredeli
naslednji izrek (izrek 1.2.1).

113

Za poljubni naravni števili C ≥ 2 in D ≥ 1 veljajo vse naslednje točke.

(i) Problema Halt1
Cn+D in D-Halt1

Cn+D sta co-NP-polna.
(ii) Problema Halt1

Cn+D in D-Halt1
Cn+D nista rešljiva v času o(q(C−1)/4) z več-

tračnimi NTS-ji.
(iii) Komplementa problemovHalt1

Cn+D inD-Halt1
Cn+D sta rešljiva v časuO(qC+2)

z večtračnimi NTS-ji.
(iv) Komplement problema Halt1

Cn+D ni rešljiv v času o(q(C−1)/2) z večtračnimi
NTS-ji.

(v) Komplement problema D-Halt1
Cn+D ni rešljiv v času o(q(C−1)/4) z večtračnimi

NTS-ji.

Če povzamemo, sta problema Halt1
Cn+D in D-Halt1

Cn+D co-NP-polna, njuna konedetermi-
nistična časovna zahtevnost je navzgor omejena z O(qC+2), navzdol pa z Ω(q0.25C−1), s čimer je
navzdol omejena tudi njuna nedeterministična časovna zahtevnost.

Zgornja meja računske zahtevnosti v izreku 1.2.1 je dokazana s pomočjo prekrižnih zaporedij,
predstavljenih v poglavju 5. Več o tem, kako jo dokažemo, je napisano spodaj v pregledu omen-
jenega poglavja. Spodnje meje računske zahtevnosti dokažemo s pomočjo polinomskih prevedb
računsko zahtevnih odločitvenih problemov na probleme Halt1

Cn+D in D-Halt1
Cn+D. Računsko

zahtevne probleme dobimo z diagonalizacijo.
Opišimo še glavno idejo pri prevedbah. Recimo, da enotračni NTSM reši računsko zahteven

odločitveni problem L. Potem lahko L rešimo tudi tako, da na vhodu w najprej skonstruiramo
enotračni Turingov stroj Mw, ki je časovne zahtevnosti Cn + D natanko tedaj, ko M zavrne w,
in nato rešimo komplement problema Halt1

Cn+D za Mw. Če uspemo Mw skonstruirati z malo
koraki, potem nam računska zahtevnost problema L zagotavlja spodnjo mejo računske zahtevnosti
za komplement problema Halt1

Cn+D. Glavna naloga strojaMw je simulacijaM na vhoduw, ki pa
jo izvede le na dovolj dolgih (lastnih) vhodih, da ne krši časovne zahtevnosti Cn+D. To stori na
naslednji način. Najprej s (C−1)n+1 koraki preveri, ali je vhod dovolj dolg, nato pa v naslednjih
(največ) n korakih simulira M na w. Če M sprejme, Mw požene neskončno zanko in se več ne
ustavi, sicer se ustavi. Izkaže se, da je zaMw ključno, da efektivno izmeri vhod z malo koraki in
ob uporabi malega števila različnih stanj. Slednje je pomembno predvsem zato, ker manjši opis
strojaMw pomeni boljšo spodnjo mejo računske zahtevnosti za komplement problemaHalt1

Cn+D.
Podrobnosti najdemo v poglavju 6.2.3. V poglavju 6.2.4 pokažemo, da je naš način merjenja dol-
žine vhoda stroja Mw optimalen, torej z našimi metodami ne moremo dokazati bistveno boljših
spodnjih mej računske zahtevnosti.

Omenimo še poglavje 6.2.5, v katerem pokažemo, da tehnike, uporabljene pri dokazovanju
izreka 1.2.1, relativizirajo, torej izključno z njimi ne moremo rešiti problema P ?

= NP.

Poglavje 5

V tem poglavju definiramo prekrižna zaporedja in glavne rezultate v zvezi z njimi. Definirana
so le za enotračne Turingove stroje. Prekrižno zaporedje, generirano z enotračnim Turingovim
strojem M na ločnici i (glej sliko 2) po t korakih izračuna ζ na vhodu w, je zaporedje stanj, v
katerih M prečka ločnico i, če upoštevamo le prvih t korakov izračuna ζ na vhodu w. Pri tem
predpostavljamo, daM v vsakem koraku najprej preide v naslednje stanje in šele nato premakne
glavo. To zaporedje vsebuje vse informacije, ki jihM v prvih t korakih izračuna ζ prenese iz leve
strani ločnice i na desno in obratno.

