UNIVERSITY OF LJUBLJANA
FACULTY OF MATHEMATICS AND PHYSICS
DEPARTMENT OF MATHEMATICS

David Gajser

Verifying Time Complexity of
Turing Machines

Doctoral dissertation

Advisor: izred. prof. dr. Sergio Cabello Justo
Co-advisor: prof. dr. Bojan Mohar

Ljubljana, 2015

UNIVERZA V LJUBLJANI
FAKULTETA ZA MATEMATIKO IN FIZIKO
ODDELEK ZA MATEMATIKO

David Gajser

Preverjanje casovne zahtevnosti
Turingovih strojev

Doktorska disertacija

Mentor: izred. prof. dr. Sergio Cabello Justo

Somentor: prof. dr. Bojan Mohar

Ljubljana, 2015

Izjava

Podpisani David Gajser izjavljam:

e da sem doktorsko disertacijo z naslovom Preverjanje casovne zahtevnosti Turingovih strojev
izdelal samostojno pod mentorstvom izred. prof. dr. Sergia Cabella Justa in somentorstvom
prof. dr. Bojana Moharja.

o da Fakulteti za matematiko in fiziko Univerze v Ljubljani dovoljujem objavo elektronske
oblike svojega dela na spletnih straneh.

Ljubljana, 13. 10. 2015 Podpis

ii

Acknowledgements

I met my advisor Sergio Cabello just before I started writing my bachelor thesis. Since then, he
guided me carefully, offering numerous advices. I chose not to do research in his main area of ex-
pertise which is computational geometry. Instead, I analyzed Turing machines in detail. However,
we had many enlightening consultations about topics of my, his and common interest and about
the mathematical research in general. Sergio, I would like to thank you for all the guidance and
support.

I would like to thank my co-advisor Bojan Mohar and Valentine Kabanets for co-hosting me
for a semester on Simon Fraser University, Canada. I met a big research group of Bojan there and
I saw how productive such a group can be. With Valentine, I was able to discuss the state of art in
the area that interests me most, that is computational complexity theory. I would also like to thank
him for aikido lessons.

I would like to thank numerous people for reading and commenting my work. First on the list
is my advisor, then Valentine Kabanets, Bojan Mohar, the anonymous reviewer of the paper [10],
Andrej Bauer, Marko PetkovSek, MatjaZ Konvalinka and Jurij Mihelic.

I would like to thank Jana, GaSper, my family, and all of my friends for taking and making me
as [am.

iii

iv

Abstract

The central problem in the dissertation is the following.

For a function 7' : N — R >(, how hard is it to verify whether a given Turing
machine runs in time at most 7'(n)? Is it even possible?

Our first main contibution is that, for all reasonable functions 7'(n) = o(n logn), it is possible
to verify with an algorithm whether a given one-tape Turing machine runs in time at most 7'(n).
This is a tight bound on the order of growth for the function 7" because we prove that, for T'(n) =
Q(nlogn)and T'(n) > n+ 1, there exists no algorithm that would verify whether a given one-tape
Turing machine runs in time at most 7'(n). As opposed to one-tape Turing machines, we show that
we can verify with an algorithm whether a given multi-tape Turing machine runs in time at most
T'(n) if and only if T'(ng) < ng + 1 for some ng € N.

Linear time bounds are the most natural algorithmically verifiable time bounds for one-tape
Turing machines, because a one-tape Turing machine that runs in time o(n log n) actually runs in
linear time. This motivates our second main contibution which is the analysis of complexity of the
following family of problems, parameterized by integers C' > 2 and D > 1:

Does a given one-tape g-state Turing machine run in time C'n + D?

Assuming a fixed tape and input alphabet, we show that these problems are co-NP-complete and
we provide good lower bounds. Specifically, these problems cannot be solved in o(q(c_l)/ 4
non-deterministic time by multi-tape Turing machines. We also show that the complements of
these problems can be solved in O(¢¢*?) non-deterministic time and not in o(q(¢—1)/4)
deterministic time by multi-tape Turing machines.

To prove the upper bound O(q“*+?), we use the so-called compactness theorem which is our
third main contribution. We need more notation to state it in full generality, but a simple corollary
tells the following: To verify whether an input one-tape Turing machine runs in time C'n 4 D, it is
enough to verify this on a finite number of inputs.

We argue that our main results are proved with techniques that relativize and that using only
such techniques we cannot solve the P versus NP problem.

non-

Math. Subj. Class. (2010): 68Q05, 68Q10, 68Q15, 68Q17

Keywords: Turing machine, relativization, NP-completeness, crossing sequence, decidability,
lower bound, time complexity, running time, linear time

vi

Povzetek

Osrednji problem v disertaciji je sledec.

Najbo 7" : N — R >(poljubna funkcija. Kako tezko je preveriti, ali je Casovna
zahtevnost danega Turingovega stroja 7'(n)? Je to sploh mogoce preveriti?

Nas prvi vedji prispevek pove, da je za vse “normalne” funkcije 7'(n) = o(nlogn) mozno
z algoritmom preveriti, ali je Casovna zahtevnost danega enotranega Turingovega stroja 7'(n).
Meja o(nlogn) je tesna, saj za T'(n) = Q(nlogn) in T'(n) > n + 1 ni mogoce z algoritmom
preveriti, ali je Casovna zahtevnost danega enotra¢nega Turingovega stroja T'(n). Pri veétranih
Turingovih strojih je rezultat enostavnejsi. Zanje namre¢ velja, da je ¢asovno zahtevnost 7'(n) moc
z algoritmom preveriti natanko tedaj, ko velja T'(ng) < ng + 1 za neki ng € N.

Znano je, da je vsak enotracni Turingov stroj ¢asovne zahtevnosti o(n logn) tudi linearne ¢a-
sovne zahtevnosti. Posledi¢no je linearna ¢asovna zahtevnost najbolj naravna ¢asovna zahtevnost,
ki jo lahko z algoritmom preverimo pri enotraénih Turingovih strojih. V disertaciji se zato ukvar-
jamo tudi z naslednjimi problemi, ki so parametrizirani z naravnima Steviloma C' > 2in D > 1:

Ali je dani enotracni Turingov stroj s ¢ stanji ¢asovne zahtevnosti C'n + D?

Pri analizi teh problemov, kar je na$ drugi ve&ji prispevek, predpostavljamo fiksno vhodno in tra¢no
abecedo. Ti problemi so co-NP-polni in zanje lahko dokaZemo dobre spodnje meje racunske zah-
tevnosti. Ni jih namre¢ mogoce reSiti v Casu o(q(c_l)/ 4) z nedeterministi¢nimi veétraénimi Tu-
ringovimi stroji. Se ve¢, komplementi teh problemov so resljivi z ve¢tradnimi nedeterministi¢nimi
Turingovimi stroji v ¢asu O(¢¢*?2), ne pa v ¢asu o(q(¢~1/4),

Pri dokazu zgornje meje O(¢®¢*2) uporabimo tako imenovani izrek o kompaktnosti, na tretji
velji prispevek. Potrebovali bi ve€ notacije, da bi ga na tem mestu navedli, zato povejmo le njegovo
posledico: Da bi preverili, ali dani enotracni Turingov stroj tee v casu C'n + D, je dovolj preveriti
¢as izvajanja Turingovega stroja le na kon¢no mnogo vhodih.

Glavni prispevki te disertacije so dokazani s tehnikami, ki relativizirajo. DokaZemo tudi znano

”
dejstvo, da s takimi tehnikami ni mogoce resiti slavnega problema P = NP.
Daljsi povzetek v slovenskem jeziku najdemo na koncu disertacije.

Kljuéne besede: Turingov stroj, relativizacija, NP-polnost, prekrizno zaporedje, odlocljivost, spo-
dnja meja, Casovna zahtevnost, Cas izvajanja, linearni Cas

vii

viii

Contents

3.1

3.2

33

34

1 Introduction
1.1 Motivation.
1.2 Outline of the Dissertation,
1.3 Literature and Related Work oL .
2 Preliminaries
2.1 Notation, Languages and Problems
2.1.1 BasicNotation
2.1.2 Languages over Alphabets
2.1.3 Encodings. e
2.14 Decision Problems 0o
2.2 Finite Automata, Regular Languages and Regular Expressions
2.2.1 Deterministic Finite Automata and Regular Languages
2.2.2 Non-Deterministic Finite Automata
2.2.3 Regular Expressions
3 Turing Machines

One-Tape Turing Machines,

3.1.1
3.1.2
3.1.3
3.14
3.1.5
3.1.6

The Formal Definition of a Computation of a One-Tape NTM
Giving an Input to a Turing Machine
Running Time
Language of a Turing Machine
About Our Definition of a One-Tape NTM
One-Tape Deterministic Turing Machines

Multi-Tape Turing Machines

3.2.1
322

About Our Definition of a Multi-Tape NTM
Multi-Tape Deterministic Turing Machines

How Different Attributes of Turing Machines Influence the Time Complexity

3.3.1
332
3.33
334
335

Reducing the Tape Alphabet
Linear Speedup
Reducing the Numberof Tapes
Non-Determinism and Determinism
Reducing the Number of Non-Deterministic Options

Complexity Classes i i

34.1
342

Complexity Classes of Decision Problems
The Complexity of Regular Languages

ix

A\ W =

O O &

10
11
13
14
14
16
20

34.3 Complexity of Computing Functions 45

3.5 The Church-Turing Thesis 46

3.6 Encoding Turing Machines 46
3.6.1 Universal Turing Machine 47

37 ClassesNPandco-NP 48
3.7.1 Reductions and Complete problems 49

4 Diagonalization and Relativization 53
4.1 HaltingProblems 54
4.1.1 Proving Undecidability of Problems 56

4.2 Time Hierarchy Theorems 56
4.2.1 Time Constructible Functions 56

4.2.2 The Deterministic Time Hierarchy 57

4.2.3 The Non-Deterministic Time Hierarchy 58

4.3 Relativization 61
43.1 Oracle Turing Machines 61

4.3.2 Encodings of Oracle Turing Machines 63

4.3.3 Results that Relativize, 63

4.3.4 Limits of Proofs that Relativize 64

5 Crossing Sequences 69
5.1 Definition and BasicResults oL oL, 69
5.1.1 The Cut-and-Paste Technique 70

5.1.2 One-Tape Turing Machines that Run in Time o(nlogn). 72

5.1.3 Simple Applications 75

5.2 The Compactness Theorem 78
5.2.1 ComputationonaPart 79

5.2.2 The Compactness Theorem 80

5.2.3 Supplementary Results to the Compactness Theorem 84

6 Verifying Time Complexity of Turing Machines 89
6.1 DecidabilityResults L 89
6.1.1 Folkloric Results and Extended Considerations 90

6.1.2 One-Tape Turing Machines and an o(n logn) Time Bound 93

6.2 Complexity Results 97
6.2.1 Encoding of One-Tape Turing Machines 97

6.22 TheUpperBound L 98

6.23 TheLowerBounds 99

6.2.4 Optimality of Our Measuring of the Length of an Input 106

6.2.5 Relativization in Theorem 1.2.1 106

6.2.6 AnOpenProblem 107
Slovenski povzetek 109
Bibliography 118

Chapter 1

Introduction

The introduction is split into three parts. The first part is for the general public; it gives the motiva-
tion to study the problems presented in the dissertation and it explains how the presented concepts
reflect (in) the real world. The second part is for readers that are familiar with undergraduate com-
putational complexity theory; we skim through the chapters in this part. The third part is for experts
that are interested also in related work.

1.1 Motivation

Since the invention of modern day computers, the following definition of complexity has been
very natural: A problem is hard if a computer cannot solve it fast. This empirical definition can
be put on solid ground with a well defined model of computation and the history shows that the
Turing machines are a very reasonable one. Thus we can say that a problem is hard if no Turing
machine can solve it fast. This reasoning is supported by two theses (see Section 3.5). The first
one is the Church-Turing thesis which states that intuitively computable functions are exactly those
computable by Turing machines. The thesis is not a mathematical statement, so it cannot be for-
mally proven, despite some attempts [5]. A good argument in favor of the thesis is the fact that
many realizable models of computation, also the models of personal computers, can be simulated
by Turing machines. What is more, the simulations are efficient in the sense that the simulating
Turing machine does not make essentially more steps than the simulated model of computation.
This ascertainment forms the basis for the strong version of the Church-Turing thesis which states
that all reasonable models of computation are polynomially equivalent to the Turing machines, i.e.,
they are comparably fast. The strong version is not so generally accepted as the Church-Turing the-
sis and quantum computers presumably violate it. However, the current technology still does not
allow us to build reasonably big quantum computers.

While Turing machines can compute everything that our computers can compute, and they can
compute it (theoretically) comparably fast, the biggest advantage of Turing machines over today’s
computers is their simplicity. To present how simple they are, let us sketchily describe a one-
tape deterministic Turing machine M (abbreviated as one-tape DTM); the formal definition can be
found in Section 3.1.6. M physically consists of three things: a two-way infinite fape, a head and a
state control. The tape is divided into tape cells, where each cell contains exactly one symbol and
the head of M is always above some tape cell. In the state control, which is connected to the head,
there are finitely many states in which M can be, one being the starting state and some of them
being the halting states. The computation begins with the input written on the tape (each symbol

1

of the input in its own tape cell), the rest of the tape cells are filled with so-called blank symbols
— (see Figure 1.1), the head is over the first symbol of the input and the machine is in the starting
state. Then, in each step, the machine reads the symbol below its head which together with the
current state completely determines an action of the following type: rewrite the symbol below the
head with a prescribed symbol, change the current state and move the head for one cell to the left
or to the right. Hence, M computes very locally since the action in each step is determined only by
the current state and the symbol below its head. M finishes its computation when it enters a halting
state, although this may never happen in which case M runs forever. The result of the computation
can be either the content of the tape after the computation or the halting state in which M finished
its computation. As we discussed above, despite the simplicity of the model, one-tape DTMs can
efficiently simulate computations carried out by modern day computers.

|| <tV IiIh|o]|d| o | —

Figure 1.1: The tape of a one-tape DTM with input vhod written on it. Before the first step of the
computation, the DTM is in the starting state and its head is above the symbol v.

In this dissertation we mostly consider decision problems, i.e., the problems which have a yes
or no answer. While the notion of a decision problem is more formally defined in Section 2.1.4,
we present here only a few examples.

CoMPARE LENGTH ... Given a string of symbols w, is w of the form 00...011...1
where the number of Os equals the number of 1s?

Hamirtonian CycLE ... Given a simple undirected graph G, is G Hamiltonian'?

D-Harr! ... Given a one-tape DTM M, does M halt on the empty input, i.e.,
does M halt on the input with no symbols?

The hardest decision problems are those that cannot be solved by Turing machines and it is well
known that the problem D-Hart! is an example of such a problem (see Section 4.1.1 for a proof).
While the fact that such a simple problem cannot be solved by Turing machines is interesting by
itself, it also has a real-world application. It tells us that there is no computer program that could
solve the problem

Given a code of a program in Java that does not need an input, would the program
ever terminate if we would run it, or would it run forever?

Hence, verifying correctness of the code is a job that cannot be completely automated.

It is natural to classify decision problems with respect to how fast they can be solved by Turing
machines. If we do so, we get a whole hierarchy of distinct complexity classes (see Section 4.2.2).
The most well known class is the class P of decision problems that can be solved in polynomial
time by one-tape DTMs. In other words, a problem is in P if and only if there exists a polynomial
p and a one-tape DTM that solves the problem and, for all n, makes at most p(n) steps on inputs
of length n.

Another well known class of decision problems is NP. It is defined as the class of decision
problems whose yes-answers can be verified in polynomial time by a one-tape DTM that is always

'For the definition of a simple and a Hamiltonian graph see Section 2.1.4.

2

given a so-called certificate (a short hint) together with the input. The class is formally defined in
Section 3.4; here we give just an example. The problem HamiLronian CyctLE is in NP because,
for each graph that has a Hamiltonian cycle, we can give a sequence of vertices that form the cycle
as a certificate. Given such a certificate, we can verify in polynomial time whether the certificate
is indeed a Hamiltonian cycle. However, no short certificates are known for the complement of the
problem HamiLtoniaN CyCLE:

Given a simple undirected graph G, is it true that G is not Hamiltonian?

This problem is in the class co-NP which includes exactly the complements of the decision prob-
lems from NP (the yes and no answers are switched). There are several natural, real-world problems
that are in NP or co-NP but not known to be in P, one of them being HamMiLTONIAN CYCLE (see
also [12]). While clearly P C NP N co-NP, the question whether P = NP is central in computa-
tional complexity theory and has spurred the field. It is one of the still unsolved Millennium Prize
Problems and its solution is worth a million USD [23]. The question appeared also in the title
of a book by Richard J. Lipton [22] and surveys have been written about what theorists think of
the P versus NP problem [13]. Two more open problems are whether NP = co-NP and whether
P = NP M co-NP and there are many other natural classes of decision problems for which it is not
known how they relate to P, to NP or among themselves.

Motivated by such questions and having in mind that many natural classes of decision problems
can be rigorously defined by Turing machines, it is of great benefit for a researcher to know and
understand very well the model of Turing machines. One of the basic properties of a Turing machine
is its running time. The main results of the author during his graduate years talk about how to
verify and whether it is even possible to algorithmically verify whether a Turing machine runs in a
specified time [10, 11]. These results are presented in Chapter 6.

1.2 Outline of the Dissertation

The objective of the dissertation is to present results from Chapters 5 and 6 together with their
background. Results in Chapter 6 talk about verifying time complexity of a given Turing machine.
While the results for multi-tape Turing machines are simple, the results for one-tape Turing ma-
chines are more involved. A main tool used to analyze one-tape Turing machines are crossing
sequences, studied in Chapter 5. Most results from Chapters 5 and 6 are by the author [10, 11] and
we present them in more detail below.

Chapters 2, 3 and 4 contain quite standard undergraduate and graduate topics that are prelimi-
nary or supplementary to the topics in Chapters 5 and 6. In Chapter 2, basic notation is introduced
and regular languages are studied. In Chapter 3, several models of Turing machines are introduced
together with time-related complexity classes. A major and very technical section in this chapter,
Section 3.3, explains how different attributes of Turing machines influence the time complexity of
deciding a language, where the attributes are size of the tape alphabet, number of tapes and the use
of non-determinism. In Chapter 4 we prove undecidability of the halting problem, time hierarchy
theorems and the famous limitation of relativizing results: the solution of the P versus NP problem
does not relativize. The author uses this fact to show that using only the methods from Chapters 5
and 6, we cannot solve famous problems such as P versus NP.

3

Chapter 6

This is the last chapter and it holds the same title as the dissertation: Verifying Time Complexity
of Turing Machines. For this introduction, if not specified otherwise, all results hold for non-
deterministic Turing machines (abbreviated as NTMs) as well as deterministic Turing machines
(abbreviated as DTMs).

While it is tempting to argue about a Turing machine’s time complexity, we cannot algorithmi-
cally tell even whether a given Turing machine halts on the empty input (see Section 4.1.1). Can we
perhaps check whether it is of a specified time complexity? While the answer is no in most cases,
there is an interesting case where the answer is yes: verifying a time bound 7'(n) = Cn + D,
C, D € Z, for a given one-tape Turing machine.

There are at least two natural types of questions about whether a Turing machine obeys a given
time bound:

e For a function 7' : N — R -, does a given Turing machine run in time O(7'(n))?

e For a function 7' : N — R+, does a given Turing machine run in time 7'(n), i.e., does it
make at most 7'(n) steps on all computations on inputs of length n for all n?

It is a folklore that it is undecidable whether a Turing machine runs in time O(1), thus the first
question is undecidable for all practical functions 7'. We state a generalization of this well known
fact in Theorem 6.1.6 and prove it using standard techniques. However, for the second question,
it is not hard to see that it is decidable whether a given Turing machine runs in time C' for some
constant C' € N: we just need to simulate a given Turing machine on all the inputs up to the length
C (for details, see Lemma 6.1.1). It would be interesting if the second question were decidable also
for linear functions 7. However, we prove in Theorem 6.1.3 that it is decidable whether a multi-
tape Turing machine runs in time 7'(n) if and only if we have the “eccentric” case T'(ng) < ng+ 1
for some ng € N. The time bound n + 1 is special because it minimally enables a multi-tape
Turing machine to mark time while simulating another Turing machine. The timekeeping can be
done on the input tape by just moving the head to the right until the blank symbol at the end marks
n + 1 steps, while the other tapes are used for the simulation. But what if the simulation has to
be performed on the same tape as the timekeeping, i.e., how much time do we need for a one-tape
Turing machine to count steps and simulate another Turing machine? We show in Theorem 6.1.5
that Q(n log n) time is enough:

Let T : N — R~ be a function such that T(n) = Q(nlogn) and, for alln € N, it
holds T'(n) > n+ 1. Then it is undecidable whether a given one-tape Turing machine
runs in time T (n).