114

ločnice: . . . −3 −2 −1 0 1 2 3 4 5 . . .

celice: . . . L L L L L . . .

Slika 2: Oštevilčenje ločnic med celicami traku enotračnega Turingovega stroja. Osenčeni del je
potencialni vhod dolžine 4.

Osrednja tehnika pri obravnavi prekrižnih zaporedij je tehnika rezanja in lepljenja, s katero
dokažemo glavni rezultat v poglavju 5, izrek o kompaktnosti. Preden ga zapišemo v splošnem, si
poglejmo posledico, po kateri je dobil ime.

Naj bosta C inD poljubni naravni števili in naj boM enotračni NTS s q stanji. Potem
jeM časovne zahtevnosti Cn + D natanko tedaj, koM za vsak n ≤ O(q2C) naredi
največ Cn+D korakov na vsakem izračunu na vhodih velikosti n.

Z drugimi besedami, problem Halt1
Cn+D lahko rešimo tako, da za vhodni NTSM preverimo

le število korakov, ki jih M naredi na vhodih velikosti največ O(q2C). Konstanta pod notacijo
veliki O je polinomska v C in D (glej posledico 5.2.5). Čeprav nam ta posledica poda način
za reševanje problema Halt1

Cn+D, pa potrebujemo močnejši rezultat (izrek o kompaktnosti), da
dokažemo izrek 1.2.1.

Podajmo sedaj dve oznaki, ki nastopata v izreku o kompaktnosti. Za enotračni NTSM , niz w
in prekrižno zaporedje C intuitivno opišimo število tM (w, C). To je največje število korakov, ki jih
lahko narediM na strnjenem delu w nekega namišljenega vhoda, če upoštevamo le tiste izračune,
ki na levem in desnem krajišču niza w proizvedejo enako prekrižno zaporedje C. Če tak izračun ne
obstaja, definiramo tM (w, C) = −1. Število tM (w, C) lahko enostavno izračunamo s simulacijo
M na delu w, kot je razvidno iz njegove bolj formalne definicije v poglavju 5.2.1.

Za enotračni NTSM in naravno številon označimo sSn(M)množico vseh začetkov prekrižnih
zaporedij, ki jih lahkoM ustvari na vhodih velikosti n na ločnicah 1, 2 . . . n. Izrek o kompaktnosti
(izrek 5.2.1) je sledeč.

Naj bo M enotračni NTS s q stanji in naj bosta C in D naravni števili. Označimo
` = D + 8qC , r = D + 12qC in S =

⋃`
n=1 Sn(M). Potem velja:

M je časovne zahtevnosti Cn+D natanko tedaj, ko

a) za vsak niz w dolžine največ ` in za vsak izračun ζ Turingovega stroja M na
vhodu w velja |ζ| ≤ C|w|+D ter

b) za vsako prekrižno zaporedje C ∈ S in za vsak nizw dolžine največ r, za katerega
je tM (w, C) ≥ 0, velja tM (w, C) ≤ C|w|.

Spomnimo se posledice, ki smo jo omenili pred izrekom, in ki nam pove, da je za preverjanje
časovne zahtevnosti Cn + D danega NTS-ja dovolj NTS simulirati na vhodih velikosti O(q2C).
Opazimo, da v izreku o kompaktnosti nastopajo le nizi dolžine O(qC). To je ključno v dokazu
zgornje meje časovne zahtevnostiO(qC+2) za reševanje komplementa problemaHalt1

Cn+D z več-
tračnimi NTS-ji (izrek 1.2.1).

Glavna tehnika pri dokazovanju izreka o kompaktnosti je tehnika rezanja in lepljenja. Najprej
pokažemo, da poljuben NTS časovne zahtevnosti Cn + D na dovolj velikih vhodih zmeraj na

115

nekaj ločnicah generira enaka prekrižna zaporedja. Če fiksiramo neki izračun na dovolj velikem
vhodu, potem lahko ta vhod razrežemo na mestih, kjer se pojavi enako prekrižno zaporedje, in
obravnavamo vsak del posebej. Dokažemo, da je dovolj obravnavati le (konstantno) kratke dele
vhodov.

V poglavju 5.1.2 dokažemo standardni rezultat o enotračnih Turingovih strojih časovne zahtev-
nosti o(n log n): taki Turingovi stroji generirajo le končno mnogo različnih prekrižnih zaporedij in
odločijo le regularne jezike. Še več, vsak enotračni Turingov stroj časovne zahtevnosti o(n log n) je
tudi linearne časovne zahtevnosti. V poglavju 5.2.3 opišemo algoritem, ki sprejme naravni števili
C inD ter enotračni NTMM in v primeru, da jeM časovne zahtevnostiCn+D, vrne ekvivalenten
končni avtomat.

V poglavju 5.1.3 s pomočjo prekrižnih zaporedij dokažemo dve preprosti, dobro znani spodnji
meji časovne zahtevnosti za reševanje problemov z enotračnimi NTS-ji. Prva je reda Θ(n log n) za
problem Primerjava dolžin, ki je očitno rešljiv v linearnem času z večtračnim DTS-jem. Druga
spodnja meja še bolj poudari razliko med efektivnostjo enotračnih in večtračnih Turingovih strojev.
Naj bo Palindrom naslednji odločitveni problem:

Ali je dani niz palindrom, tj. ali se dani niz prebere od leve proti desni enako kot od
desne proti levi?

Medtem ko lahko večtračni DTS reši problem Palindrom v linearnem času, pa za vsako funk-
cijo T (n) = o(n2) enotračni NTS potrebuje več kot O(T (n)) korakov. Kot zanimivost poka-
žemo tudi, da obstaja enotračni NTS časovne zahtevnostiO(n log n), ki reši komplement problema
Palindrom, s čimer pokažemo, da nedeterministična računska zahtevnost problema ne sovpada
nujno z nedeterministično računsko zahtevnostjo njegovega komplementa.

Sorodna in uporabljena literatura

Poglavja 2, 3 in 4 vsebujejo standardno snov iz področja računske zahtevnosti in so v večini pokrita
v knjigah Arore in Baraka [2] ter Sipserja [28]. Nekaj dokazov v teh poglavij je povsem avtorjevih,
nekaj jih podrobneje sledi literaturi. Izreki in trditve so oblikovani tako, da ustrezajo kontekstu,
v katerega so postavljeni. Dodatna literatura, ki je bila uporabljena, je na ustreznih mestih tudi
navedena.

Poglavji 5 in 6 slonita na avtorjevih delih [10, 11]. Medtem ko je še veliko druge literature
o prekrižnih zaporedjih (poglavje 5), pa je dodatno literaturo za poglavje 6 težje najti. A nekaj
je vseeno obstaja. V sedemdesetih letih prejšnjega stoletja je Hájek [19] dokazal, da ne obstaja
algoritem, ki bi za dani večtračni DTS povedal, ali je časovne zahtevnosti n+ 1. Približno v istem
obdobju je Hartmanis objavil monografijo [16], v kateri se v poglavju 6 ukvarja z vprašanjem:
katere izjave o računski zahtevnosti je mogoče dokazati? V tem delu med drugim primerja razred
jezikov, ki jih razpoznavajo Turingovi stroji časovne zahtevnosti T (n), z razredom jezikov, ki jih
razpoznavajo Turingovi stroji, katerih časovno zahtevnosto T (n) lahko dokažemo. Naj omenimo še
publikacijo Adachija, Iwate and Kasaija [1] iz leta 1984, v kateri predstavijo dobre deterministične
spodnje meje časovne zahtevnosti reševanja problemov, ki so P-polni. Struktura tega rezultata je
primerljiva strukturi izreka 1.2.1.