Theorem 6.1.10 gives a nice contrast:

For any “nice” function T : N — R, T'(n) = o(nlogn), it is decidable whether a
given one-tape Turing machine runs in time T (n).

Hence, a one-tape Turing machine that runs in time 7'(n) = o(nlogn) cannot count steps while
simulating another Turing machine. There is another well known fact about one-tape Turing ma-
chines that makes the time bounds O (nlogn) special: these bounds are the tightest that allow a
one-tape Turing machine to recognize a non-regular language (see Propositions 5.1.7 and 5.1.9).
Corollary 5.1.6 from Chapter 5 tells that one-tape Turing machines that run in time o(n logn)
actually run in linear time. Thus, we can conclude that the most natural algorithmically verifiable

4

time bound for one-tape Turing machines is the linear one. This is a motivation for the second
half of the last chapter, where we analyze the computational complexity of the following problems
parameterized by integers C', D € N. The problem HALTlcn 4 p is defined as

Given a one-tape NTM, does it run in time Cn + D?
and the problem D-HaLT(,,, | 1, is defined as
Given a one-tape DTM, does it run in time Cn + D?

For the analyses of the problems HALTlcn 4 p and D-HALTICn 4 p» We fix an input alphabet 3,
|X] > 2, and a tape alphabet I' D 3. It follows that the length of most standard encodings of
g-state one-tape Turing machines is O(q?). To make it simple, we assume that each code of a -
state one-tape Turing machines has length ©(¢?) and when we will talk about the complexity of
the problems HALTlcn +p» we will always use g as the parameter to measure the length of the input
(see Section 6.2.1). We prove the following.

Theorem 1.2.1. For all integers C' > 2 and D > 1, all of the following holds.
(i) The problems HALTICn 4pand D—HALTICn 4 p are co-NP-complete.

(ii) The problems HALTlcn L pand D—HALTlcn | p cannot be solved in time o(q(c_l)/ 4) by multi-
tape NTMss.

(iii) The complements of the problems HALTlcn 4p and D-HALTén L p can be solved in time
0(¢®*?) by multi-tape NTMs.

(iv) The complement of the problem HaLt(,,, +p cannot be solved in time o(q(©=V/2) by multi-
tape NTMs.

(v) The complement of the problem D—HALTlanrD cannot be solved in time o(q(c_l)/4) by multi-
tape NTMs.

To put the theorem in short, the problems HALTlcn 4 pand D—HALTén +p are co-NP-complete
with a non-deterministic and a co-non-deterministic time complexity lower bound (¢%2°¢~1) and
a co-non-deterministic time complexity upper bound O(g“+?2).

Chapter 5

This chapter contains the definition and the main results about crossing sequences. They are defined
only for one-tape Turing machines. Intuitively, a crossing sequence generated by a one-tape Turing
machine M after t steps of a computation (on an input w at a boundary i (see Figure 1.2) is a
sequence of states of M in which M crosses the ith boundary of its tape when considering the first
t steps of the computation ¢ on the input w. We assume that, in each step, M first changes the state
and then moves the head. Note that this sequence contains all information that the machine carries
across the ith boundary of the tape in the first ¢ steps of the computation (.

The main technique to deal with crossing sequences is called the cut-and-paste technique. We
describe it in Section 5.1.1 and use it to prove the main result in this chapter, the compactness
theorem (Theorem 5.2.1). We need more notation to state it in full generality, but a simple corollary
is the following.

CELLS! s — — — f— —

BOUNDARIES: -+ —3 —2 —1 0 1 2 3 4 5

Figure 1.2: Numbering of tape boundaries of a one-tape Turing machine. The shaded part is a
potential input of length 4.

Corollary 1.2.2. For all positive integers C and D, a one-tape q-state Turing machine runs in time
Cn + D if and only if, for each n < O(q*®), it makes at most Cn + D steps on each computation
on inputs of length n.

To rephrase the corollary, we can solve the problem HALTlcn o p for an input Turing machine M
by just verifying the running time of A/ on the inputs of length at most O(¢>“). Behind the big O
is hidden a polynomial in C and D (see Corollary 5.2.5). The result is interesting not only because
it allows us to algorithmically solve the problem HALTlcn L p» but also because it gives a good
insight into one-tape linear-time computations. However, we need the more powerful compactness
theorem to prove the upper bound in Theorem 1.2.1.

In Section 5.1.2 we prove a standard result about one-tape Turing machines that run in time
o(nlogn): such Turing machines generate only crossing sequences of size O(1) and they accept
only regular languages. Additionally, we show that they actually run in linear time. In Section 5.2.3
we give an algorithm that takes integers C', D € N and a one-tape NTM M as inputs and if M runs
in time Cn + D, returns an equivalent finite automaton.

Historically, crossing sequences were also used to prove complexity lower bounds for solving
problems on one-tape Turing machines (see e.g. [17]) and we present two such lower bounds in
Section 5.1.3.

1.3 Literature and Related Work

Chapters 2, 3 and 4 are primarily covered in books by Arora and Barak [2], and Sipser [28]. For
most results in these chapters we give our own proofs and reshape the statements so that they fit in
the given setting. The results are standard and the additional literature that was used is marked on
appropriate places.

Chapters 5 and 6 are based on the papers [10, 11] of the author. While there is quite some
other literature about crossing sequences (Chapter 5), the literature for Chapter 6 is harder to find.
However, Hajek [19] in the late 1970s proved that it is undecidable whether a given multi-tape DTM
runs in time n + 1. Roughly at the same time Hartmanis published a monograph [16], where in
Chapter 6 he argues about what can and cannot be proven about computational complexity. There,
for a function 7" : N — R >(, he compares the class of languages of Turing machines that run in
time T'(n) to the class of languages of Turing machines that provably run in time 7'(n). There is
also a result of Adachi, Iwata and Kasai [1] from 1984 where they proved good deterministic lower
bounds for some problems that are complete in P, a result that has a structure comparable to the
structure of Theorem 1.2.1.

Crossing sequences were first studied in the 1960s by Hartmanis [15], Hennie [17], and Trakht-
enbrot [30]. In 1968 Hartmanis [15] proved that any one-tape DTM that runs in time o(n logn)
recognizes a regular language. He acknowledges that Trakhtenbrot [30, in Russian] came to the
same result independently. In the proof Hartmanis showed that a one-tape DTM which runs in time

6

o(nlogn) produces only crossing sequences of bounded length and then he used Hennie’s [17]
result which tells that such Turing machines recognize only regular languages. Later in 1980s
Kobayashi [20] gave another proof of the same result but, in contrast to Hartmanis’ approach, his
proof gives a way to compute a constant upper bound on the length of the crossing sequences. Re-
cently Tadaki, Yamakami and Lin [29] generalized his proof to show that one-tape NTMs which
run in time o(n logn) accept only regular languages. Their proof also gives a way to compute a
constant upper bound on the length of the crossing sequences that such machines can produce. This
is essential for the proof of Theorem 6.1.10 which states that we can verify whether a given one-
tape NTM obeys a (nice) time bound of order o(n logn). In [26] Pighizzini showed that one-tape
NTMs that run in time o(n log n) actually run in linear time. A summary of results about one-tape
linear-time Turing machines of different types can be found in [29].

Other Work by the Author. Let us only mention two results of the author from his graduate
years that are off the topic of the dissertation and will not be discussed further. In [4] the author and
Cabello show that very simple algorithms based on local search are polynomial-time approximation
schemes for the problems MaxiMuM INDEPENDENT SET, MINtMUM VERTEX CovER and MINIMUM
DoMINATING SET, when the input graphs have a fixed forbidden minor. In [9], the author compares
convergence properties of some sequences.

Chapter 2

Preliminaries

In this chapter we first introduce basic notation, languages and decision problems. Then we de-
fine finite automata and regular expressions and we show that they both describe the same set of
languages called regular languages. All the material in this chapter could be taught in an under-
graduate theoretical computer science course, so those familiar with the topic might want to skip
it.

2.1 Notation, Languages and Problems

2.1.1 Basic Notation

N ... the set of non-negative integers.

Z ... the set of integers.

Q ... the set of rational numbers.

R ... the set of real numbers.

R>o ... the setof non-negative real numbers.

R<o ... the set of positive real numbers.

P(A) ... the power set of aset A.

Forr € R >,

Kd ... the integer part of 7, i.e., the largest integer smaller than or equal to r.
(7] ... the smallest integer greater than or equal to r.

For a function f : N — R >,

| f] eeo |f] N —= N, defined by | f|(n) = [f(n)].

For functions f, g : N — R >0, we say that

f(n) =0(g(n)) ... ifthere exist & > 0 and ng € N such that, for all n > ny, it holds
f(n) <k-g(n).

f(n) =Q(g(n)) ... if there exist & > 0 and ng € N such that, for all n > ng, it holds
f(n) =k -g(n).

f(n) =0(g(n)) ... if f(n) = (g(n))and f(n) = O(g(n)).

f(n) =o(g(n)) ... ifnli_{]&% = 0.

All logarithms have base 2.

2.1.2 Languages over Alphabets

An alphabet is any non-empty finite set of symbols. Two examples are the Slovenian alphabet {a,
b, c, ¢ ... 2} and the binary alphabet {0, 1}. For an alphabet 3 and for an integer i € N, we denote
by

¥ ... the set of all possible finite sequences of symbols from 3. of length 3.
€ ... the empty sequence of symbols. Note that X0 = {¢}.
e . X=X U{e}
3 ... the set of all finite sequences of symbols from 3. Note that
=%
i€N

Each element of 3* is called a string over the alphabet 3. For a string w € ¥*, we denote by
|w] ... the length of w. Clearly, |¢| = 0.

For a string w and for integers 0 < i < j < |w

, we denote by

w(i,j) ... the string of symbols of w from ith to jth, including the ith symbol and excluding
the jth symbol (we start counting with 0). If ¢« = j then w(i,i) = . Note that
lw(i,)| = j —iand w(0, |w|) = w.

For each i, j, we call w(i, j) a substring of w. For example, the word ananas over the Slovenian
alphabet is a string of length 6 with a substring ananas(0,2) = an. For strings w; and wy and for
n € N, we denote by

wiwg ... the concatenation of strings w; and wsy and by

wy ... the concatenation of n copies of wy. If n = 0, then w9 = ¢.

For example, for strings wi; = ananas and wy = banana, we have wywy = ananasbanana and
w? = ananasananas.

Any subset of >* is called a language over an alphabet 3.. We can imagine the language as
the set of strings that mean something. For example, a language over the Slovenian alphabet could
be the set of all words found in SSKJ (the dictionary of standard Slovenian language) that are

composed exclusively of Slovenian letters.

10

For languages L1, Lo C 3* and for an integer ¢ € N, we denote by

L ... the complement ¥*\ L of L1,
LiLy ... ={wjwy; wy € L1,wy € Lo} the concatenation of languages L; and Lo,
Lt co. = A{wiwe - wj; wi,wy...w; € Ly1}. Note that this definition is consistent with

the definition of 3¢ where X is an alphabet. (We can view X as a language over X.)

Ly e = U L. This definition is consistent with the definition of X*.
ieN

2.1.3 Encodings

Let S be a set of some objects (like graphs, boolean formulas ...) and let 3 be an alphabet. An
encoding of S over an alphabet X is a function f which maps elements of S to pairwise disjoint
non-empty subsets of X.*. For a fixed encoding f and for an element s € S, we say that each string
in f(s) is a code of s.

Example. For example, if S is the set of all matrices with entries 0 or 1, then the following f :
S — {subsets of {0, 1, #}*} is an encoding over the alphabet {0, 1, #}:

ail a2 e A1n
asy ao e (0572

f) .) ={anaiz...an#Faga ... am# ... Fam10m2 - - . GymnF}-
aml Am2 ... 0mn

We see that each matrix A from .S has a unique code. However, we could add any number of zeros
at the end of each code so that our encoding would be

ail ai19 e A1n
asy a9 e aon k

f :{a11...aln#a21...agn#...#aml...amn#() ;]{JEN}.
Aml Am2 ... (amn

Note that f maps different matrices to disjoint subsets of {0, 1, #}* and is hence an encoding. The
technique we used to get infinitely many codes for each element of .S, by just adding redundant
symbols to the code, is called padding. It will be used several times in the dissertation. |

When describing an encoding over an alphabet >, we usually do not mention ¥ if it is clear
from the context what alphabet is used, as we can see in the next example.

Example. Let us give an encoding of weighted directed graphs' whose weights are strings over
an alphabet 3. We may assume that 3 does not contain the symbols %, & and # (else we would
choose other three special symbols). In our encoding, each graph will have a unique code, hence it
is enough to describe the code of some weighted directed graph G. Suppose G has n vertices, hence
it can be represented by an n X n matrix A whose entry Ag[i, 7] equals the weight on an edge

"'We suppose that the reader is familiar with basic graph notions. More information about graphs can be found, for
example, in [6].

11

between the ith and the jth vertex, if the edge between these two vertices exists, else Ag[i, j] = %.
Then the code of G is:

AL, 1)&AG[L, 2)& . .. &Ag[l, n]#AG[2,1|&AG[2,2)& . .. &Ag[2,n]# . ..
o HAGIn N & AR, 2)& .. & Agn, n|#.

Note that the number of vertices n can be deduced from the code. Our encoding is over the alphabet

S U{%, &, #). m

Encoding in Binary

It might seem that the choice of an alphabet . that is used in an encoding matters a lot, but this is
actually not the case. Here we describe one of several possible ways to transform an encoding over
an arbitrary alphabet ¥ to a related encoding over {0, 1}.

First, we label each symbol from X with non-negative integers. Then a string w over > can
be written over the binary alphabet as follows: we swap each symbol in w with the corresponding
binary number with all digits doubled and between each two symbols of w we write 01. It is easy
to see that this way all of the codes of an encoding can be transformed so that we get an encoding
over {0, 1}.

Example. For example, the word ananas viewed as a string over the Slovenian alphabet can be
transformed into a binary string

110111111111011101111111110111011100001111,

using

a—1

n— 1111

s — 10011. |
Fixing an Alphabet >

Because for all encodings there exists a naturally related binary encoding, we can fix an alphabet
> that will be used to encode things. We assume also that 0,1 € 3, hence X has at least two
elements. This is because unary codes, which come from encodings with just one symbol, are too
long for our purposes.

Example. One needs unary codes of length at least n to encode numbers 0,1, 2. .. n. With binary
encoding we can encode the same numbers using codes of length O(log(n)) by just writing the
numbers in binary. n

Natural Encodings

Clearly, every finite or countably infinite set of objects has several encodings over some alphabet,
but we are usually interested in encodings that are natural in the sense that:

e Given a code of an object s, one can quickly figure out what s is.

e Given an object s, one can quickly construct one of its codes.

By “quickly”, we mean quickly relative to the current technology and developed algorithms. We
will only be interested in such (vaguely defined) natural encodings.

12

What Encodings are Used in this Dissertation

Although the title suggests differently, we will not fix any encodings in this section. This is because
there are several good ways of how to encode well studied objects and we do not want to limit
ourselves to just one particular encoding. However, for objects that will matter to us, we will
describe at least one relevant encoding.

Example. First, we give an encoding of tuples of strings that are over the alphabet >. We may
suppose that the symbols ‘(” and)’ for brackets and the symbol *,” for comma are not in X. Then
the unique code of a tuple (s1, S2 ... s) is the string (s1, s2 ... s). To change the encoding to be
over the binary alphabet, we can use the trick described above. |

Example. As a final example we give an encoding of matrices with string entries. We can view a
matrix A with string entries as a tuple of rows, where each rows is a tuple of strings. We already
described how we can encode tuples, thus if we first encode the rows of A and then encode the
tuple of the codes of the rows, then we get the code of the matrix A. Note that we implicitly used
the same idea when describing an encoding of weighted graphs. |

2.1.4 Decision Problems

For a decision problem, we need one (usually infinite) set of elements U called instances and a
subset Y C U, and the problem is given as:

“Given an instance x € U, is x an element of Y'?”

Example. A graph is simple if it does not contain loops and parallel edges. We say that a simple
undirected graph G is Hamiltonian, if it admits a cycle (called a Hamiltonian cycle) that contains
all of its vertices. The problem HamiLToNiAN CyCLE is the following:

Given a simple undirected graph G, is G Hamiltonian?

In this case U is the set of all graphs and Y is the set of all Hamiltonian graphs. |

To solve a decision problem means the following: For a fixed (natural) encoding of the set U
over the alphabet X, find an algorithm that takes a string w € X* as input and returns the appropriate
value “YES” or “NO” depending on whether w is a code of some element x € Y. At this point we
can think of an algorithm as a computer program. Later, the word algorithm will be replaced by
the phrase Turing machine, which will be well defined in Chapter 3.

If we fix some natural encoding f of U over ¥, then

L=Jrw

yey

is a language over the alphabet >.. Note that L contains exactly the codes of elements of Y, hence
to solve our decision problem it is enough to find an algorithm that solves the problem:

“Given x € X*, is « an element of L?”

This problem is a special form of a decision problem, given by a language over some alphabet.
Solving such a problem is called deciding a language L. C >*. More generally, if we can solve a
decision problem, we say that the problem is decidable.

13

2.2 Finite Automata, Regular Languages and Regular Expressions

In this section we define finite automata, regular languages and regular expressions and we present
how these notions are related. We follow the book by Sipser [28] where these topics are covered
in detail.

2.2.1 Deterministic Finite Automata and Regular Languages

A deterministic finite automaton (abbreviated as DFA) is a 5-tuple (Q, X, 0, go, F'), where

Q ... afinite set whose elements are called szates,

by ... the input alphabet, fixed in Section 2.1.3,

) ... afunction § : Q x ¥ — Q called the transition function,
Ggo € Q ... the starting state and

FCQ ... thesetofaccepting states.

Computation of a DFA

ADFA M = (Q, 3,0, qo, F') computes as follows on an input w € X* of length n. It begins in
state ¢o. Then it reads the first symbol a; of w and moves to the state ¢; = §(go, a1). Then it reads
the second symbol ay of w and moves to the state §(q1, a2). Then it reads the third symbol ... Then
it reads the last symbol a,, of w and moves to the state ¢,, = 6(qn—1, an). Then it halts. If ¢, € F,
then we say that M accepts w, else it rejects w. The set of all strings accepted by M is called the
language of M and is denoted by L(M). We also say that M recognizes the language L(M).

Regular Languages

A language L. C X* is regular if it is recognized by some DFA. Because DFAs are a very sim-
ple model of computation, they can solve only a small amount of (decision) problems (see Sec-
tion 4.2.2), hence the set of regular languages is a small subset of all decidable languages.

Presenting a DFA with a Graph

We can presenta DFA M = (Q, %, 8, go, F') as a weighted directed multigraph® with the vertex set
@, one special vertex ¢, € () and the set of special vertices F' C (). There is an edge from q; € Q)
to q2 € @ with weight a € X if and only if §(q1,a) = ¢a.

The computation of M starts in the vertex ¢, and then it continues along the appropriate edges
depending on the symbols of the input which are read one by one from left to right. The computation
terminates when all the symbols of the input have been considered. If the last transition was to a
state from F', then the computation is accepting, else it is rejecting.

Example. Let us consider a DFA M; = ({40, 41, 92,71,72},{0,1}, 9, ¢o, {q1,71}), where § is
given by Table 2.1. The corresponding weighted multigraph is drawn in Figure 2.1.

We leave to the reader to verify that M, accepts exactly such binary inputs that begin and end
with the same symbol. Hence, M; recognizes the language L of all binary strings that begin and
end with the same symbol. |

%A multigraph is a graph that can have parallel edges and loops.

14

61011
G | 91 | T1
q1 | 91 | G2
q2 | 41 | G2
rr |2 |n
T2 | T2 | T1

Table 2.1: The transition function of DFA Mj.

Figure 2.1: DFA M, as a weighted multigraph. The starting state is labeled by an incoming arrow
and the accepting states are marked by two circles.

The simplest languages are the finite ones. Let us show that they are all regular.

Proposition 2.2.1. Every finite language L C * is regular.

Proof. We will prove the proposition by constructing a DFA M = (Q, %, , ¢o, F) that will rec-
ognize L. Let w be the longest string form L and let ng = |w| be the length of w. Let) be the set
of all strings from >* of length at most ng, together with an additional state g, that we call the
rejecting state. Let ¢, = € € () be the starting state. For a state ¢ that is a string of length strictly
less than ng and for a € 3, define 6(¢, a) = ga, where ga is the concatenation of the string ¢ and
the symbol a. For each string g of length ny and for each a € ¥, define 6(q, a) = grg- For each
a € ¥, define 0(qrer, @) = Qrey-

Now it is clear that if we define F' = L, we get L(M) = L, hence L is regular.]

Now that we have some regular languages, let us also give an example of a simple non-regular
language.

Example. A palindrome over an alphabet X is any string from >* that reads the same from left to
right. Examples of palindromes over the Slovenian alphabet are €, a, aa, anana and banab, but not
ananas or banana. Consider the decision problem PALINDROME that is the following:

Given w € Y%, is w a palindrome?

If L is the language of palindromes over X, we will show that L it is not regular. If it would be,
then there would be a finite automaton M with ¢ states that would recognize L. Let us suppose that
this is true and derive a contradiction. Because |X|? > ¢, there exist at least two inputs w; and wo

15

for M of length ¢ such that M is in the same state after it finishes computation on w; or wy. If wi
denotes the reversed string of w, i.e., the string that reads as w; if we read from right to left, then
M will return the same on the inputs wjwf* and wow{?, which is a contradiction because wwf® is
a palindrome and wow?? is not.

Later in Proposition 5.1.10 we will prove that the language of palindromes cannot be recognized

even by a much stronger model of computation than a DFA. |

2.2.2 Non-Deterministic Finite Automata

A non-deterministic finite automaton (abbreviated as NFA) is a 5-tuple (Q, X, J, qo, F'), where Q
is a finite set of states, g, € @ is the starting state, F' C () is the set of accepting states, X is the
input alphabet fixed in Section 2.1.3 and

J:Q x 3. —P(Q)

is the transition function. Recall that 3. = ¥ U {¢} and P(Q) is the power set of Q.

The definitions of DFAs and NFAs are very similar, they also have similar presentations with
weighted multigraphs. As by DFAs, we can present an NFA M = (Q, X, d, ¢o, F') as a weighted
directed multigraph with the vertex set (), one special vertex g, €) and a set of special vertices
F C Q. There is an edge from ¢; € @ to g2 € @ with a weight a € X, if and only if g2 € (g1, a).
The only difference with DFAs in the presentation with multigraphs is that for a DFA, each vertex
has exactly |X| edges going out, one for each symbol, while an NFA can have any number of edges
with any labels going out from a vertex. An example of an NFA is given in Figure 2.2.

Example. Let us consider an NFA My = ({¢o,91,¢2},{0,1},9, ¢o, {go}), Where ¢ is given by
Table 2.2. The corresponding weighted multigraph is drawn in Figure 2.2. |

s o | 1 €
% | {a1} { {a2}
q1 {QQ} {(h, Q2} {}
@ | {} {0} {}

Table 2.2: The transition function of NFA M.

Computation of an NFA

We will explain how an NFA M = (Q, X, 4, o, F') computes on an input w by using a graph
representation of M. M does not compute deterministically which means that, for a single input,
there are several possible computations. A computation begins in the state g, and M either stays
in state g1 = g, or it moves to some new state ¢ that is reachable from ¢, by edges labeled . Then
M reads the first symbol a; of w. If 6(q1,a1) = 0, then M halts, else it moves to a state qé from
d(q1,a1) and it either stays in state go = ¢4 or it moves to a new state ¢, that is reachable from
¢5 by edges labeled At the end, M reads the last symbol a,, of w. If §(gy,a,) = 0, then
M halts, else it moves to a state g;, | from §(gy, a,,) and it either stays in state g,+1 = ¢, or it
moves to a new state g, that is reachable form ¢/, 11 by edges labeled ¢. If ¢, 11 € F, then we
say that the computation is accepting. Else, the computation is rejecting. We say that M accepts
the input w if there exists an accepting computation of M on w. If not, then M rejects w.

16

Figure 2.2: NFA M5 as a weighted multigraph. The starting state is labeled by an incoming arrow
and the accepting states are marked by two circles.

To define what strings are accepted by M more formally, we say that M accepts w € ¥* if w
can be written as w = y1¥2 . . . Ym, Where each y; is a member of . and if there exists a sequence
of states rqg, 71 . . . 7y of M with three conditions:

® 70 = (o,
® 7it1 € 0(ri,yiy1), fori =0,1...m —1, and
e r, cF.

The first condition says that the machine starts out in the starting state. The second condition says
that when in state r;, the machine can move to the state ;4 if it reads the symbol ;1. Finally,
the third condition says that the machine accepts its input if the last state is an accepting state.

Example. The NFA M5 from Figure 2.2 accepts exactly such binary inputs that are composed of
blocks

e liforic N,
e 011 and
e 01°01 fori € N,

The proof is left to the reader. |

Equivalence of DFAs and NFAs

It is clear from the definition that each DFA M = (Q, X, d, qo, F') is also an NFA, if we imagine
the transition function of M mapping (¢,a) € @ x X to the set {d(¢q,a)} and if we extend the
definition of the transition function to the domain @ x Y. by (¢,e) — (). However, despite NFAs
seeming somewhat stronger, they accept only regular languages and are thus equivalent to DFAs.

Proposition 2.2.2. For each NFA, there exists a DFA that recognizes the same language.

Proof. Let M = (Q, X, 9, qo, F') be an NFA recognizing some language L C >*. To describe a
DFA M’ = (Q', %, ¢, q,, F') that will recognize L, let us first define Q’, ¢/ and F’.

17

e Q' = P(Q) is the power set of Q. This definition reveals the main idea of how M’ will
simulate M it will keep track of which states M can be when reading some input symbol.

e ¢/ = S, where S is the set of all the states that are either g, or are reachable from ¢, by an
arrow labeled €. Note that S is the set of all the possible states in which M can be before it
reads the first symbol of an input.

e [is the set of all the states X € Q" with X N F not empty. Clearly, if M can reach an
accepting state after reading the last symbol of an input, M’ should also accept that input.

To describe the transition function &', let us first define a functiony : Q x ¥ — @’ as

v(gq,a) = the set of all the possible states of M that can be reached by M if it starts in
the state ¢, then follows some edges labeled €, then it follows an edge labeled
a and then again it follows some edges labeled €.

For X € Q' and a € %, define
' (X,a) = | v(g,0).

qeX

We see that on an input w before M’ scans its ith symbol, its state is the set of all the states in
which M can be when scanning the ith symbol. Thus M’ accepts the same language as M. O

Corollary 2.2.3. A language is regular if and only if some NFA recognizes it.

Proof. The if part is proven by Proposition 2.2.2 and the only if part is clear because DFAs are a
special form of NFAs. O

Operations on Regular Languages

In this section we first give three operations on languages called the regular operations and then
we prove that the set of regular languages is closed under these operations. We also prove that the
set of regular languages is closed under complementation and intersection.

There are three regular operations:

e The union L; U Lo of languages L; and Lo,
e the concatenation L Lo of languages L, and Lo and
e the star L* of a language L.

The concatenation of languages and the star operation were defined in Section 2.1.2. Let us prove
that regular languages are closed under regular operations.

Proposition 2.2.4. A language that is obtained from regular languages by regular operations is
regular.

Proof. Let L, and Ly be regular languages. Then there exists a DFA M; that recognizes L; and
a DFA M5 that recognizes Ly. We make proofs by picture to show how to construct

e an NFA that recognizes L1 U Lo (see Figure 2.3),

e an NFA that recognizes L Lo (see Figure 2.4),

18

Figure 2.3: Finite automata My, M, and M. If M; recognizes the language L, and M> recognizes
the language Lo, then M recognizes the language L1 U Lo. The starting states of the automata are
labeled by incoming arrows and their accepting states are marked by two circles.

S o" © -0 Y05

Figure 2.4: Finite automata My, M, and M. If M; recognizes the language L, and M> recognizes
the language Lo, then M recognizes the language L1 Lo. The starting states of the automata are
labeled by incoming arrows and their accepting states are marked by two circles.

o an NFA that recognizes L; (see Figure 2.5).
By Corollary 2.2.3 the languages L1 U Lo, L1 Lo and L3 are regular. O

19

Figure 2.5: Finite automata M> and M. If M> recognizes the language Lo then M recognizes the
language L3. The starting states of the automata are labeled by incoming arrows and their accepting
states are marked by two circles.

Next, we show that the class of regular languages is closed under complementation.

Proposition 2.2.5. The complement of a regular language is regular.

Proof. Let L be aregular language. Then there exists a DFA M = (Q, X, 0, qo, F') that recognizes
L. It is clear that the DFA (Q, X, 6, go, Q\ F') recognizes L, hence L is regular. O

A simple corollary of the above two results tells that regular languages are closed under inter-
section.

Corollary 2.2.6. The intersection of two regular languages is a regular language.

Proof. Let L; and Lo be regular languages. By Proposition 2.2.5, the languages L; and Lo are
regular, by Proposition 2.2.4 the language L; U Lo is regular and again by Proposition 2.2.5, the

language L1 N Lo = LiULsis regular. Il

2.2.3 Regular Expressions

Regular expressions are a way of describing a special type of languages which we will prove are
exactly the regular languages. They are defined inductively as follows. We say that R is a regular
expression (over the alphabet Y) if R is either

1. a for some a € X3,
2. €

3. 0

20

4. (R1 U Rs), where R; and Ry are regular expressions (here U is just a symbol, like + in the
arithmetic expression a + b),

5. (R1R2), where Ry and Ry are regular expressions, or
6. R, where R, is a regular expression.

In items 1 and 2 of the definition, the regular expressions a and ¢ represent the languages {a} and
{e}, respectively. In item 3, the regular expression () represents the empty language. In items 4, 5,
and 6, the expression represents the languages obtained by taking the union or concatenation of the
languages given by expressions R; and R, or the star of the language given by 21, respectively.

Example. Let us consider the languages L; and L, recognized by the DFA M; from Figure 2.1
and by the NFA Ms form Figure 2.2, respectively. If we recall, L; is a binary language of strings
that start and end with the same symbol and L is the binary language of strings that are composed
of blocks

e liforieN,
e 011 and
e 0101 fori € N.

We know that these two languages are regular, however they are also given by the following two
regular expressions. L is given by

(1(ou)*1)u(o(OUL)*0)ULUO

and Ls is given by
(Tluol11uo1*01)*. |

The next theorem tells us that languages given by regular expressions are exactly the regular
languages.

Theorem 2.2.7. A language is regular if and only if some regular expression describes it.

Proof. To prove the if part, we make an induction on the number of regular operations in a reg-
ular expression. If a regular expression contains no regular operation, then it represents a regular
language by Lemma 2.2.1. Else, let R be a regular expression that has £ > 1 regular operations.
Then R = Rj for some regular expression R; with k — 1 regular operations, or R = R R for
some regular expressions 2y and Ry with at most k¥ — 1 regular operations each, or R = R; U Ry
for some regular expressions R; and Ry with at most k — 1 regular operations each. By induction,
R represents a language that is in each of these cases obtained by a regular operation from regular
languages. Hence R represents a regular language by Proposition 2.2.4.

To prove the only if part, we introduce a new type of automata. A generalized non-deterministic
finite automaton (abbreviated as GNFA) is a S5-tuple M = (Q, %, d, go, @acc) Where @ is a finite
set of states, g, ¢acc € @ are distinct starting and accepting states, Y. is the input alphabet fixed in
Section 2.1.3 and

0 : Q\{qacc} X Q\{qo} — {regular expressions over ¥}

21

is a transition function.

We can present M as a weighted directed graph with loops on the vertex set (), where the
weight on the edge ¢;g; is d(g;, ¢j). Note this graph is “almost complete”, having all the possible
edges except for the edges from ¢, and the edges to ¢,. It also has |Q| — 2 loops. An example of
such a graph is given in Figure 2.6.

1U1(0U1)*1

Figure 2.6: A GNFA represented as a weighted graph. The starting state is labeled by an incoming
arrow and the accepting state is marked by two circles. It is clear that this GNFA accepts only
binary strings that begin and end with the same symbol and we leave to the reader to verify that it
accepts all such strings and is thus equivalent to the DFA in Figure 2.1.

As the name GNFA suggests, M will compute non-deterministically, hence there will be several
possible computations on a single input. Given an input w, M first chooses an edge going from
the starting state and a substring w(0, j;) of first few (possibly 0) letters of w. If w(0, j;) is an
element of the language given by the regular expression on the chosen edge, then M takes this
edge and comes to state g;. As in the first step, M then chooses an edge going from the state g; and
a substring w(j1, j2) of the first few (possibly 0) letters of w(j1, |wl|). If w(j1,j2) is an element
of the language given by the regular expression on the chosen edge, then M takes this edge. The
computation continues this way for finitely many steps. If M in the last step enters the state gacc
and during the computation it read the whole input (i.e., the parts of the input that were used to
travel through the states can be concatenated into w), then we say that the computation is accepting.
Else, it is rejecting. If there exists an accepting computation on an input w, then we say that M
accepts w. Else, M rejects w. Note that a GNFA computes exactly like an NFA, only that it reads
blocks of symbols from the input instead of just a single symbol or €.

Now that we have defined the GNFAs, we can prove the only if part of the theorem. Let L be
a regular language and let M be a DFA that recognizes it. We first convert M to a GNFA M:

e We add a new starting state g, and connect it with the old one by an edge with weight ¢.

e We add an accepting state g, and we connect each of the old accepting states with g,cc by
an edge with weight €.

22

e For each ordered pair of vertices (g;, g;), if there are multiple edges from g; to g;, we delete
them and we put a single edge from ¢; to g; with the weight that is the union of the weights
of the deleted edges. If ¢; # gacc and g; # o and there is no edge from g; to ¢;, we add such
an edge and label it with (.

It is clear that M is a GNFA that accepts the same language as M. Next, we are going to delete
vertices of M one by one leaving g, and g.cc intact and changing the weights on the edges in such
a way that, after a deletion of a vertex, the automaton will recognize exactly the same language as
before. If we manage to delete all the vertices of M except of g, and gacc, we will be left with a
GNFA with just two vertices and one edge (from ¢, to g.cc) that accepts the same language as M ,
which is L. Hence, the weight on the remaining edge will be a regular expression that represents
L.

The only thing left to show is how to delete a vertex from M while not changing the language
it accepts. This is evident in Figure 2.7 where it is shown how the weight on every edge from M
should change when a vertex is deleted so that the language that M accepts remains the same. [J

Ry R, R;Rg U Ry A
AN NN NN q; q;j
Ry Rs
Ry

Figure 2.7: Changing the regular expression 74 on the edge from ¢; to ¢; when deleting a vertex
qq of a GNFA. The same transformation is applied for every edge of the GNFA that is not incident

to qq-

23

24

Chapter 3

Turing Machines

Turing machines are a standard model of computation in theoretical computer science. They are
very simple, however powerful enough to simulate our computers. In this chapter we discuss the
basics (definition, running time, time related complexity classes, Church-Turing thesis, classes P,
NP and NP) and some technical topics about Turing machines (Section 3.3 and Section 3.6). While
most of the content in this chapter is on undergraduate level, there are some complex simulations
presented in Section 3.3, like fast simulations of a multi-tape Turing machine on a two-tape one.
In Section 3.6 we present an encoding of Turing machines that enables a construction of a code of
the composition of two Turing machines in linear time.

3.1 One-Tape Turing Machines

A one-tape non-deterministic Turing machine (abbreviated as one-tape NTM) is an 8-tuple
M = (Qv %I, o, J, qo, 4acc; qREJ)’ where

Q ... afinite set of states,

X ... the input alphabet fixed in Section 2.1.3,
| Ry ... atape alphabet,

— e\X ... ablank symbol,

0:T x Q\{QACC7qREJ} — P(F X Q X {_17 1})\{(2)}

a transition function and

Qo, Gace, Grey € @ ... pairwise distinct starting, accepting and rejecting states. The states gcc
and qgg; are called halting states.

The machine M has a both-way infinite tape and we can number its cells as can be seen in
Figure 3.1. To give an input w to M means to write symbols of w on tape cells 0,1... (jw| — 1)
and to write the blank symbol . on all other tape cells. Before M starts the computation, it has the
head over the cell 0 and it is in the state g¢,. During a computation, /M moves its head one cell at a
time, overwriting what is written below it with a symbol from I" and changing the current state. A
next step of M depends only on the current state and the symbol below the head. If M is in a state
q and below the head is a symbol a, then M can make a steps described by any of the triples from

25

d(a, q). What this means is that if (b,r,d) € d(a, q), then M can rewrite a below the head by b,
change the state into r and move in direction d (—1 for one cell left, 1 for one cell right). M halts
when it reaches a halting state.

CELLS: e =31=2|-=1]0 1 2 3 4 5

Figure 3.1: Numbering of tape cells of a one-tape Turing machine. The shaded part is a potential
input of length 4.

3.1.1 The Formal Definition of a Computation of a One-Tape NTM
A computation is more formally defined by a sequence of valid configurations.

e A valid configuration of M is a triple C' = (q, w1, w2), where q is a state of M, and w1, wa
are non-empty strings over the alphabet I'. If ¢ = ¢y, then we call C' the rejecting config-
uration and if ¢ = @acc, then we call C the accepting configuration. If ¢ = ¢, w1 = _
and wy = w_ where w € ¥*, then we call C' the starting configuration for an input w.
Intuitively, a valid configuration describes a hypothetical situation that can happen during
a computation of M. The state g represents the current state of the machine, the tape has
the string wj w9 written on it while there are only blank symbols left and right of w;ws and
the head is above the first symbol from ws. Note that a valid configuration does not include
the information about where on the tape the string wjws is written, i.e., where is the cell 0
relative to wyws.

e A valid configuration C = (g, w1, ws) that is not accepting nor rejecting yields a configu-
ration Cy = (7, uy,u2) if M can legally go from C; to C5 in a single step. If wy = avy for
a € I' and vy € I'*, then (Y can be any of the valid configurations obtained the following
way:

Take any (b,7,d) € d(a, q).

If d = 1 then u; = wyb. If |vg| = 0 then ug = ., else uy = vo.

Ifd = —1,letw; = vicforv; € I and ¢ € T'. Then ug = cbva. If |u1| = 0, then
up = _, else up = v.

e A computation of M is any sequence of valid configurations C7, Cy, Cs ... such that Cy
is the starting configuration, configuration C;_1 yields C; for each 4 and the sequence is
infinite or ends in an accepting or rejecting configuration. If the computation is finite, we
say that it is accepting or rejecting depending on the final configuration. A transition from
one configuration of a computation to the next one is called a step.

We see that M can have several possible computations on a single input. We say that M accepts
an input w if there exists an accepting computation on w, otherwise we say that M rejects w.
3.1.2 Giving an Input to a Turing Machine

It is clear from the definition of a computation that fo give an input w € ¥* to a one-tape NTM
M means to write the symbols of w in the tape cells from 0 to |w| — 1 of the input tape of M

26

and to fill all other cells with blank symbols (see Figure 3.1). However, we will often describe the
input for M in the way as “M is given a pair (w,u), w,u € X*” or “M is given a (code of a)
graph G without specifying a particular encoding. And even if an encoding would be specified,
not all strings from >* necessarily represent a valid input, e.g. a pair of strings or a graph. When
we describe an input in this manner, we have some fixed natural encoding of objects in mind and
we allow the reader to have its own fixed natural encoding in mind. Additionally, we treat strings
that are not codes of any objects as codes of some fixed trivial object, like the pair (g, ¢) or the
graph with just one vertex.