Študij prekrižnih zaporedij sega v šestdeseta leta prejšnjega stoletja, z začetniki Hartmani-
som [15], Henniejem [17] in Trakhtenbrotom [30]. Leta 1968 je Hartmanis [15] dokazal, da eno-
tračni DTS-ji časovne zahtevnosti o(n log n) sprejmejo natanko regularne jezike. Ob tem je omenil,
da je do istega rezultata neodvisno prišel tudi Trakhtenbrot [30, v ruščini]. V dokazu je Hartmanis

116

kot delni rezultat uporabil dejstvo, da enotračni DTS-ji časovne zahtevnosti o(n log n) generirajo
le prekrižna zaporedja dolžine O(1), nato pa je uporabil Henniejev rezultat [17], ki pravi, da taki
Turingovi stroji razpoznavajo le regularne jezike. Kasneje (v osemdesetih letih prejšnjega stoletja)
je Kobayashi [20] podal drugačen dokaz istega rezultata, a za razliko od Hartmanisovega pristopa,
je njegov dokaz podal način, kako izračunati zgornjo mejo za dolžino prekrižnih zaporedij. Ne-
davno so Tadaki, Yamakami in Lin [29] pokazali, da tudi enotračni NTS-ji časovne zahtevnosti
o(n log n) generirajo le prekrižna zaporedja dolžine O(1), iz česar sledi, da sprejmejo le regularne
jezike. Sledili so Kobayashijevemu dokazu in s tem implicitno podali način, kako izračunati zgor-
njo mejo za dolžino prekrižnih zaporedij, kar je ključno v dokazu izreka 6.1.10. Le-ta pravi, da
za “lepe” funkcije T (n) = o(n log n) obstaja algoritem, ki za dani enotračni NTS pove, ali je ča-
sovne zahtevnosti T (n). V [26] je Pighizzini dokazal, da so NTM-ji časovne zahtevnosti o(n log n)
tudi linearne časovne zahtevnosti. Pregled lastnosti različnih tipov enotračnih Turingovih strojev
linearne časovne zahtevnosti najdemo v [29].

117

118

Bibliography

[1] A. Adachi, S. Iwata, and T. Kasai. Some combinatorial game problems require Ω(nk) time.
J. ACM, 31(2):361–376, 1984.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, 2009.

[3] T. P. Baker, J. Gill, and R. Solovay. Relativizatons of theP = ?NP question. SIAM J. Comput.,
4(4):431–442, 1975.

[4] S. Cabello and D. Gajser. Simple PTAS’s for families of graphs excluding a minor. Discrete
Appl. Math., 189:41–48, 2015.

[5] N. Dershowitz and Y. Gurevich. A natural axiomatization of computability and proof of
Church’s thesis. Bull. Symb. Log., 14(3):299–350, 2008.

[6] R. Diestel. Graph Theory, 3rd ed., volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, 2005.

[7] B. Farhi. Nontrivial lower bounds for the least common multiple of some finite sequences of
integers. J. Number Theory, 125(2):393 – 411, 2007.

[8] L. Fortnow andR. Santhanam. Robust simulations and significant separations. InProceedings
of the 38th International Colloquim Conference on Automata, Languages and Programming
- Volume Part I, ICALP’11, pages 569–580. Springer-Verlag, 2011.

[9] D. Gajser. The limit of binomial means of a sequence. 2014. Preprint, arXiv:1407.4410.

[10] D. Gajser. Verifying time complexity of turing machines. Theor. Comput. Sci., 600:86 – 97,
2015.

[11] D. Gajser. Verifying whether one-tape Turing machines run in linear time. ECCC, TR15-036,
2015.

[12] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

[13] W. I. Gasarch. Guest column: the second P = ?NP poll. SIGACT News, 43(2):53–77, 2012.

[14] D. Goldin and P. Wegner. The interactive nature of computing: Refuting the strong Church-
Turing thesis. Minds and Machines, 18(1):17–38, 2008.

119

http://arxiv.org/abs/1407.4410

[15] J. Hartmanis. Computational complexity of one-tape Turing machine computations. J. ACM,
15(2):325–339, 1968.

[16] J. Hartmanis. Feasible computations and provable complexity properties. CBMS-NSF re-
gional conference series in applied mathematics. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1978.

[17] F. C. Hennie. One-tape, off-line Turing machine computations. Information and Control,
8(6):553–578, 1965.

[18] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing machines. J. ACM,
13(4):533–546, 1966.

[19] P. Hájek. Arithmetical hierarchy and complexity of computation. Theor. Comput. Sci.,
8(2):227–237, 1979.