3.1.3 Running Time

The number of steps that a one-tape NTM M makes on some computation (is called the length
of ¢ and is denoted by |¢|. Note that |(| could also be co. For a function 7 : N — R -, we say
that M runs in time T'(n) if M makes at most 7'(n) steps on all computations on all inputs of
length n, for all n € N. Note that if a Turing machine runs in time 7'(n), then all computations are
finite. We say that M runs in time O(T(n)) if it runs in time T'(n) = O(T'(n)) for some function
T N — RZO.

o If M runs in time O(1), then we say that it runs in constant time.
e If M runs in time O(n), then we say that it runs in linear time.

e If M runs in time O(p(n)) for some polynomial p, then we say that it runs in polynomial
time.

e If M runs in time O(2P(™) for some polynomial p, then we say that it runs in exponential
time.

Our definition of running time is the same as in Arora and Barak [2, Chapter 2.1.2].

3.1.4 Language of a Turing Machine

A language L of M is the set of all inputs from X* that are accepted by M. We say that M
recognizes L and we write L = L(M). If additionally M halts on all computations on all inputs,
we say that M decides L. If M runs in time 7'(n) and decides L, then we say that M decides L in
time T'(n).

3.1.5 About Our Definition of a One-Tape NTM

As can be seen from the definition, the head of M must move in each step of a computation. The
same property is assumed also by e.g. Sipser [28]. We will use this property when discussing
crossing sequences in Chapter 5 because it will hold that the sum of the lengths of all crossing
sequences equals the number of steps. If we allowed the head to stay in place, we would have to
change the definition of the length of a computation on a part (Section 5.2.1).

We also assume that at the end of each finite computation the head of M is in a halting state
(gacc OF Ggres), as can be seen from the definition of the transition function (it cannot map to the
empty set). This is a minor assumption and we can use it without loss of generality. It helps us in a
way that we know in which state the computation ends (rejecting or accepting or it runs for ever).
Additionally it implies that an NTM makes at least one step on each input, which is naturally true

27

for deterministic Turing machines as we shall see in the next subsection. This further implies that
if a Turing machine runs in time 7'(n), then T'(n) > 1 for all n.

Finally, because we fixed the alphabet > used for encodings (see Section 2.1.3), our Turing
machines have a fixed input alphabet.

3.1.6 One-Tape Deterministic Turing Machines

A one-tape deterministic Turing machine (abbreviated as one-tape DTM) is an 8-tuple
M =(Q,%,T, 0,40, Gacc, @res), Where @ is a finite set of states, X an input alphabet, I' D ¥ a
tape alphabet, .. € T'\ X a blank symbol,

§:T X Q\{qaces Gren} = T x Q x {—1,1}

a transition function and o, gacc, Grey € () pairwise distinct starting, accepting and rejecting states.

A one-tape DTM is actually a special form of a one-tape NTM, where the transition function
maps each (a, q) € T' X Q\{¢acc, Gres } to a set with exactly one element. Hence, a DTM has exactly
one computation on each input.

3.2 Multi-Tape Turing Machines

For an integer £k > 2, a k-tape non-deterministic Turing machine is an 8-tuple
M = (Q,2,T, _,0,qo, Gacc, Gres)» Where @ is a finite set of states, qo, Gacc, Grey € @ pairwise
distinct starting, accepting and rejecting states, 3. the input alphabet fixed in Section 2.1.3,T" D X
a tape alphabet, _. € I'\ X a blank symbol and

8 : TF % Q\{gace, G} = P(TF x Q x {—1,0,1}")\{0}

a transition function.

The machine M has k both-way infinite tapes, where one of them is special and is called the
input tape. To give an input w to M means the same as to give an input to a one-tape NTM, if we
consider only the input tape and all other tapes are filled only with blank symbols. Before M starts
the computation, it has the head on the input tape over the cell 0 (on other tapes the head is over
any cell because they are all equivalent) and it is in the state ¢,. During a computation, M moves
its heads one cell at a time, possibly overwriting what is written below them with symbols from I"
and changing the current state. A next step of M depends only on the current state and the symbols
below all the k heads. If M is in a state ¢ and below the heads are symbols (a1, az . .. ay), then M
can make any of the steps from (a1, asz...ag,q).

We will not describe a formal definition of computation as we did by one-tape NTMs. It is
quite cumbersome but very intuitive and analogous to the formal definition of a computation of
a one-tape NTM. The definition of running time and languages of k-tape Turing machines is the
same as by one-tape Turing machines.

A multi-tape non-deterministic Turing machine is a one-tape NTM or a k-tape NTM for k > 2.

3.2.1 About Our Definition of a Multi-Tape NTM

For k > 2 and for a k-tape Turing machine M, the heads of M do not need to move on each step of
a computation. This is because it is easier to construct a Turing machine if you do not need to care
about moving each head in each step. Recall that for one-tape Turing machines we wanted their

28

head to move in each step so that the analyses of crossing sequences would be easier. For multi-tape
Turing machines, the author is not aware of any notion analogous to crossing sequences.
3.2.2 Multi-Tape Deterministic Turing Machines

A k-tape deterministic Turing machine is a special form of a k-tape NTM where the transition
function maps each element to a set with exactly one element (analogously to one-tape DTMs).

3.3 How Different Attributes of Turing Machines Influence the Time
Complexity

We defined Turing machines in such a way that we have the following:

{one-tape DTMs}
{one-tape DTMs}

{one-tape NTMs}
{multi-tape DTMs}

{multi-tape NTMs} and
{multi-tape NTMs}.

N 1N
N 1N

Hence, all Turing machines defined so far are multi-tape NTMs and one-tape DTMs are of all types.

In this section we try to answer the following question: If a language L is decided in time 7'(n)
by one type of a Turing machine, how fast can it be decided on other types of Turing machines?
In addition to the above types we also consider a 2-tape Turing machine and a Turing machine that
can make at most 2 non-deterministic choices in each step. This will tell us how strong our models
are when considering running time. In Section 3.3.2 we prove a so-called linear speedup theorem
(Corollary 3.3.7) which tells that, for each language L that is decided in time 7'(n) by some NTM
and for each constant £ € N, there exists a multi-tape NTM that decides L in time

27T(n) + (1 —2"Yn + 1,

which is asymptotically 27T (n) if n = o(T'(n)).
We start by a simple lemma that holds for all types of Turing machines defined so far in this
dissertation.

Lemma 3.3.1. If a multi-tape NTM M runs in time T(n) and there exists ng € N such that
T(no) < ng—+1, then

e M never reads the (ng + 1)st symbol of any input,

o M runs in constant time,

no—1
there exist finite languages L1 C U ¥! and Ly C X™ such that L(M) = Ly U (LyX*),
i=0

o M accepts a regular language.

Proof. Suppose an input w of length at least ng + 1 is given to M and let wy = w(0,ng) be the
starting substring of w of length ng. Because M on any computation on input wg makes at most
np steps, it never reads the blank symbol to the right of wg. This means that M on input w never
reads the (ng + 1)st symbol of w and hence it computes the same as on the input wg. This implies
that M on any input of length more than ny makes exactly as many steps as on some input of length
no.

29

Because M makes at most 7'(n) steps on any computation on inputs of length n, there are only
finitely many computations on inputs of length at most ng. If { is a longest such a computation,
then M runs in time |(].

Let Ly C L(M) be the set of all strings from L(M) of length strictly less that ng and let Ly C
L(M) be the set of all strings from L(M) of length exactly ng. We see that L(M) = Ly U (LyX*).

Because L1 and Lo are finite, then by Proposition 2.2.1 they are regular. Because >.* is also a
regular language, L(M) is regular by Proposition 2.2.4. g

3.3.1 Reducing the Tape Alphabet

In this section we will show that a larger tape alphabet does not help much in reducing time com-
plexity for deciding a language. First, we consider a special case, analyzed also in Lemma 3.3.1.

Lemma 3.3.2. Let T : N — R+ be such that T'(ng) < ng + 1 for some integer ny € N. If a
language L C ¥* is decided in time T'(n) by a multi-tape NTM, then there exists a one-tape DTM
that decides L in time O(1) using the tape alphabet ¥ U { _}.

Proof. By Lemma 3.3.1 there exist finite languages
Lcl|Jy and Ly C X0

such that L = L1 U (L2X*). Let us describe a one-tape DTM M that decides L in time O(1). On
an input w, the machine M first verifies whether w € L; or whether w begins with some string
from Lo. If so, then M accepts, else it rejects. This can be done in O(1) deterministic steps without
changing the content of the tape, because M never needs to visit the (ng + 1)st cell of its tape. [

Next, we prove that the size of I' does not matter a lot when considering multi-tape Turing
machines with more than one tape.

Proposition 3.3.3. Foran integer k > 1, ifa language L C X* is decided in time T (n) by a k-tape
Turing machine M, then it is also decided by a k-tape Turing machine of the same type (NTM or
DTM) in time O(T (n)) using the tape alphabet ¥ U { _}.

Proof. If there is an integer ny € N such that T'(ng) < ng + 1, then by Lemma 3.3.2 we can
define a one-tape DTM M that decides L in time O(1) using the tape alphabet ¥ U {_.}. Because
T'(n) is a running time of some Turing machine it follows that 7'(n) = (1), hence M runs in time
O(T'(n)). We can add k — 1 redundant tapes to M so that the proposition holds.

We are only left with the case where 7'(n) > n + 1 forall n € N. Let I be the tape alphabet
of M and let each symbol of I'\ { _ } be represented by a unique binary sequence of length exactly
[log(|T'| — 1)]. Let us describe a k-tape Turing machine M of the same type as M that uses the
tape alphabet 3 U { _} and decides L(M) in time O(T'(n)).

On an input w € >*, M first rewrites the input in such a way that each input symbol is replaced
by its binary sequence. Using the second tape, this can be done in time O(n). Note that the length
of the input was increased by a factor of [log(|T'| — 1)]. Next, M simulates M step by step, using
only the binary codes of symbols from I'\ { _ } and using [log(|T'| —1)]| consecutive blank symbols
as a one blank symbol of M. For each step of M, M makes O([log(|T'|—1)]) = O(1) steps, hence
M runs in time O(n + T(n)) = O(T'(n)). O

30

The next proposition tells us what is different with one-tape Turing machines.

Proposition 3.3.4. If a language L C ¥* is decided in time T'(n) by a one-tape Turing machine
M, then it is also decided by a one-tape Turing machine of the same type (NTM or DTM) in time
O(T(n) + n?) using the tape alphabet ¥ U { _}.

Proof. The proof is the same as that of Proposition 3.3.3, only that when encoding the input of M
in binary, we use O(n?) steps because we have only one tape. U

3.3.2 Linear Speedup

In the preceding section we saw in Proposition 3.3.3 that we can reduce the tape alphabet of a multi-
tape Turing machines to the minimal one if we allow a Turing machine to run for a multiplicative
constant factor longer. In this section we will show the converse: We can speed up a Turing machine
if we allow it to use more tape symbols or additional tapes.

Proposition 3.3.5. For k > 1, ifa language L C 3* is decided in time T'(n) by a k-tape NTM M,
then it is also decided by some k-tape NTM M in time [1T(n)]+ [3n] 4+ L. If M is deterministic,
then M can also be deterministic.

Proof. The idea for the construction of M is very simple. We can define tape symbols T of M so
that they will represent two symbols from adjacent tape cells of M. Then we simulate two steps
of M in just one step of M by ensuring that all information needed to perform two steps of M is
below the heads of M and stored in the states of M.

Define the tape alphabet I of M as

r=xu{_}ur?

where I' is the tape alphabet of M. Let us now explain how M computes on an input w =
wiWs . . . Wy, where w; € X for all . First, M writes the following on the second tape:

(=, =) (ws, wy)(ws,we) - .. (Wp—1,wy)

(_‘7 g)(w37w4)(w57w6> s (wnv _‘)7

depending on whether n is odd or even, and it deletes the content of the first tape. Note that the
first two symbols of the input are nowhere on the tape. However, M stores them using states. Then
M copies the content of the second tape to the first tape leaving only blank symbols on the second
tape, which enables the head of the first tape to be over the “first” symbol (_,) of the new input.
This all can be done in at most (%nl + 1 steps. In the simulation of M that follows, M will use
only symbols from I'? on all tapes and it will treat each blank symbol as (., _.) € I'2.

M simulates steps of M two by two. Let us first present the main invariant of the simulation.
If the content of the ith tape of M before simulating a jth and (j + 1)st step of M is

. _.._.(al, ag)(ag,a4) e (a21+1, a21+2)._.._ e

and the ith head of M is above the symbol (a2,+1, a2m+2), then the content of the ith tape of M
before the jth step is either

31

0010203 - - - A2 —102mb10202m +102m 4+ 202m 43 - - - Q211102042 — - - (3.1)

or
010203 . . . 02m02m+102m+2010202m 1 302m 14 - . . Q214102112 . .. (3.2)

where the symbols by and bo are stored using the states of M. The ith head of M before a jth step
is over one of the symbols b1, b2, Gomt1 OF a2pm+2. Even more is true, if the case (3.1) is the right
one, then the head of M is above one of the symbols by or as,,+1, and if the case (3.2) is the right
one, then the head of M is above one of the symbols b; or as,,+2. Which case is the right one and
where the ith head of M lies is stored using the states of M.

It is clear that the information that M has before simulating the jth and the (j + 1)st step of
M is enough to perform two steps of M in a single step of M, because for each head, M knows
the state, the symbols below the heads, at least one symbol to the left of each head and at least one
symbol to the right of each head.

Let us show how M can maintain the main invariant. We have to consider four basic cases: 3.1
and (3.2) and for each of them there are 2 possibilities where the ¢th head of M is. For each of
these cases, the ith head of M after two steps can stay in place or move one or two cells to the left
or to the right. Because of the symmetry, we will only deal with the case (3.1).

e Suppose M has its head over the symbol bs.

— If the position of the sth head of M changes for two cells to the left after the jth and
the (j + 1)st step, then the ith head of M moves one cell to the left, not changing the
content of its sth tape, but remembering in its state that we now have case (3.2) with
the ith head of M above the right symbol below the head of M. Also the symbols b;
and by get updated.

— If the position of the ith head of M changes for one cell to the left in the jth and the
(j + 1)st step, then the ith head of M moves one cell to the left, not changing the
content of its ith tape, but remembering in its state that we now have case (3.2) with
the ith head of M above the (updated) symbol b;. Also the symbol b, gets updated.

— If the position of the ith head of M remains the same after the jth and the (j+1)st step,
then the ¢th head of M stays in place and the symbols by, b and ag,,+1 get updated.

— If the position of the ¢th head of M changes for one cell to the right after the jth and
the (j + 1)st step, then the ith head of M stays in place and the symbols by stored in
the state and a,,,+1 below the ith head get updated. Again we have case (3.1), but with
the 7th head of M above the (updated) symbol ag;,+1.

— If the position of the ith head of M changes for two cells to the right after the jth and
the (j + 1)st step, then the ith head of M moves one cell right and the symbols by
and the updated symbol by are written on the tape where the pair (a2 +1, G2m+2) Was
before. In the state, M remembers the updated symbol ag,,, 11 and the symbol ag, 2.
We now have case (3.1) again with the ¢th head of M above the symbol ag,, 2 stored
in the state.

32

e Suppose M has its head over the symbol a9, 1.

— If the position of the ith head of M changes for two cells to the left after the jth and the
(j + 1)st step, then the ith head of M moves one cell left, remembering in its state that
we now have case (3.2) with the ¢th head of M above the symbol b;. Also the symbols
bs and a9, +1 get updated.

— If the position of the ith head of M changes for one cell to the left after the jth and the
(7 + 1)st step, then the ith head of M stays in place and the symbols by stored in the
state and as,,4-1 below the ¢th head get updated. Again we have case (3.1), but with the
1th head of M above the updated symbol bo.

— If the position of the ith head of M remains the same after the jth and the (j+ D)st
step, then the ith head of M stays in place and the symbols bo, aon,+1 and agm,+o get
updated.

— If the position of the ith head of M changes for one cell to the right after the jth and the
(j + 1)st step, then the ith head of M moves one cell to the right, writing the symbol
(b1, be) instead of (a2m+1, @2m+2) and remembering the updated symbols ag;,+1 and
asam+2 in the state. We again have case (3.1) with the head over the updated symbol
a2m+2 stored in the states.

— If the position of the ith head of M changes for two cells to the right after the jth and
the (7 + 1)st step, then the ith head of M moves one cell right and the symbols b; and
the symbol b are written on the tape where the pair (a2,+1, G2m+2) Was before. In the
state, M remembers the updated symbols ag,,+1 and ag,, 2. We now have case (3.1)
again with the ith head of M above the symbol ao, 3.

It is clear that M runs in time [37'(n)] + [3n] + L. O

It might seem that the increase of the alphabet or the number of states is necessary to reduce the
running time. However, another way to reduce the running time is to increase the number of tapes
of a Turing machine.

Lemma 3.3.6. For k > 1, if a language L C X* is decided in time T'(n) by a k-tape NTM M,
then it is also decided by some (4k + 3)-tape NTM M in time [3(T(n) — n)] + n where M has
the same tape alphabet 1" and the same set of states () as M. If M is deterministic, then M can
also be deterministic.

Proof. As in the proof of Proposition 3.3.5, the idea is very simple. M will simulate M in such
a way, that it will use four tapes to handle one tape of M. The four tapes that will handle the ith
tape of M will be called the ¢th block. The input tape and two additional tapes called the counting
tape and the parity tape of M will be special and will not be in any block. We can number the
cells of each of M’s tapes with integers as in Figure 3.1 (for non-input tapes, the cell 0 coincides
with the position of the corresponding head before the beginning of a computation). Let the first
of the four tapes of the 7th block contain exactly the cells of the ith tape of M that are labeled by
integers divisible by 3, let the second tape contain exactly the cells labeled by integers congruent
to 1 modulo 3 and let the third tape contain exactly the cells labeled by integers congruent to 2
modulo 3. The fourth tape of the ith block will only be supplementary and the head above this tape
will never move. If there will be a symbol .. below this head, this will mean that the ¢th head of
M is on a cell labeled by an integer divisible by 3. If there will be a symbol 0 below this head, this

33

will mean that the ith head of M is on a cell labeled by an integer congruent to 1 modulo 3 and if
there will be a symbol 1 below this head, this will mean that the ith head of M is on a cell labeled
by an integer congruent to 2 modulo 3.

M will interleave the copying of the input to the first block and the simulation of a computation
of M. In each step, M will simulate exactly one step of M or exactly two steps of M, depending
on whether M would read a new input symbol or not. If M would read a new input symbol, then
M will simulate only this (one) step of M, else it will simulate exactly two steps of M. Let us
explain the invariants during the computation of M.

For each block 7, except for the first block, the following will hold: before the simulation of the
jth (and possibly the (j+ 1)st) step of M, the content of each of the first three tapes of the ith block
will be as described in the first paragraph of this proof (each tape contains every third symbol of
the ith tape of M before the jth step). The fourth tape of the ith block tells us on which of the three
tapes the head of M should be and the head on this tape is exactly on the cell that corresponds to the
cell of M with the ¢th head on it. The heads on the other two tapes are on the cells that correspond
to the left and the right cell of where the head of M is. For the first block (representing the input
tape of M), the same holds except that instead of the input symbols that have not been read yet,
there are blank symbols.

To support the first block which partially describes the input tape of M, we have three more
tapes: the input tape, the counting tape and the parity tape. On the input tape, the head will always
be on the leftmost unread input symbol, if there exists such. If all the symbols of the input have
been read, the head on the input tape will be on some blank symbol and will not move for the rest of
the simulation of M. Also the counting tape and the parity tape will become redundant when the
input is read. Before this happens, the counting tape will measure how far left of the leftmost unread
input symbol the first head of M is. There will be only one non-blank symbol on the counting tape,
say 0, which is written in the first step of M. If the head on the counting tape will be x cells left of
the symbol 0, this means that the first head of M is either 2z or 2x + 1 cells left from the leftmost
unread input symbol. The function of the parity tape is only to store the information whether the
first head of M is 2z or 2x + 1 cells left from the leftmost unread input symbol. Hence, the head
of the parity tape does not need to move at all and it needs only to change two symbols, say 0 and
1. If there is a blank symbol below the head of the parity tape, we know that the computation has
not yet begun and that M has to write 0 on the counting tape in the first (i.e., next) step and one of
the symbols O or 1 on the parity tape, depending on whether the input head of M moves or not.

We now know that M will always simulate exactly two steps of M except for the following
three exceptions when it will simulate exactly one step of M.

1. The head on the parity tape reads the blank symbol _. (M is starting its computation) and
the head on the input tape of M reads a symbol from X (not the blank symbol).

2. The head on the counting tape reads the symbol 0, the head on the parity tape reads the
symbol 0 and the head on the input tape of M reads a symbol from X (not the blank symbol).

3. M goes to a halting state in the next step (gacc OF Grgy)-

This altogether implies that M runs in time [$(T(n) —n)] +n.

M only uses the states of M to maintain all the invariants. If M has to simulate the jth and
possibly the (j + 1)st step of M, then M is in the same state as M before these two steps. If the
input head of M before the jth step is not above a new symbol of the input, then M/ has enough
information below its heads to simulate two steps of M, else it has enough information to simulate
one step of M. It is clear that all the invariants can be maintained. O

34

If we use Lemma 3.3.6 several times, we can, for any positive constant ¢, decrease any super-
linear' running time 7°(n) of a multi-tape Turing machine down to n + 1 for small inputs and down
to %T(n) for long enough inputs, as it can be deduced from the following corollary. With such a
transformation, the Turing machine gets several additional tapes.

Proposition 3.3.7. For every constant £ € N, if a language L C X% is decided in time T(n)bya
multi-tape NTM M, then it is also decided by some multi-tape NTM M in time

27T(n) + (1 -2"n+1

where M has the same tape alphabet I and the same set of states () as M. If M is deterministic,
then M can also be deterministic.

Proof. Using Lemma 3.3.6 ¢ times we get a multi-tape Turing machine M that has the same tape
alphabet I' and the same set of states () as M. It runs in time

3 (- [5 ([sam-m]+a-n)]-sn-n)] 4
-3 [3 [zem-w]] -] +n

where there are ¢ divisions by 2 on each side of the equality. Using that
[z/a]] _ [x 1
b ~lab

holds for all z € R and positive integers a, b, we get that M runs in time

[Q*Z(T(n) - n)] +n <27 Tm) + (1 -2 +1,

which proves the corollary. U

3.3.3 Reducing the Number of Tapes

In this section we show how we can reduce the number of tapes of a Turing machine so that the
new machine would recognize the same language and it would run only slightly slower than the
original Turing machine. We give three results: in the first result we reduce the number of tapes to
1 and in the second (non-deterministic case) and the third (deterministic case) result we reduce the
number of tapes to 2.

In the following proposition we show how to reduce a multi-tape Turing machine to a one-tape
Turing machine by only squaring the running time. Later in Proposition 5.1.10 we show that this
is optimal by proving that the problem PALINDROME cannot be decided by a one-tape NTM in time
o(n?) while it can clearly be decided in linear time by a 2-tape DTM.

Proposition 3.3.8. If a language L C X" is decided in time T'(n) by a multi-tape NTM M, then
it is also decided by some one-tape NTM M in time O(T(n)?). If M is deterministic, then M can
also be deterministic.

'A function f : N — R 5 is superlinear if lim f(n)/n = co.

35

Proof. Suppose that the multi-tape NTM M = (Q ¥, T, ., 0, o, Gacc, Gres) has k > 1 tapes. We
will define a one-tape NTM M = (Q b)) F, _, 5 , o, Qacc, Qrey) that will simulate M on just one
tape and will run in time O(T'(n)?). This will be done by encoding configurations of a computation
of M on just one tape, using more symbols. Note that for each configuration of M, we need to
know what symbols are on each tape, where the heads are on each tape and what is the current state
of M. The content of the tapes and the positions of the heads of M will be encoded on the tape of
M, while the current state of M will be remembered by the states of M.

To define the tape alphabet I, let I” be the alphabet that has exactly the same symbols as I,
except that symbols in I have an additional apostrophe. In other words, for each a € T" we have
a’ in I. Without the loss of generality we may assume that I' NI = (). We define

r=xu{_ju(rur)”

where we assume that the sets 32, {_} and (I' U T")" are pairwise disjoint.

Let us describe the meaning of the symbols in I" and how they help us in encoding a con-
figuration of M. Symbols from ¥ U {_}, while being initially on the tape, will be replaced by
symbols from (I'UT”) as soon as the head of M comes across them. When this happens, a
symbol a € ¥ U {_} will be treated the same as if there was the symbol (a, —, ...) in-
stead of a. The only exception is at the start of a computation when the first symbol a of the
input is treated as (a/, ", /... /). (If the input is ¢, then a = _..) The meaning of a symbol
(21,25 ...25) € (T UTY)¥ is the following: if 2; € I, then the head of the ith tape of M is above
this symbol, else z; is a symbol in a cell of the ith tape of M and the ith head of M is not above
this cell. This way we can maintain on just one tape the content of the tapes and head positions of
M during the simulation.

During the simulation of M, there will always be blank symbols on the left part of the tape of
M , followed by some cells with symbols from (I' U T")k, followed only by symbols from X U{_}.
We call the part of the tape of M with symbols from (I' U T’)k written on it the visited part of the
tape. To simulate one step of M, the Turing machine M will pass through the visited part of the
tape left to rigth or vice versa three times, each time adding a new cell to the visited part. If M is
passing to the left, then one symbol is added to the visited part on its left side, else one symbol is
added to the visited part on its right side. In the first of the three passes, M reads and remembers
(using states) all the k& symbols below the heads of M in the current configuration of M. Then it
uses non-determinism to decide which non-deterministic choice to simulate for the next step of M
and in the next two passes, it changes the symbols on the M’s tape so that they represent the next
configuration of M. When passing to the left it simulates the heads of M that move to the left in
the simulated step and when passing to the right, it simulates the heads of M that move to the right
in the simulated step.

Suppose an input of length n is given to M. Note that for each simulated step of M, the visited
part of the tape of M gets increased by 3 cells. Because we simulate at most T'(n) steps, the visited
part contains at most 37°(n) cells at the end of the simulation. Hence, for each simulated step of
M, M makes at most 97'(n) steps which sums up to 97'(n)? = O(T'(n)?) steps altogether. O

In the simulation of multi-tape Turing machines by one-tape ones in Proposition 3.3.8 we used
many new symbols in the tape alphabets of one-tape Turing machines. The following corollary
tells us that this was in fact not need.

Corollary 3.3.9. If a language L C X* is decided in time T'(n) by a multi-tape NTM M, then it
is also decided by some one-tape NTM M in time O(T(n)?) using the tape alphabet ¥ U { _}. If
M is deterministic, then M can also be deterministic.

36

Proof. If there is some integer ng € N such that T'(ng) < ng + 1, then by Lemma 3.3.2 there
exists a one-tape DTM M that decides L in time O(1) using the tape alphabet 3 U {_.}. Because
T(n) is a running time of some Turing machine, it follows that 7'(n) = (1), hence M runs in
time O(T'(n)?) .

Now suppose that T'(n) > n + 1 for all n. By Proposition 3.3.8 we get a one-tape NTM M
that decides L in time O(7'(n)?) and by Lemma 3.3.4 we can find a one-tape Turing machine M
that decides L in time O(7'(n)? +n?) and uses the tape alphabet U {.__}. Because T'(n) > n+1
for all n, M runs in time O(7'(n)?). Lemma 3.3.4 and Proposition 3.3.8 tell also that if M is
deterministic, then M can also be deterministic. O

In the next proposition we show how the time complexity changes when reducing a multi-tape
NTM to a 2-tape machine. The idea of the proof is from Seiferas, Fischer and Meyer [27].

Proposition 3.3.10. [fa language L C ¥* is decided in time T'(n) by a multi-tape NTM M., then
it is also decided by some 2-tape NTM M in time O (T (n)).

Proof. The NTM M will compute in two main phases. In the first phase, M will non-determinis-
tically guess “snapshots” of a computation of M and in the second phase it will verify whether the
snapshots could arise in some accepting computation of M. Then M will alternate between these
two phases a few times to simulate enough steps of M. M will accept an input if and only if M
would.

Let M = (Q,%, T, ., 0, qo, Gace; Gres) be a k-tape NTM. A snapshot of a configuration of M is
a (k+ 1)-tuple consisting of the current state of M and the current symbols below the heads of M.
The snapshot determines which actions are legal as the next move and whether the configuration
is an accepting one or a rejecting one. Given a snapshot (¢, a1, az2...ax) € Q@ x I' x --- x I, the
set of legal moves is exactly d(q, a1, as ... ag).

Suppose an input w is given to M. In the first phase, for some ¢ € N determined later, M
on the second tape non-deterministically guesses an alternating sequence of length ¢ of snapshots
and legal moves of M. Note that to guess a legal move, M needs only the information about the
preceding snapshot. However, the sequence of snapshots and legal moves may not correspond to
a valid computation, but we will deal with this in the second phase. Note that if M uses a big
enough alphabet so that it can encode any legal move or a snapshot in a single symbol, then M
needs only £ cells on the second tape to write down the sequence. If some snapshot is from a halting
configuration, i.e., it contains a halting state, then M does not write down the rest of the sequence
of snapshots and legal moves.

In the second phase, M deterministically verifies whether the sequence of snapshots and legal
moves on the second tape corresponds to a legal computation of M on the input w. It does so
one tape of M at a time, using its first tape and head to perform exactly as the M’s tape and head
that are being simulated and the second tape to tell the next move. Not to forget the input w, M
stores it using more symbols which encode two symbols at a time: the original one from the input
tape of M and another one from the tape of M currently being simulated. Hence, the input tape
of M actually “contains” two tapes: the unchanged input tape of M and the tape of M currently
being simulated. Note that in the second phase M can verify in time O(kf) = O(f) whether the
snapshots and legal moves from the first phase correspond to a legal computation of M on the input
w. There are three possible outcomes of the second phase.

o If the sequence from the first phase does not correspond to a legal computation of M on the
input w, then M rejects.

37

o If the sequence from the first phase corresponds to a legal computation of M on the input
w that finishes in a halting configuration, then M returns the same as M would, i.e., if the
halting configuration is accepting, then M accepts, else it rejects.

o If the sequence from the first phase corresponds to a legal computation of M on the input
w and it does not finish in a halting configuration, then M restores the input and runs the
first phase again, this time guessing a sequence of length 2¢. Note that, using the first tape
to measure ¢, M can do the first phase in time O(¥).

Suppose that initially ¢ = 1. Because M runs in time T'(n), £ will get at most 47'(n) on the
inputs of length n. Hence, M runs in time

O(1) +0(2) + O(4) + O(8) + - - - + 0218 4TMTy — O(T'(n)).

It is clear that M accepts an input w if and only if there exists an accepting computation of M on
the input w, hence M decides the same language as M. g

The next corollary tells us that when reducing a multi-tape NTM to a 2-tape NTM, we do not
need to increase the tape alphabet to get the same performance.

Corollary 3.3.11. If a language L C X" is decided in time T (n) by a multi-tape NTM M, then it
is also decided by some 2-tape NTM M with the tape alphabet ¥ U { _} in time O (T'(n)).

Proof. Proposition 3.3.10 gives us a two-tape Turing machine that decides L and runs in time
O (T (n)) and Proposition 3.3.3 assures that this Turing machine can have the tape alphabet > U
{-}. O

Finally, we show how the time complexity changes when reducing a multi-tape DTM to a 2-tape
DTM. Because we have to compute deterministically this time, we cannot “guess” the computation,
hence we need another clever method. While the original idea of the proof is from Hennie and
Stearns [18], we will follow the proof from [2, Chapter 1].

Proposition 3.3.12. If a language L C " is decided in time T (n) by a multi-tape DTM M, then
it is also decided by some 2-tape DTM M in time O (T'(n)log T'(n)).

Proof. If there is some integer ng € N such that T'(ng) < ng + 1, then by Lemma 3.3.2 there
exists a one-tape DTM M that decides L in time O(1) using the tape alphabet ¥ U {_}. It follows
that there exists a 2-tape DTM that decides L and runs in time O (T (n)logT (n)) Hence, we may
suppose that T'(n) > n + 1 for all n.

The idea of the proof is very similar to the idea of the proof of Proposition 3.3.8. If we recall,
we increased the tape alphabet of M in such a way that we could encode all of its tapes on just
one tape. We also marked the positions of all the k£ heads. Then we needed to pass between the
leftmost cell that marked the position of some head and the rightmost one, which resulted in the
need of O(T'(n)) steps of M to simulate one step of M. Hence, to simulate M/ more efficiently,
we need to keep all of the k heads together. This will be done in such a way that, instead of moving
the heads, we will actually be moving the content of the tapes of M left and right.

If M has the tape alphabet I, then M will have the tape alphabet

T=Su{_}Uu(@u{#hkx{0,1}),

38

where # ¢ T'. Let us explain the meaning of a symbol (a1, az,a3. ..ax,b) € (TU{#})* x{0,1}.
The symbol b € {0, 1} will mark the beginnings of zones of the tape of M defined in the next
paragraph. For all 4, if a; € T' then a; will correspond to some symbol on the ¢th tape of M,
else a; = # which means that this symbol should be ignored when considering the ith tape of
M. After each simulated step of M, if we consider only the ¢th element of the symbols from
(T'U {#})* x {0,1} on the input tape of M and we discard the symbols #, we get exactly the
content of the 7th tape of M.

The input tape of M will be the main simulating tape and, before simulating a step of M, it will
encode the exact configuration of M before this step. The second tape, however, will serve only as
a tool for fast shifting of content of the first tape from one place to another. So let us explain how
the first tape will be organized. Its cells are marked with integers as in Figure 3.1 and we divide
them into zones Ry, Lo, R1, L1 . .. as follows. The cell at the location 0 is not in any zone, the cells
1 and 2 belong to the zone Ry while the cells —1 and —2 belong to the zone Lg. The cells 3,4, 5
and 6 belong to the zone R; while the cells —3, —4, —5 and —6 belong to the zone L;. Generally,
for every ¢ > 1, the zone R; contains the first 2i+1 cells that are ri ght of the zone R;_; and the zone
L; contains the first 2/ cells that are left of the zone L;_1 (see Figure 3.2). When simulating M,
M will try to keep the positions of all the heads of M over the cell 0, shifting some of the content
of each tape through zones.

;####uuuﬂ##uu;#u; a :n#:a n##:a S HHHH
. _“_“_‘\####‘—“—“—‘;‘\##‘—‘;‘\#‘—‘\ — \‘—‘#\‘—“—‘##‘—“—“—“—’####
B T S SR TN S
00000001000101:1:10:11000:110000000

L2 L1 Lo R() Rl RZ

Figure 3.2: The input tape of M just before simulating a first step of a 3-tape Turing machine M
on the input ananas, where each column represents one symbol of I'. The initialized zones are
marked below the tape and they are all 7-half-full for: = 1, 2, 3.

During the simulation of M, M will maintain the following invariants:

e For each tape ¢ of M and for each zone R, the zone will be i-empty, i-full or i-half-full with
non-# symbols, which means that the number of non-# symbols on the ¢th coordinate of
the symbols in the zone R; will be either 0, 27+1 or 27, The same will hold for the zone L;.

We assume that initially, i.e., before the zone R; is initialized, it is ¢-half-full for every i.
The zone R; will be initialized as soon as the head of M steps into R; or L;. The same
holds for the zone L, hence the zones R; and L; are always initialized together. When a
zone is initialized, it is filled to the half with symbols (_, — ..., 0) and in the other half
with symbols (#,# ...#,0). The exceptions are the leftmost symbol in the zone R; and
the rightmost symbol in the zone L; that are initially (_, ... _, 1), with a 1 marking the
beginning of a new zone.

e For each tape ¢ of M and for each zone R;, the total number of non-# symbols on the ith
coordinate of symbols in R; and L; will be 2/*1. That is, either R; is i-empty and Lj; is
i-full, or R; is i-full and L; is i-empty or they are both -half-full.

e Cell 0 of the tape of M does not contain # in any coordinate at any time.

39

Let us explain how M prepares for the simulation of M given some input. First, it initializes
as many zones as needed to cover all of the input and it remembers the input in the first coordinates
of the new symbols on the tape (see Figure 3.2). Clearly, this can be done in time O(n).

Next, we explain how M simulates one step of M. First, it reads the symbol in the cell 0, which
contains the content below the heads of M and replaces this symbol with a new one according to
the M’s transition function. Then for each head i of M separately, M shifts to the left or to the
right (depending on the direction in which the ith head of M moves) the ith coordinates of the
symbols in a neighborhood of the cell 0. Because of the symmetry we will only explain how this
is done if the ith head of M moves to the right, which means that we have to move the content of
the ith tape to the left so that the ith head of M will again be above cell 0.

e MM finds the smallest jo such that R, is not i-empty. Note that this is also the smallest jg
such that L;, is not :-full. We call the number jy the index of this particular shift.

o [f we consider only the ith coordinate of the symbols on the tape of M, M writes the leftmost
non-# symbol of the zone R in the cell 0 and shifts the next leftmost 270 —1 non-# symbols
from R, into the zones Ry, R ... Rj,_1 filling up exactly half the symbols in each zone.
Note that there is exactly room to perform this since all the zones Ry, I ... Rj,_1 were
i-empty and indeed 270 — 1 = 2":51 2,

e M performs the symmetric operation to the left of the cell 0. That is, for ¢ starting from
jo — 1 down to 0, M iteratively moves the 27! jth coordinates of symbols from L; to fill
half the ith coordinates of the symbols in Ly . Finally, M writes the ith coordinate of the
symbol that was in position O before the shift to the ith coordinate of the rightmost symbol
in Ly. An example is given in Figure 3.3.

e At the end of the shift, all of the zones Ry, Ly . .. Rj,—1, Lj,—1 are i-half-full, R;, has 270
fewer non-#-symbols and L, has 2J0 additional non-# symbols. Thus our invariants are
maintained.

o The total cost of performing the shift is proportional to the total size of all the zones involved
(Ro, Lg... Rj07 Ljo)' That is,

Jo
o($22) -0
=0
operations.

We are going to bound the total time of the simulation, as it is done in amortized analyses.
After performing a shift of the 7th tape with index j, the zones Ry, Lo ... [R;_1, L;_1 are i-half-
full which means that it will take at least 27! right shifts before the zones Ry, R; ... Rj_1 become
i-full and it will take at least 271 left shifts before the zones Ry, R . . . R;_1 become i-empty. In
any case, once M performs a shift of the ith tape with index j, the next 27! shifts of the ith tape
will have index less than j. This means that for the tape i of M, at most a 1/2¢ fraction of the total
number of shifts have index . Because M on an input of length n performs at most 7'(n) shifts for
each tape and because the highest possible index of a shift is at most [log T'(n)], the total number
of steps of M on an input of length n is

o8 71 iy
O|n+k Z; 512 | =0(T(n)logT(n)),
]:

40

nFRFAFa s R AT
uuuu##gg@uud##pu##uuu B
Wldh
0000

S
[
l
[
L]
[
[
[
mA
S8
2]
o

TR T
1‘101000l1000

L2 L1 LO R[) Rl R2

Figure 3.3: If M on input ananas would not change the content of its tapes in the first two steps and
it would only move the second head one cell to the right and the first head two cells to the right, M
would have to make two left shifts of the content of the first tape and one left shift of the content of
the second tape to simulate M. In this figure we can see M’s input tape after simulating the two
steps of M.

which completes the proof. U

Finally, the next corollary tells us that when reducing a multi-tape DTM to a 2-tape DTM, we
do not need to increase the tape alphabet to get the same performance.

Corollary 3.3.13. If alanguage L C X" is decided in time T'(n) by a multi-tape DTM M, then it is
also decided by some 2-tape DTM M with the tape alphabet ¥ U {_} in time O (T (n) log T'(n)).

Proof. Proposition 3.3.12 gives us a two-tape Turing machine that decides L and runs in time
O (T'(n)log T'(n)) and Proposition 3.3.3 assures that this Turing machine can have the tape alpha-
bet X U{_}. O

3.3.4 Non-Determinism and Determinism

In this short section we compare the non-deterministic Turing machines with the deterministic
ones. While the deterministic Turing machines can actually be satisfactory built (we only have to
use finite, but very long tapes), we do not know how to implement non-determinism efficiently.
What is more, we do not know how to prove (if true) that non-determinism cannot be effectively
implemented deterministically. This problem is also the main issue of the P versus NP problem.