[20] K. Kobayashi. On the structure of one-tape nondeterministic Turing machine time hierarchy.
Theor. Comput. Sci., 40(2-3):175–193, 1985.

[21] D. Kozen. Theory of Computation. Texts in Computer Science. Springer, 2006.

[22] R. J. Lipton. The P = NP Question and Gödel’s Lost Letter. Springer, 2010.

[23] Millennium prize problems. Retrieved Oct 11, 2015, from http://www.claymath.org/

millennium-problems/p-vs-np-problem.

[24] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.

[25] W. J. Paul, N. Pippenger, E. Szemerédi, and W. T. Trotter. On determinism versus non-
determinism and related problems (preliminary version). In 24th Annual Symposium on
Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 429–
438, 1983.

[26] G. Pighizzini. Nondeterministic one-tape off-line Turing machines and their time complexity.
J. Autom. Lang. Comb., 14(1):107–124, 2009.

[27] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity
classes. J. ACM, 25(1):146–167, 1978.

[28] M. Sipser. Introduction to the Theory of Computation, 2nd ed. PWS Publishing Company,
1997.

[29] K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape linear-time Turing machines.
Theor. Comput. Sci., 411(1):22–43, 2010.

[30] B. A. Trakhtenbrot. Turing computations with logarithmic delay. Algebra i Logica 3, pages
33–48, 1964. In Russian.

[31] S. Žák. A Turing machine time hierarchy. Theor. Comput. Sci., 26(3):327 – 333, 1983.

120

http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem

	Introduction
	Motivation
	Outline of the Dissertation
	Literature and Related Work

	Preliminaries
	Notation, Languages and Problems
	Basic Notation
	Languages over Alphabets
	Encodings
	Decision Problems

	Finite Automata, Regular Languages and Regular Expressions
	Deterministic Finite Automata and Regular Languages
	Non-Deterministic Finite Automata
	Regular Expressions

	Turing Machines
	One-Tape Turing Machines
	The Formal Definition of a Computation of a One-Tape NTM
	Giving an Input to a Turing Machine
	Running Time
	Language of a Turing Machine
	About Our Definition of a One-Tape NTM
	One-Tape Deterministic Turing Machines

	Multi-Tape Turing Machines
	About Our Definition of a Multi-Tape NTM
	Multi-Tape Deterministic Turing Machines

	How Different Attributes of Turing Machines Influence the Time Complexity
	Reducing the Tape Alphabet
	Linear Speedup
	Reducing the Number of Tapes
	Non-Determinism and Determinism
	Reducing the Number of Non-Deterministic Options

	Complexity Classes
	Complexity Classes of Decision Problems
	The Complexity of Regular Languages
	Complexity of Computing Functions

	The Church-Turing Thesis
	Encoding Turing Machines
	Universal Turing Machine

	Classes NP and co-NP
	Reductions and Complete problems

	Diagonalization and Relativization
	Halting Problems
	Proving Undecidability of Problems

	Time Hierarchy Theorems
	Time Constructible Functions
	The Deterministic Time Hierarchy
	The Non-Deterministic Time Hierarchy

	Relativization
	Oracle Turing Machines
	Encodings of Oracle Turing Machines
	Results that Relativize
	Limits of Proofs that Relativize

	Crossing Sequences
	Definition and Basic Results
	The Cut-and-Paste Technique
	One-Tape Turing Machines that Run in Time o(nlogn)
	Simple Applications

	The Compactness Theorem
	Computation on a Part
	The Compactness Theorem
	Supplementary Results to the Compactness Theorem

	Verifying Time Complexity of Turing Machines
	Decidability Results
	Folkloric Results and Extended Considerations
	One-Tape Turing Machines and an o(nlogn) Time Bound

	Complexity Results
	Encoding of One-Tape Turing Machines
	The Upper Bound
	The Lower Bounds
	Optimality of Our Measuring of the Length of an Input
	Relativization in Theorem 1.2.1
	An Open Problem

	Slovenski povzetek
	Motivacija
	Pregled disertacije
	Poglavje 6
	Poglavje 5

	Sorodna in uporabljena literatura

	Bibliography