However, non-determinism does not help us with deciding new languages, as the following
proposition tells.

Proposition 3.3.14. [f a language L C ¥* is decided in time T'(n) by a one-tape NTM M, then it
is also decided by some 3-tape DTM in time 20T ("),

Proof. Let us describe a 3-tape DTM M that decides L in time 2°(7("))_ The input tape of M will
be reserved for storing the input and M will never change the content of that tape. The second tape
of M will be the simulation tape and M will simulate all computations on a particular input of A/
on it, one by one. The third tape will help M to remember what computations of M were already
simulated.

If M = (Q,2,T, _,0,qo, Gaccs Gres)» then the elements of T" x @ x {—1,1} represent all
potential moves of M in each step. Let us fix some linear ordering of the elements from I x @ x
{—1,1}. This means that we have a canonical ordering of non-deterministic choices of A/. When
M will be simulating a step of M, it will first simulate the non-deterministic choice with the lowest
number, that still leads to a computation that has not yet been considered.

41

On an input w of length n, M first simulates the first step of M on w, using the first possible
non-deterministic choice and it writes all the possible choices for the first step on the third tape
in the canonical ordering. Then it simulates the second step of M using the first possible non-
deterministic choice and it writes all the possible choices for this step (step one is fixed) on the
third tape. Then it simulates the third step of M using the first possible non-deterministic choice
and it writes all the possible choices for this step (steps one and two are fixed) on the third tape.
It continues this way until M halts. If M accepts, M also accepts, else M clears the second tape
and prepares the third tape the following way. It first locates the last step of M where there was
more than one non-deterministic option to choose. Then it deletes all the information about the
steps that followed this step and it deletes the first option for this step (the one that was simulated).
If such a step does not exist, i.e., if for each step there was only one option on the third tape, M
rejects. Then M simulates M on w again, not using the transition function of M but using the first
choices for each step as written on the third tape. When all the steps that have some information
on the third tape have been simulated, M continues to simulate M using its transition function,
always choosing the first choice and writing all the possible non-deterministic choices of M to the
third tape. If M accepts, M also accepts, else M clears the second tape and prepares the third tape
as before. Then it simulates M on w again using the third tape ...

It is clear that M simulates all the computations of M on w this way and it accepts w if and
only if there exists an accepting computation of M on w. Else it rejects w. For the simulation
of one computation of M on w, M needs O(T'(n)) steps. However, it needs to simulate 20(7(%))
computations, hence M runs in time O (T(n))2O(T(")) = 20(T(n)), O

Now we can see that all our models of Turing machines decide the same languages. We state it as
a corollary that the weakest model, namely the one-tape DTMs, can decide the same languages as
the strongest model, the multi-tape NTMs.

Corollary 3.3.15. If a language L C X* is decided in time T (n) by a multi-tape NTM M, then it
is also decided by some one-tape DTM in time 20(T(n)*),

Proof. By Proposition 3.3.8, L is decided by some one-tape NTM in time O(7'(n)?), by Propo-
sition 3.3.14 L is decided by a 3-tape DTM in time 20(T(n)*) and again by Proposition 3.3.8 L is
decided by a one-tape DTM in time 20(T(n)*), U

3.3.5 Reducing the Number of Non-Deterministic Options

We discussed in the previous section that we do not know how to efficiently simulate NTMs by
DTMs. The difference between the definition of a DTM and an NTM is only in that the non-
deterministic Turing machine can have more than one choice in each step. But what if we limit
these options to at most two? We say that an NTM M is a two-choice NTM if in each step it has
at most two possible non-deterministic choices. In the next proposition we show that a two-choice
NTM is just as powerful as an NTM.

Proposition 3.3.16. For k > 1, if a language L C ¥* is decided in time T'(n) by a k-tape NTM
M, then it is also decided by some k-tape two-choice NTM in time O(T'(n)).

Proof. Let M be the following k-tape two-choice NTM. It computes exactly as M, only that, for
each step of M, it makes a constant number of additional steps during which nothing changes on
the tapes. The purpose of these steps is to choose a non-deterministic choice of M. If in one step

42

M has r non-deterministic choices, it is enough that M uses O(log r) non-deterministic steps to
consider all these choices. When M selects a choice of M, it goes simulating a next step of M.
Because r depends only on M it holds » = O(1), thus M accepts L in time O(7'(n)). O

3.4 Complexity Classes

There are several possible ways to measure how hard it is to decide a language. Because we focus
on time complexity in this dissertation, we will divide the languages into time related complexity
classes, hence we will measure how fast they can be decided by Turing machines. Our classes
will be defined using multi-tape Turing machines because they are easier to construct. Because of
the linear speedup discussed in Section 3.3.2 it makes sense to define the classes using the big O
notation which hides a constant linear factor.

e For a function 7" : N — R >, we define the complexity class DTIME(T'(n)) as the class of
all languages L C ¥* that are decided by some multi-tape DTM in time O(7'(n)).

e For a function 7" : N — R >, we define the complexity class NTIME(T'(n)) as the class of
all languages L. C ¥* that are decided by some multi-tape NTM in time O(7'(n)).

e Define the complexity class P = [JDTIME(p(n)), where the union is over all polynomials
p : N = Ryg. Note that P is the class of languages decidable in polynomial time by a
multi-tape DTM. Equivalently, by Proposition 3.3.8 P is the class of languages decided in
polynomial time by a one-tape DTM.

e Define the complexity class NP = [JNTIME(p(n)), where the union is over all polynomials
p : N = R>g. Note that NP is the class of languages decided in polynomial time by a
multi-tape NTM. Equivalently, by Proposition 3.3.8 NP is the class of languages decided in
polynomial time by a one-tape NTM.

e Define the complexity class co-NP as the class of languages L such that ¥*\ L € NP. That
is, co-NP is the class of languages such that their complements are decided in polynomial
time by an NTM.

e Define the complexity class EXP = | JDTIME(2P("), where the union is over all polyno-
mials p. Note that EXP is the class of languages decided in exponential time by a multi-tape
DTM and hence also by a one-tape DTM.

e Define the complexity class NEXP = | J NTIME(ZP(")), where the union is over all polyno-
mials p. Note that NEXP is the class of languages decided in exponential time by a multi-tape
NTM and hence also by a one-tape NTM.

e We say that alanguage L C Y* is decidable if there exists a Turing machine that decides it. In
other words, the class of decidable languages (also known as the class of recursive languages
in the literature) is [JNTIME(7'(n)) where the union is over all functions 7' : N — R .

With these classes we set up some hierarchies of decidable languages, like:

DTIME(n) C DTIME(n?) C DTIME(n!%) C P C DTIME(2") C EXP

43

and
NTIME(n) € NTIME(n?) C NTIME(n'®) C NP € NTIME(2") C NEXP.

The inclusions are clearly true and we will prove in Theorem 4.2.1 and in Theorem 4.2.3 that they
are all strict. However, while we can say

DTIME(n) C NTIME(n), DTIME(n2) C NTIME(n?) ... EXP C NEXP,

we do not know whether these inclusions are strict or not, except for the first one which was proven
strict by Paul, Pippenger, Szemerédi and Trotter [25]. As already discussed in the introduction, the
question whether P equals NP is a major unsolved problem in computational complexity theory
and a prize of one million US dollars is offered for the solution [23]. By Corollary 3.3.15 it holds
NP C EXP, however this inclusion is also not known to be strict.

3.4.1 Complexity Classes of Decision Problems

In Section 2.1.4 we made a distinction between languages and decision problems. While a language
is a fixed subset L. C >*, a decision problem is a more general notion, defined by a set of instances
together with a subset of YES instances (no encoding is needed).

While we defined complexity classes only for languages, the same complexity classes are used
also for decision problems. When we say that a decision problem is in some complexity class, say
DTIME(n?), we have some natural encoding for the problem in mind and if L is the corresponding
language, we are actually claiming L € DTIME(n?). For several complexity classes like P, NP or
co-NP all natural encodings are equivalent because we can change between natural encodings in
polynomial time.

3.4.2 The Complexity of Regular Languages

In the following proposition we show how hard, relative to the just defined complexity classes, are
regular languages. Note that we did not define regular languages as a time-related complexity class.
However, in Section 5.1.2 we show that we could do so, namely regular languages are exactly the
languages decided by linear-time one-tape NTMs.

Proposition 3.4.1. The class of regular languages strictly contains the class NTIME(1) and is
strictly contained in the class DTIME(n).

Proof. We showed in Lemma 3.3.1 that if a language L is in NTIME(1), then L is regular. Now
if we take the language L of binary strings that end with a 0, Lg is regular because it is given by
the regular expression {0, 1}*{0} (see Theorem 2.2.7). However, any Turing machine that decides
Lg has to read the whole input up to the last symbol, thus it does not run in constant time. Hence,
Lo ¢ NTIME(1), which implies that the class of regular languages strictly contains the class
NTIME(1).

The class of regular languages is contained in the class DTIME(n) because finite automata are
just a restricted version of one-tape DTMs. To show that the inclusion is strict, let us consider the
problem PaLinDrOME. In Section 2.2.1 we showed that this problem is not regular, however it can
easily be solved in linear time by a multi-tape DTM. O

44

3.4.3 Complexity of Computing Functions

We defined Turing machines like if their only purpose would be to solve decision problems. How-
ever, while solving a problem, one often has to compute some functions during the computations
and here we define the corresponding notions.

We say that a function f : ¥X* — ¥* is computable, if there exists a DTM M that on any input
w € ¥* halts in an accepting state with f(w) written on the input tape. This means that when M
halts, the input tape is of the form

........] f(w) \QQQ__....
If M runs in time 7'(n), then we say that M computes the function f in time T'(n).

Example. Let us show that we can convert the binary representation of a positive integer z to
unary and vice versa in time O(x). This is equivalent to claiming that we can compute the function

£:{0,17 = {0,1}* f:w»—>{

17 if w is the binary representation of a positive integer x
w else

in time O(|f(w)|) (i.e., linear in the length of the output) and the function
g:{0,1}* - {0,1}* g :w+ |w| (in binary)

in time O(n) (i.e., linear in the length of the input). To compute f we construct the following
two-tape DTM M. On an input w, M first verifies whether w starts with the symbol 1. If not,
it accepts, else let x be the integer represented as w in binary. M copies x on the second tape in
binary leaving the first tape blank and then it starts subtracting 1 from it (using only the second
tape), each time writing an additional 1 on the first tape. It halts when there is only the symbol 0
left on the second tape. Clearly, M computes the function f.

We are going to bound the total time of the computation, as it is done in amortized analyses.
To subtract 1 from x, M needs O(logx) steps (which is the length of the representation of x in
binary). However, usually it needs just O(1) steps. To be more precise, the length of the binary
representation of z is |log x| + 1 and the (|log | 4 1)st digit is “changed” exactly once (when all
the other digits right of it are 0). The |log x| th digit gets changed at most twice, the (|log x| —1)st
digit gets changed at most 4 times ... Because M needs O(%) steps to change the ith digit, it makes

|log z|+1
Z 2[10grj+1—io(i)
i=1
steps overall. Considering that the sum

oo
§ 21—t
=1

converges, we get that
|log zn]+1
Z 2Llong+1fio(z-) _ 0(2_log:zsj)7
i=1
which is O(x). Hence, My computes f in time that is linear in the length of the output.

To show how to compute g in linear time, we construct a two-tape DTM M, that on an input w
first copies w on the second tape, leaving only one O on the input tape. Then it increases the number
(in binary) on the input tape one by one, each time reducing the number of non-blank symbols on
the second tape by one. M, halts when it runs out of non-blank symbols on the second tape. Using
the same analysis as for M, it is clear that M, runs in linear time. |

45

3.5 The Church-Turing Thesis

While in Section 3.3 we compared different models of Turing machines, in this section we discuss
how powerful the Turing machines are compared to other computational models, like models of
our computers and how the time classes defined above reflect the real world.

The Church-Turing thesis tells us that decidable problems are a superset of the decision prob-
lems that can be solved in the real world. The thesis is the following [2, Chapter 1]:

Every physically realizable computation device>—whether it is based on silicon, DNA,
neurons or some other alien technology—can be simulated by a Turing machine.

The thesis dates back for more than 70 years and it has still not been disproved. Because of its
informal nature it cannot be viewed as a theorem that can be proven, rather than a belief about the
nature of the world as we currently understand it.

The thesis is not just explanatory, it is also very useful. It tells us that if we can explain an
algorithm that solves some problem, then we can also construct a Turing machine that solves the
same problem. A stronger statement known as the strong version of the Church-Turing thesis [2,
Chapter 1] has also been proposed:

Every physically realizable computation device can be simulated by a deterministic
Turing machine with polynomial overhead, i.e., t steps on the device correspond to at
most t¢ steps on the DTM, where c is a constant that depends upon the model.

Unlike the standard Church-Turing thesis, its strong form is somewhat controversial, in particular
because of models such as quantum computers [2, Chapter 10], which do not appear to be efficiently
simulatable on DTMs. However, it is still unclear if reasonably big quantum computers can be
physically realized.

What supports the strong version of the Church-Turing thesis most is that idealized models of
our computers can be simulated by Turing machines with polynomial overhead [24, Chapter 2.8].
This fact is useful, for example, when proving that some problem is in P because we do not need
to describe a polynomial-time Turing machine that solves the problem, it is enough to just describe
an algorithm that would run in polynomial time on a computer and would solve the problem.

It is worth mentioning that Turing machines are somewhat stronger than real-world computers
because the latter have a limited amount of memory.

3.6 Encoding Turing Machines

There are several good ways of how to encode Turing machines. We present here the encoding
from the paper [11] of the author. Let a code of a k-tape NTM M = (Q, X, T, .., ¢o, Gacc, Gres)
be a code of a |Q| x |@Q| matrix A, where A[i, j] is a (possibly empty) list of all the triples

((a1,az...ag), (br,ba...by), (d1,ds...dg)) € TF x T x {~1,0,1}"

such that M can come in one step from the state g; to the state g; replacing the symbols aq, as . . . ai,
below the heads by the symbols b1, bs . . . b, (respectively) and moving the heads in the directions
dy,ds . ..dg. In other words, A[z, j] is a list of all the triples

((al,ag .. .ak), (bl,bg . ..bk), (dl,dg .. dk;)) S Fk X Fk X {—1,0, 1}k

>We assume that the computation device takes a string from ©* as input and it returns an output from X*. This
assumption is shown important in [14].

46

such that
((bl,bg .. bk),qj, (dl,dg .. dk)) S 5((&1,@2 .. .ak),qi).

We assume that the indices ¢ and j range from 0 to |Q)| — 1 and that the index 0 corresponds to the
starting state, the index |(Q| —2 corresponds to the accepting state and the index || — 1 corresponds
to the rejecting state. We also assume that each symbol of 3 as well as the blank symbol have a
universal unique code over X..

It is clear that a code of M is of length O(¢?k3%|T"|?* log |T'|). However, for applications that
follow we will need arbitrary long codes, hence we define a padded code of M as a code of M,
padded in front by any number of Os followed by a redundant 1. Thus the padded code of an NTM
can be arbitrarily long. Note that given a padded code of M, the code of M can be constructed in
linear time.

An interesting property of our encoding is that we can compute compositions of Turing ma-
chines in linear time, as can be seen in Figure 3.4. The composition of NTMs M; and My is the
NTM that starts computing as M7, but has the starting state of M, instead of M;’s accepting state.
When the starting state of M is reached, it computes as M. If M rejects, it rejects.

Figure 3.4: The code of a composition of two Turing machines. Suppose that we want to compute
the code of a composition of Turing machines M7 and Ms. Let A; and As be the corresponding
matrices that were used to encode M7 and M5. Then we can erase the last two lines of the matrix
Aj (they correspond to the halting states of M) and adjust Ay “below” A as shown in the figure.
Note that the column of the accepting state of M; coincides with the column of the starting state
of Mjy. The last column of A; that corresponds to the rejecting state of M is flushed to the right.
To compute the code of the composition of two Turing machines, we have to compute the code of
this matrix, which can be done in linear time given the codes of A; and As.

3.6.1 Universal Turing Machine

Now that we know how to encode Turing machines, a natural thing to do is to consider an algorithm
to simulate them. The next two propositions describe two such algorithms.

Proposition 3.6.1. There exists a 3-tape NTM U (called the universal Turing machine) that given a
(code of a) multi-tape NTM M together with an input w for M, it simulates M on w and returns the
same as M onw. If M runs in time T (n), then U on inputs (M, w) makes at most C (T (|w]) +
|w\) steps for some constant Cyy depending only on M.

47

Proof. The universal Turing machine U computes as follows. On input (M, w), where M is a
multi-tape NTM that runs in time 7'(n), U first writes w on the second tape, leaving only the
description of M on the first tape. Then using the input tape and the third tape it transforms the
code of M into a code of a 2-tape NTM M that simulates M on two tapes in time O(7'(n)) and
uses the tape alphabet > U {_}. This can be done by Corollary 3.3.11 because the corollary was
proven constructively. After this initial work, U has the code of M on the input tape, w on the
second tape and the third tape is empty. Now U simulates M step by step in the following way: it
keeps track of which state M currently is in the first tape while having the content of the second
and the third tape as well as the positions of the heads on the second and the third tape exactly the
same as M. To simulate a step of M, U does some computation on the input tape to figure out a
next step of M and then it simulates it. Hence, U returns the same as M does on the input w which
is the same as M on the input w.

If M is fixed, then U makes O(|w|) steps before it starts to simulate M and then for each step
of M it makes a constant number (dependant only on M, not on w) of steps. Because M runs in
time O(7'(n)), U makes O (T'(|w|) + |w]) steps. O

For deterministic Turing machines, the following proposition applies.

Proposition 3.6.2. There exists a 3-tape DTM U (called the deterministic universal Turing ma-
chine) that given a (code of a) multi-tape DTM M together with an input w for M, it simulates M
on w and returns the same as M on w. If M runs in time T'(n), then U on inputs (M, w) makes
at most Cpr (T(|w|)log T(|w|) + |w]) steps for some constant C; depending only on M.

Proof. The proof is the same as for Proposition 3.6.1, only that Corollary 3.3.13 is used instead of
Corollary 3.3.11. 0

3.7 Classes NP and co-NP

Let us give another characterization of the class NP.

Proposition 3.7.1. A language L C * is in NP if and only if there exist positive integers k, D
and a polynomial-time DTM M such that for every w € ¥*

weL <= JueX*: (ju < Jw|® + D) and M accepts the input (w,).

If L € NP and we have k, D and M as in the proposition, then for any w € L and u € »*
such that (Ju| < |w|¥ + D) and M accepts the input (w,u), we call u a certificate for w. Before
we prove the proposition, let us give an example of use.

Example. Let us show that the decision problem HamiLtoniaN CycLE is in NP. First, we will
show this by definition of NP and then by using Proposition 3.7.1.

To prove that HamiLtronian CycLE € NP by definition, we have to construct a polynomial-
time NTM M that decides the problem HamirLtoniaN CycLE. What M does is the following: on
an input w which represents a graph on n vertices, it non-deterministically chooses a sequence of
n vertices and then it deterministically verifies whether this sequence forms a Hamiltonian cycle.
If so, it accepts, else it rejects. We can make M to run in polynomial time, which implies that
Hawmirronian CycLe € NP.

48

To prove that Hamicronian CycLe € NP using the new characterization from
Proposition 3.7.1, we just need to give the appropriate certificate for each graph that admits a Hamil-
tonian cycle: the easiest one is just the cycle itself. Now let us show why this is good enough. Let
us take a multi-tape DTM M that given a code of a graph G together with a code of a sequence u of
its vertices, decides whether v is a Hamiltonian cycle of G. We can make M to run in polynomial
time. If we take kK = D = 1 and consider that the code of a Hamiltonian cycle of G is not longer
than the code of G (assuming a natural encoding), it is clear that

w encodes a Hamiltonian graph

<
Ju € ¥ : (Ju| < |w|+ 1) and M accepts the input (w, u),
hence HamiLroniaN CycLE € NP. |

Now let us prove the proposition.

Proof. If L € NP then there exists a one-tape NTM M that decides L in polynomial time. Let
M be a multi-tape DTM that given an input (w,u) where w,u € X*, it simulates exactly one
computation of M on the input w following non-deterministic choices encoded in u. If v does not
encode a sequence of non-deterministic choices, then M rejects. How this can be done so that M
runs in polynomial time is evident in the proof of Proposition 3.3.14. Let us define integers & and
D so that, for all n, it will hold:

n¥ 4+ D > the length of a longest code of a sequence of choices in a computation of M

on inputs of length n.

Note that such k and D exist because M runs in polynomial time and thus makes only polyno-
mially many non-deterministic choices. Because M accepts w if and only if there is an accepting
computation of M on w, we have

weL < JueX*: (Jul <|w*+ D) and M accepts the input (w,u).

To show the if part of the proposition, let L, M, k and D be as in the proposition and let an
NTM M be defined as follows. On an input w of length n, M first computes n* + D and it non-
deterministically chooses a string u € ¥* of length at most n* + D. Then it simulates M on (w, u)
and it accepts if and only if M accepts. Clearly, M runs in polynomial time and decides L. O

3.7.1 Reductions and Complete problems

If we compare the classes P, NP and co-NP, we get the Figure 3.5. Although we do not know
whether P = NP, we can say something about which problems in NP are hard if P = NP. Such
problems are called NP-complete.

Reductions

A language L C X* is reducible to a language Lo C X* if there exists a computable function
f X% — ¥ called a reduction such that for every w € ¥*,

we L < f(w)€ Ls.

49

©

Figure 3.5: The complexity classes P, NP and co-NP. While P C NP N co-NP, we do not know
whether the inclusion is strict. We also do not know whether NP C co-NP or co-NP C NP
although it is widely believed that none of these two options are true.

In the literature there are more types of reductions. However, we will only use the type of reductions
we defined, which are also known as Karp reductions or multi-one reductions in the literature.

If f is computable in polynomial time by a DTM, we say that f is a polynomial-time reduction
and that Ly is polynomial-time reducible to L.

Complete Problems

A language L C NP is called NP-complete if
1. L € NP and

2. Each language L € NP is polynomial-time reducible to L.

A decision problem is called NP-complete if its corresponding language is NP-complete. Note
that, at this point, we did not prove that NP-complete problems actually exist. This will be done
later in Proposition 3.7.4.

The following proposition tells that, if P £ NP, NP-complete languages cannot be solved in
deterministic polynomial time.

Proposition 3.7.2. If some NP-complete language can be decided in polynomial time by a DTM,
then P = NP.

Proof. Let L be an arbitrary language in NP and suppose that an NP-complete language L can be
solved in polynomial time by a DTM M. Because Lg is NP-complete there exists a polynomial-
time reduction f that reduces L to Lg. Let us consider the following deterministic algorithm to
decide L:

On an input w, compute f(w) and then run My on f(w).

Because f runs in polynomial time, the length of f(w) is polynomial in the length of w and be-
cause M also runs in polynomial time, this algorithm decides L in deterministic polynomial time.
Because L € NP was arbitrary, it follows P = NP. O

A language L € co-NP is called co-NP-complete if
1. L € co-NP and

2. Each language L € co-NP is polynomial-time reducible to L.

50

Recall that a language L is in NP if and only if its complement L is in co-NP. The same is true
for complete languages.

Proposition 3.7.3. A language L C ¥* is NP-complete if and only if L is co-NP-complete.
Proof. Let L be NP-complete and let L’ be an arbitrary language in co-NP. By definition, L €
co-NP and I € NP. Because L is NP-complete, there exists a polynomial-time reduction f of I/

to L. It is easy to see that f is also a reduction of L’ to L, which proves that L is co-NP-complete.
The proof of the if part of the proposition is symmetric. U

A possible (and widely believed) relation between the classes P, NP, co-NP and the complete

problems is shown in Figure 3.6.
NP-complete co-NP-complete

Figure 3.6: The complexity classes P, NP and co-NP together with complete problems. Note
that if there would be an NP-complete problem in P, the whole figure would collapse to P. Be-
cause of the symmetry, the same would happen if there would be a co-NP-complete problem in P.
We leave to the reader to show that if there would be a problem that would be NP-complete and
co-NP-complete, then NP = co-NP.

We still did not give any example of a complete problem. However, an NP-complete language
is not hard to find, especially if we consider that all languages in NP are given by some NTM. Let
us define a decision problem NP-HALT as:

Given an NTM M and an input w for M, does M make more than 2|w| 4 1 steps on
some computation on the input w?
Proposition 3.7.4. The problem NP-HALT is NP-complete.
Proof. The problem NP-Harr is in NP because its every YES-instance (M, w), where w is an
input for an NTM M, has a certificate: a sequence of first 2|w| + 2 non-deterministic choices of
M on input w for which M makes 2|w| + 2 steps or more.

To show that NP-Havr is NP-complete, let L be some language in NP. By definition of NP
there exists an NTM M that decides L in non-deterministic time p(n) for some polynomial p. Let
us define an NTM M that given an input of the form 0°1w where w € ¥* and i € N, it first erases
0?1 and then it simulates M on w. The only difference with M is that instead of going to the accept
state, M starts an infinite loop (e.g. its heads starts to move right forever). Note that

M accepts w <= M on input 0P (D 14y starts an infinite loop on some computation

<= M on input 0”1 makes more than 2|0P("*D1w| + 1

steps on some computation.

— (M, 0°("D14) € NP-HaLr.

51

Define a function f : ¥* — X* as
w — a code of the pair (M, 07D 14).

It is clear that f is computable in polynomial time. Hence, f is a polynomial-time reduction of L
to NP-HarLt, which proves the proposition. U

Later in Section 6.2 we will give more examples of NP-complete problems (actually
co-NP-complete problems). While they will arise from natural (theoretic) questions, they will
speak about Turing machines, which are quite abstract. However, there are very many more natural
practical NP-complete problems, one of them being HamiLtoniaN CycLE. In this dissertation, we
will not prove that this problem is NP-complete, the reader can find the proof for that in e.g. Garey
and Johnson [12], where also several other natural NP-complete problems are described.

52

Chapter 4

Diagonalization and Relativization

Diagonalization is a well known proof method. In this chapter we use it to prove that some explicit
problems are not decidable and to prove separation of several complexity classes. In Section 4.3 we
define a new type of Turing machines, namely oracle Turing machines, and prove that the separation
results in this chapter hold also for oracle Turing machines with a fixed oracle. Such results are
said to be relativizing. We finish the chapter with Theorem 4.3.3 which tells that if we will ever
solve the P versus NP question, the result will not relativize.

We begin this section with examples of two famous proofs that use diagonalization, none of
which is closely related to computer science. We present them to show the main idea of diagonal-
ization: observing a diagonal.

Example. For the first example we take the Cantor’s proof that there exists no surjection of N into
the positive real numbers which proves that the set R < has “more” elements than N. Suppose for
the purpose of contradiction that a surjective function f : N — R+ exists. This allows us to list
the real numbers f(0), f(1), f(2) ... using their decimal representation one below the other so that
the decimal points are aligned. We may assume that all numbers have infinitely many decimals,
some of them having last decimals equal to zero.

Tn1,1Tn;—1,1Tn;—2,1 - X2,121,1 - Y1,1Y2,1Y31 -
Tng,2Lng—1,2 " L2212 -Y1,2Y2,2Y3,2 " -
© 22,371,3-Y1,3Y23¥Y3,3" "

L2414 -Y1,4Y2,4Y34Y4,4 "

X215 - Y1,4Y2, ce yii
Now define the following real number r = 0.91,192,292 2922 - - -, Where §; ; = y; ;+5 mod 10.
Because r is nowhere in the above list, f could not be surjective. |

Example. For the second example we take Russell’s paradox. Not to go into formal logic, let us
observe the following naive description of what a set is:

53

Everything that can be written as S = {x; p(z)}, where ¢ is some formula that can
be either true or false, is a set. Additionally, for each object z, if ¢ (z), then we write
x € S and we say that z is an element of .S.

We claim that such a description of a set is not appropriate. For each ordered pair of sets, the
first set is either an element of the second or it is not (see Table 4.1). Now the following set has its
diagonal entry “negated”:

Sp={5; S¢S}
We see that S has € on the diagonal of Table 4.1 if and only if Sp & Sr, which is a contradiction.
Hence, one has to be more careful when defining what a set is. |
Sy 1Sy iS50 Sy
ENE AR AR
S| F L E L E L E
Sy g€ € E
N
VR AT
St H et et e A T
R \ I
2

Table 4.1: A table of whether the set in the leftmost column is an element of the set in the top row~.
Although there are more than countably many sets, we started indexing them with integers so that
we were able to draw a picture.

4.1 Halting Problems

Since we can encode Turing machines as finite strings (see Section 3.6), there are only countably
many of them. However, there are uncountably many languages over >*, which implies that most
of them are undecidable. In this section we will present a famous explicit undecidable problem,
the halting problem. Because we will present several variations of the halting problem, the title of
this section is in plural.

The halting problem D-Hacr is the following.

Given a multi-tape DTM M and an input w for M, does M halt on the input w?
There are several variations of the problem, like the more general problem HaLt, which is

Given a multi-tape NTM M and an input w for M, does M halt on all computations
on the input w?

And the more specific problem D-HarLr!, which is

Given a one-tape DTM M and an input w for M, does M halt on the input w?

2In ZFC theory there would be only ¢ on the diagonal because of Axiom of regularity.

54

Analogously we also define the problem Hart!. In essence these problems are the same, because
given a Turing machine of one type, we can transform it into a Turing machine of another type
using the transformations described in Section 3.3. Note that these transformations preserve the
finiteness of a computation on any input. To prove that all these problems are undecidable, it is
enough to prove that the problem D-Harr! is undecidable because a Turing machine that would
solve any of the problems Harr, D-HaLt or HaLt! would also solve the problem D-Hart!.

Theorem 4.1.1. The problem D-HaLT is undecidable.

Proof. Because there are countably many one-tape DTMs, we can index them by positive integers.
Additionally, for each Turing machine M let (M;) denote the lexicographically first of the codes
of M. Then, for each ordered pair of one-tape DTMs (M;, M;), M; either halts on the input (1/;)
or it does not halt (see Table 4.2).

My | My Ms M,

My | oo oo oL
7M2770707\77777£7\777\777\7.777
My | 1100 100 i o0

: R
B T e e Bl e

M| 4) o b | 00 |
A el el il Bt el i

. o | | |

Table 4.2: A table of whether the one-tape DTM in the leftmost column halts () or it runs forever
(c0) on an input which is the lexicographically first code of the one-tape DTM in the top row.

Suppose for the purpose of contradiction that a one-tape DTM H exists that solves the problem
D-Harr!. Let us observe the diagonal entry in Table 4.2 of the following one-tape DTM M:

On an input w, M first runs H to verify whether the one-tape DTM M, encoded as
w halts on the input w. If it does, M starts an infinite loop, else it halts.

Thus M halts on the input w if and only if M, does not halt on the input w. It follows that M halts
on the input (M) if and only if M does not halt on the input (M). This implies that the Turing
machine H cannot exist. U

The fact that the halting problem is undecidable has consequences also in real-world applications.
Because we can write a program that simulates Turing machines on a given input, the undecidability
of D-Hatrr tells us that there is no automated procedure (i.e., a Turing machine) that would solve
the problem:

Given a code of a program in Java and an input for it, would the program ever
terminate if we would run it on that input, or would it run forever?

55

4.1.1 Proving Undecidability of Problems

In Section 3.7.1 we defined reductions of languages. It is clear that if we find a reduction of an
undecidable problem to some other problem, this proves that the other problem is undecidable. We
illustrate this method by proving that even a simpler problem than D-HaLt! is undecidable. Define
the problem D-Harr! as

Given a one-tape DTM M, does M halt on the empty input €?

We will use the well known fact that this problem is undecidable a lot in Section 6.1, thus we state
it as a lemma.

Lemma 4.1.2. The problem D-Harr! is undecidable.

Proof. Let us give a reduction of the problem D-Harr! to the problem D-HaLr!. On an input
(M, w) where w is an input of a one-tape DTM M, construct a one-tape DTM M which on the
empty input first writes w on the tape and then it computes as M.

It is clear that M halts on input ¢ if and only if M halts on the input w, which proves that we
reduced the problem D-Hart! to the problem D-Harr.. 0

4.2 Time Hierarchy Theorems
In this section we prove the following two hierarchies:
DTIME(n) C DTIME(n?) € DTIME(n!%) C P C DTIME(2") C EXP

and
NTIME(n) NTII\/lE(nQ) - NTII\/IE(nlO) C NP C NTIME(2™) € NEXP.

We will first introduce the notion of a time constructible function and then we will use these func-
tions to prove the hierarchies.

4.2.1 Time Constructible Functions

A function f : N — N is time constructible if the function f :w — 170w js computable by a
DTM that runs in time O(f(n)). Note that it does not matter whether f gives the output in unary
(as in the case of our definition) or in binary because we can transform binary to unary and vice
versa in time that is linear in the length of the unary representation (see Section 3.4.3).

Example. Many simple functions such as n, n|logn|, [ny/n], n?, n'0, 27, n! are clearly time
constructible. To compute, say, the value n|logn| given the input of length n, we first transform
1™ into binary in time O(n). The length of the binary representation of n is [logn| + 1. Then we
compute in polynomial time (in the length of the binary representation of n which is O(logn)) the
binary representation of n|logn|. Hence, the binary representation of n|logn| can be computed
in linear time. L

56

4.2.2 The Deterministic Time Hierarchy

The following theorem, called also the deterministic time hierarchy theorem, tells that DTMs that
are allowed to run for a relatively small factor longer, can decide strictly more languages.

Theorem 4.2.1. For any time constructible function f : N — N such that n = o(f(n)) and for
any function g : N — N such that g(n)log g(n) = o(f(n)), there exists a language

L € DTIME(f(n))\DTIME(g(n)).

Proof. We assume that there are infinitely many padded codes for each DTM, thus each DTM has
arbitrary long padded codes. For a padded code w of a DTM M, let M, denote the DTM M. Let
us observe ordered pairs (M,,,, w;) where w; and w; are padded codes of DTMs. For each such a
pair, M, either accepts the input w; or it rejects it (see Table 4.3).

w1 wy 1wz o W
My, | accept | reject | accept | --- | accept | ---
My, | reject | reject | accept | --- | accept | -
M, | accept | accept | reject | | accept |
Sty Mt el et Bttt Bt r
: | | : Lot |
77777777 T T et e e R
My, | reject | accept | reject | --- | reject |
Sty Mt el et Bttt Bt ro
: \ \ P P

Table 4.3: A table of whether the DTM M,,,, in the leftmost column accepts an input w; in the top
row, where w; and w; are padded codes of DTMs. It suffices for our proof to have only (padded
codes of) DTMs that run in time O(g(n)) in this table. Because each DTM has infinitely many
padded codes, each DTM that runs in time O(g(n)) is present infinitely many times in the leftmost
column of the table.

Let M be the following 4-tape DTM: on an input w, which is a padded code of the DTM M,,,
it first computes 17 (Ilwl) and stores it on the fourth tape. Then it computes just as the deterministic
universal 3-tape Turing machine from Proposition 3.6.2 on the input (M,,, w), i.e., it efficiently
simulates M, on the input w. For each step that M makes, it erases one symbol 1 from the fourth
tape. The fourth tape thus serves as a counter and when there are no more ones on it, M rejects.
If the simulation of M,, finished when there was still at least one symbol 1 on the fourth tape, M
returns the opposite of what M., would return, i.e., if M, rejects w then M accepts, else M rejects.
Let L be the language decided by M.

We see that M runs in time O(f(n)), hence L € DTIME(f(n)). It is enough to prove that
L ¢ DTIME(g(n)). If L € DTIME(g(n)), then there exists a DTM M, that decides L in time
O(g(n)). Let us observe the diagonal entries for M, in Table 4.3.

For a padded code w of M), M on the input w makes at most

O (g(lwl) log g(Jw]) + [wl) = o(f(|w]))

steps when simulating M, on w (see Proposition 3.6.2). Thus, for long enough padded codes w of
M, , M halts because M halts and not because M would run out of 1s on the fourth tape. Hence,
if w is long enough, M on the input w simulates all the steps of M| on w and it returns the opposite
as M does. It follows that M accepts w if and only if M, rejects w, which is a contradiction with
the definition of M , because it should accept exactly the same inputs as M. U

57

Corollary 4.2.2. For any integer k > 1,

DTIME(n*) C DTIME(n* log? n) C DTIME(n**1).

4.2.3 The Non-Deterministic Time Hierarchy

The deterministic time hierarchy gave us
DTIME(n) € DTIME(n?) C DTIME(n!'%) C P C DTIME(2") C EXP,
however the same idea does not go through to prove the inclusions
NTIME(n) € NTIME(n?) C NTIME(n'®) C NP € NTIME(2") C NEXP.
While it is easy to flip the answer of a DTM after the simulation:

If the DTM goes to gacc, reject, else accept,

this is not so easy in the non-deterministic case because there are several possible computations on
each input. To flip the answer of an NTM, we would have to know if all of the computations on
the input are rejecting or if there exists an accepting computation. Nevertheless, it turns out that
we can overcome this difficulty by a method called lazy diagonalization.

Theorem 4.2.3. For any time constructible function f : N — N such that n = o(f(n)) and for
any function g : N — N such that g(n + 1) = o(f(n)), there exists a language

L € NTIME(£(n))\NTIME(g(n)).

Note that this theorem gives a more strict hierarchy for non-deterministic classes than Theo-
rem 4.2.1 does for deterministic classes, because in this theorem there is no log(g(n)) factor in
g(n+1) = o(f(n)). Such a strong hierarchy was proven first by Seiferas, Fischer, and Meyer in
1978 [27] and the proof was simplified by Zak in 1983 [31]. However, we use the idea for the proof
from Fortnow and Santhanam [8].

Proof. Recall from Section 3.3.5 the definition of a two-choice NTM which is an NTM that has at
most two possible non-deterministic choices in each step. In the proof of this theorem, we will use a
special encoding for pairs (M, y), where M is a two-choice NTM and y € {0, 1}*. If w is a binary
code of a multi-tape two-choice NTM M, then let ¢,, be the positive integer that is represented as
1w in binary. Now the pair (M, y) is encoded as 1%“01™0y, where m is any non-negative integer.
Hence, each pair (M, y) has arbitrarily long codes and, given such a code, we can get the code of
M in linear time. For a code w of the pair (M, y), let M,, denote the NTM M.

Let us observe the ordered pairs (M, , x;) where z; and x; are codes of (M, €) and (M,),
respectively. For each such a pair, M, either accepts the input x; or it rejects it (see Table 4.4).

Let aconstant C' € N be such that f can be computed in time C' f(n) and let M be the following
4-tape NTM. On an input w = 1?01™0y, it first computes 17D and stores it on the fourth tape.
Denote z = 1°01™0 and let M compute f(|z| — 1), but only if the computation does not take more
than C' f (Jw|) steps. If it does, M rejects. Then we have two cases.

(i) If ly| < f(Jz| — 1), then M computes just as the universal 3-tape (non-deterministic) Turing
machine from Proposition 3.6.1 on the inputs (M, w0) and (M,,, wl), i.e., it simulates M,
on the inputs w0 and w1 one after another. For each step that M makes, it erases one symbol

58

My, | reject | reject | accept | ---) accept | -
M, accepti reject : accept I reject !
x5 | accept | accept | reject | i accept |

St Mt Bl - T il H o
| | | | |

S P mm—H = — = — I — - ==k ——+ - == — = - - -
z; | reject | accept | reject | i accept |

St H i el - i moo
| | | | |

Table 4.4: A table of whether the two-choice NTM M, in the leftmost column accepts the input x ;
in the top row, where z; and z; are codes of (My,,) and (M., €), respectively. It suffices to have
only NTMs that run in time O(g(n)) in this table. Because each two-choice NTM M has infinitely
many codes of (M,), each two-choice NTM that runs in time O(g(n)) is present infinitely many
times in the leftmost column of the table.

1 from the fourth tape. The fourth tape thus serves as a counter and when there are no more
ones on it, M rejects. If the two simulations of M,, finished when there was still at least one
symbol 1 on the fourth tape, M accepts if and only if M,, accepted both inputs w0 and w1l
on the two simulated computations.

(ii) If |y| > f(|x| — 1), then M simulates the computation of M,, on the input = determined
by the non-deterministic choices encoded by y. Because M, is two-choice, y encodes |y|
non-deterministic choices. Again, the fourth tape serves as a counter and for each step that
M makes, it erases one symbol 1 from the fourth tape. If the simulation of M, finished
when there was still at least one symbol 1 on the fourth tape and if M,, rejects the input x
on the computation encoded by y, M accepts the input w, else it rejects it. If the counter on
the fourth tape ever hits O or if ¥ does not encode enough non-deterministic choices of M,,
to finish with the simulation, M rejects.

Let us show how M can efficiently do the simulation in case (ii). A straightforward deter-
ministic simulation would not suffice because the simulation of the deterministic universal
Turing machine has too much overhead.

e First, M computes a code of a DTM M that computes as follows: given a pair of

strings (21, y1), M first copies ¥ to a non-input tape and then it computes the same as
M, on x1 using the non-deterministic choices encoded by y;, only that if M., accepts,
then M rejects and if M,, rejects, then M accepts. If y; does not encode enough non-
deterministic choices, M rejects.
Clearly M can construct such M that uses O(1) steps to simulate one step of M,,, only
in the beginning of a computation it uses O(n) steps to copy y; to a special tape so that
it can read it in parallel while simulating M,,. Note that the number of steps needed to
construct M depends only on M, and is independent of m and y.

e Next, M computes as the universal (non-deterministic) Turing machine from Proposi-
tion 3.6.1 and simulates M on the input (z, y).

Let L be the language decided by M. We see that M runs in time O(f(n)), hence L €
NTIME(f(n)).

59

It is enough to prove that L ¢ NTIME(g(n)). If L € NTIME(g(n)), then there exists some
NTM M, that decides L in time O(g(n)). By Proposition 3.3.16 we may assume that M/, is two-
choice, hence M, is present in Table 4.4. The next two paragraphs are technical and are used to
find an appropriate code for the pair (M, , €) such that that its diagonal entry in Table 4.4 cannot
take any value. If the reader wants to skip the technicalities, we recommend jumping to the last
paragraph of the proof.

Let x = 1'01™0 be a code of the pair (M, ,). Because n = o(f(n)), there exists an infinite
increasing sequence of integers m < m; < mg < mg < --- such that f(i +m; + 1) < f(§) for
all positive integers j and £ > i +m; + 1, i.e., f takes only bigger values than f(i + m; + 1) for
bigger arguments. Note that if we only consider the codes z = 1¢01™30 for (M, , ¢), the Turing
machine M on the inputs zy for y € {0,1}* always computes f(|z| — 1), because it has enough
time.

Next, we show that for large enough m;, M on inputs w = xy where x = 1°01™50 and
y € {0,1}* never runs out of 1s on the fourth tape. By Proposition 3.6.1, M makes at most
O(g(Jw| +1)) = o(f(Jw]|)) steps when simulating M, on the inputs w0 and w1 in case (i), where
the constant behind the little o can depend on M| . Hence, for large enough m;, M does not halt in
case (i) because it would run out of 1s on the fourth tape. In case (ii), M has to simulate O(g(|z|))
steps of the computation of M, on the input z, where the computation is determined by the non-
deterministic choices given by y. Although M has to simulate just one fixed computation, it uses
non-determinism to do it faster as we described in the description of M. This way M simulates
O(g(]z|)) steps of M, in time

O (g(lz]) + Iz + |yl) = o (f(lz] = 1)) + O (lyl),

whichis o(f(|w|)) because f(|z|—1) < f(|w|) by the definition of m ;. This implies that, for large
enough m;, M does not run out of time on the fourth tape. Additionally, because |y| > f(|z| —1),
and because M needs only to simulate O(g(|z|)) = o(f(|x| — 1) steps of M, for large enough
m;, y encodes enough non-deterministic choices for the simulation.

To finish the proof, let m; be big enough so that, for any input w = xy where x = 170140
and y € {0,1}*, M on input w

e never runs out of time on the fourth tape and

o if we have case (ii), M simulates M, until the end (i.e., y encodes enough non-deterministic
choices).

Considering the diagonal entry for = in Table 4.4, we get

M accepts the input x
<= M accepts the input x
<= M accepts the inputs 20 and =1

<= M accepts all the inputs zy where y € {0, 1}2

<= M accepts all the inputs zy where y € {0, 1}3

<= M accepts all the inputs zy where y € {0, 1}“‘”5‘_1)
<= M, rejects x on all computations

<= M, rejects z,

which is a contradiction. O

60

Corollary 4.2.4. For any integer k > 1,

NTIME(n*) € NTIME(n* log(logn)) € NTIME(n* logn) C NTIME(n*+1).

4.3 Relativization

In the previous section we managed to separate several complexity classes by efficiently simulating
Turing machines. In all the simulations that were analyzed, we did not care about how a simulated
Turing machine computes, we just simulated each step using a Turing machine of the same kind.
This way we were able to build a hierarchy of non-deterministic classes and a hierarchy of determin-
istic classes. However, we still do not know how to compare deterministic and non-deterministic
complexity classes like P and NP. In this section we present a well known result that using only
brute force simulations, we cannot solve the P versus NP problem.

4.3.1 Oracle Turing Machines

Oracle Turing machines are a much stronger model of computation than the standard Turing ma-
chines and the Church-Turing thesis does not hold for them. They compute relative to some oracle
which is a language over >*. In particular, their computation is just as a computation of a standard
Turing machine only that, time to time, they can “ask the oracle” whether some string from ¥* is
in the oracle. Hence, oracle Turing machines can decide any undecidable language L if they com-
pute with the help of the oracle L. If some result (lemma, proposition, theorem ...) about Turing
machines together with its proof is also valid for oracle Turing machines with the oracle O, for all
oracles O C X%, then we say that the result relativizes because it is valid relative to any oracle.
Later in Section 4.3.4 we prove that a solution to the P versus NP problem must not relativize.

Oracle Turing machines are usually defined (see e.g. [2, Chapter 3.4]) to be just as normal
Turing machines, only with an additional tape called the oracle tape which serves for oracle queries:
to query the oracle, the oracle Turing machine just writes a string from >* on the oracle tape and
then enters a special query state. Then in one step it magically enters one of two special states,
depending on whether the content on the oracle tape was a string from the oracle or not.

However, such a definition will not suffice for us. We want to define oracle Turing machines in
such a way that we will be able to have one-tape oracle Turing machines and that we will be able
to analyze crossing sequences® of such machines. This will be used later to show that the results
in Chapter 5 relativize and to argue that using only methods from Chapter 6 we cannot solve the
P versus NP problem. However, our definition of the oracle Turing machine will be polynomially
equivalent to the standard one in the sense that, using the same oracle, our oracle Turing machine
that runs in time 7'(n) can be simulated by a standard oracle Turing machine in time 7'(n)" for
some constant k, and vice versa.

A k-tape non-deterministic oracle Turing machine (abbreviated as k-tape NOTM) is a 10-tuple
M = (Q,%,T, —,>,0, o, Gacc, Qress Gves), Where

Q ... afinite set of states,
by ... the input alphabet fixed in Section 2.1.3,
r=u{_} ... a(fixed) tape alphabet,

3Crossing sequences are defined in Chapter 5.

61

_el\X ... ablank symbol,

>¢T ... an oracle symbol,
5 (DU % TH % Q\{gacer oo} = PT X @\ g} x {-1,0,14)\ {0}
a transition function and
Gos Gaccs Gress Gves € @ ... pairwise distinct starting, accepting, rejecting and YES states.

Note that an NOTM has the same elements as an NTM with an additional special state gy, an
additional symbol >> and it has a fixed tape alphabet (the reason for the latter is given below). The
NOTM M always computes relative to some oracle O C ¥* and we denote by M © the NOTM M
with the oracle O. Its computation is just as by an ordinary NTM with the following distinctions:

e On the input tape, there is always exactly one special symbol > that divides the input tape
into the left part, called the oracle part and the right part, called the standard part of the
tape. All other tapes always contain only symbols from T".

e Before a computation begins, the symbol > is in cell —1, just left of the input (see Figure 3.1)
and it remains in this cell after each step of the computation. If the transition function wants
to replace it with some other symbol, the new symbol is ignored.

e The major difference in the computation of an NOTM compared to an NTM is the following.
When MO reads the symbol > on the input tape and then wants to move the head on the
input tape to the right, “magic” happens.

— If there is a string from O written left next to the symbol >> followed to the left by only
blank symbols, then M© ignores the transition function ¢ in this step and it goes to the
state qygs, moving the head on the input tape for one cell to the right (where it should
go without magic) and changing nothing on the other tapes.

— Else, it keeps computing as the transition function § dictates.

Note that (normal) Turing machines with the tape alphabet ¥ U { _} are oracle Turing machines
with the oracle which is the empty language (up to the symbol > on the input tape) because such
oracle Turing machines never go to the state ¢yzs. The reason for why we decided to fix the tape
alphabet of oracle Turing machines to X U{_ } lies in Section 3.3.1 where we discussed reductions
of tape alphabets. The results in this section trivially relativize if the tape alphabet is ¥ U {_},
however if we allowed a general tape alphabet I' D 3, we would have troubles reducing it to
¥ U {_} without making considerably more steps.

A k-tape deterministic oracle Turing machine (abbreviated as k-tape DOTM) M is the same
as a k-tape NOTM only that in each step M has only one possible move.

Relativized Complexity Classes

For a fixed oracle O, all complexity classes from Section 3.4.1 could be defined also with oracle
Turing machines. The classes obtained this way are called relativized and are denoted with the
superscript O. This way we get the classes DTIMEC (T'(n)), NTIME? (T'(n)), P9, NP9, co-NP?
... For example, the class P? is the class of languages decidable in polynomial time by a multi-tape
DOTM with the oracle O. We also define relativized classes of complete problems for NP and
co-NP? by using polynomial-time (standard) DTMs for reductions.

62

4.3.2 Encodings of Oracle Turing Machines

NOTMs can have the same encoding as the ordinary NTMs (see Section 3.6) with the exception of
the symbol >> and the state gygs that need to be marked somehow. It is worth noting that an oracle
is not part of the code of the oracle Turing machine. While in Section 3.6 we stated that using our
encoding we can compute the composition of two NTMs in linear time, we do not claim the same
for NOTMs, mainly because of the state gyxs Which makes it harder to define a composition of two
NOTMs. However, in our applications (Section 6.2.3) it will always be the case that the first Turing
machine in a composition of two Turing machines will not need an oracle, hence it can be treated
as an NTM and in such a case we can compute a composition of an NTM and an NOTM in linear
time.
Note that an NOTM with an oracle O can be simulated by an NOTM with the same oracle.

4.3.3 Results that Relativize

In this section we argue why all results so far in this chapter relativize and we discuss how statements
from Chapter 3 should change in order to hold also for oracle Turing machines. We will not give
rigorous proofs of the corresponding results with oracle Turing machines, we will just comment
on how the proof or the statement of a result should be adjusted.

Results from Section 3.3

In Section 3.3 we compared how different attributes of Turing machines influence time complexity.
While most of the statements and the proofs remain essentially the same if we use oracle Turing
machines with a fixed oracle, there are some exceptions.

e LLemma 3.3.1 relativizes.

o In Subsection 3.3.2 we analyzed linear speedup. The proofs of those results do not relativize
because we cannot compress the content on the oracle part of the input tape.

e In Proposition 3.3.8 we simulated a multi-tape Turing machine M on a one-tape Turing ma-
chine M with a quadratic overhead. The same cannot be done so easily with oracle Turing
machines because it is hard to keep track of the position of the head on the oracle part of
the input tape, especially with the tape alphabet > U { _}. However, for oracle Turing ma-
chines, we can prove a slightly weaker result, namely a multi-tape Turing machine M can
be simulated on a one-tape Turing machine M with a cubic overhead. This can be proven
by simulating all tapes of M on the standard part of the tape of M and copying the oracle
queries to the oracle part of the tape when queried. Now if M runs in time 7'(n), then be-
cause copying a query of size £ to the oracle part of the tape takes O(¢?) steps on one-tape
oracle Turing machines, we get that M runs in time O(7(n)).

The same holds for Corollary 3.3.9.

e In Proposition 3.3.10 we simulated a multi-tape NTM M that runs in time 7°(n) on a 2-tape
NTM. We used a bigger tape alphabet than ¥ U {_.}, however this was not necessary. The
input can be stored on the second tape and the content of the second tape can be encoded in
binary. To show that the result relativizes, the input tape should only be used to simulate the
input tape of M. When simulating non-input tapes of M, the role of the input tape and the
second tape should exchange in order for the head on the input tape to avoid the oracle part of

63

the tape. Not to produce too much overhead when exchanging the role of the input tape and
the second tape, we should start with £ = (the length of the input) and, if 7'(ng) < ng + 1
for some ng € N, we should use Lemma 3.3.2.

e In Proposition 3.3.12 we simulated a multi-tape DTM M on a 2-tape DTM. The way the
proof is written it cannot be straightforwardly relativized since the input tape is used in both
directions to simulate all the tapes of M. Hence, the result can be changed a bit: we can
simulate a multi-tape DOTM M that runs in time 7'(n) on a 3-tape DOTM that runs in
time O (T (n)log T(n)) This result can be obtained by simulating the input tape separately
and the rest of the tapes as in Proposition 3.3.12. Thus, we do not need other symbols than
Y U{_} onthe input tape. On the other two tapes we can encode each new symbol in binary
and the same proof goes through.

The same remark holds for Corollary 3.3.13.

o In the proof of Proposition 3.3.14, we used the input tape only for storing the input. It can
as well be used to query oracles, so the result relativizes.

On the other hand, the proof of Corollary 3.3.15 does not relativize, because we have to
reduce a multi-tape Turing machine to a one-tape Turing machine. However, the same proof
gives that if a language L C ¥* is decided in time 7'(n) by a multi-tape NOTM M, then it
is also decided by some one-tape DOTM in time 20(T(n)*),

e Proposition 3.3.16 relativizes.

Universal Oracle Turing Machines

In the proof of Proposition 3.6.1 we describe a universal 3-tape NTM U. If we change the purpose
of the first and the second tape of U, this result relativizes. Similarly, Proposition 3.6.2 relativizes,
however the resulting universal DTM has 4 tapes.

Results Proven by Diagonalization

It is clear that the undecidability of the halting problem relativizes (for each oracle we get another
halting problem). What is more, the deterministic and the non-deterministic time hierarchy theo-
rems relativize (the proofs are essentially the same as in the non-relativized setting). Hence, we
have the following strict inclusions for each oracle O:

DTIME® (n) € DTIME? (n?) € DTIME? (n!?) C P® C DTIME®(2") C EXP?
and
NTIME® (n) € NTIME® (n?) € NTIMEC (n'%) € NPC C NTIME® (2") C NEXP?.

4.3.4 Limits of Proofs that Relativize

In this section we prove that a solution to the P versus NP problem must not relativize. More
specifically, we will exhibit two oracles A and B such that P4 = NP and P2 # NPZ. Such
oracles were first found by Baker, Gill and Solovay [3].

Lemma 4.3.1. There exists an oracle A € EXP such that P4 = NP4,

64

Proof. Let A be a language corresponding to the following decision problem:

Given a one-tape DTM M and an input w for M, does M accept the input w in at
most 2!/ steps?

First, we prove that EXP C P4. Let L be a language from EXP and let M be a one-tape DTM
that decides L in time 2P(") for some polynomial p : N — N. Let M be a one-tape DTM that on
inputs of the form 0°1w where w € ¥* and i € N, it first erases 0°1 and then it computes exactly
as M on w. Now the following DOTM M, decides L with the use of oracle A in polynomial time.
M f‘ on an input w writes a code x of the pair (M , op(lwh) 1w) on the oracle part of the input tape
and then it accepts if 2 € A, else it rejects. It is clear that M runs in polynomial time. Using the
inequality 1 + x < 2” for z € N, we get

w € L = M accepts w in at most 2P("D steps
— M accepts 07D 1w in at most 220D p(jw]) + 1 steps
— M accepts 07D 1w in at most 22D+l grepg

= M {4 accepts w
and

w ¢ L = M rejects w in at most 2°U) steps
— M rejects 07D 1w in at most 220D 4 p(jw]) + 1 steps
— M rejects 07D 1w in at most 2P DF1+1wl greps

= MlA rejects w.

Hence, L € P4 which implies EXP C pA4,

It is clear that A € EXP: to verify whether a given one-tape DTM M accepts a given input w
in at most 2/l steps, we first compute 2/l and then simulate M on the input w for 21! steps. We
return the same as M returns or, if M does not halt, we reject.

Next, we show that NP4 C EXP. Let L be a language from N P4 and let M; be an NOTM that
decides L with the help of the oracle A in time p(n) for some monotonically increasing polynomial
p: N — N. Now the following DTM M decides L in exponential time. M on an input w simulates
all possible computations of M. f‘ on the input w and, for each oracle query of M4, it computes
the output itself. There are 20(P([“1) possible computations of M {4 on input w, hence M needs to
simulate at most p(|w|)2°®(“D) steps of M altogether. Because A € EXP, A can be decided
by a DTM in time 0(215(”)) for some polynomial p. Because each oracle query that needs to be
answered for M{* on the input w is at most p(|w|) long, M spends O(2°(*1)) steps answering
it. Hence, M needs to simulate at most exponentially many steps of M. f‘ and each step can be
simulated in exponential time (in the length of the input). This implies that M runs in exponential
time, hence L € EXP.

To sum up, we have proven

EXP C PA C NP4 C EXP,
which implies PA = NP4, O
Lemma 4.3.2. There exists an oracle B € EXP such that PB # NP®.

65

Proof. We will actually prove a bit stronger statement. We will exhibit an oracle B € EXP and a
language I € NPZ such that, for each function f : N — R > such that f(n) = o(2"), it will hold
L ¢ DTIMEB(f(n)). It is clear that this implies PZ # NP5,

Let us have some enumeration of DOTMs such that each DOTM appears infinitely many times
in the sequence My, Ms, M3 ... and given an index ¢ in binary, we can construct a code of M; in
time O(logi), i.e., in linear time. Such an enumeration can be obtained in the following way. If
u is a padded binary code of a DOTM M, then let 4,, be the positive integer that is represented as
1w in binary. We say that 7,, represents M and we define M;, = M. For all integers that do not
represent a DOTM, we define that they represent some fixed DOTM, like for example a DOTM
that rejects every input in one step.

Algorithm 1: B

Input: w € ¥*
1 B=10
/* B will be a ‘‘growing’ oracle that will contain only strings of size
at most |w| and at most one string of each size. */
2 5=10
/* S will be a set of all oracle queries inside the following for
loop. */
3fori=1,2...|w|do
4 Simulate MZ-B on the input 1° for 2/~ steps (or until MZB halts) and add all oracle
queries of MZ-B on this computation to S.
/* Note that we are making a sort of diagonalization: The machine

MiB has the same index as the input length, which determines

also the bound for the number of steps. */

if MZ.B rejects during the simulation then

Let be the lexicographically first string from ¢ that is not in S

/* Note that the string z always exists because S has at most

20428 422 . 42l =20
elements and there are at least 2’ strings in Y. */
7 B =BU{z}

/* Note that because z ¢ S, for j <+i, adding = to B does not
change the computation of MJB on the input 1/ in the first
2/=1 steps. */

8 if w € B then accept

-]

else reject

Figure 4.1: Algorithm B that defines the oracle B.

Consider the algorithm B in Figure 4.1 and let B be the language decided by Algorithm B.
Note that if the for loop in Algorithm B would run forever (not until i = |w|), then the set B from
the algorithm would “converge” to the language B. What is more, for each ¢, the DOTM M; with
the oracle B in the first 2/~ steps on the input 1* computes the same as in the algorithm where the
oracle B is only partially built.

66

It is clear that the Algorithm B runs in exponential time, hence B € EXP. Now define the
language
L = {1™;m € N and there exists a string z € ¥"" such that z € B}.

Clearly, L € NPB; the certificate for 1" € Lisx € ¥™ N B. Let f : N = R>(be a function
such that f(n) = o(2"). The only thing left to prove is that L ¢ DTIMEP(f(n)).

If L € DTIMEZ(f(n)), then there exists a DOTM M with oracle B that decides L in time
O(f(n)). Because f(n) = o(2™) and because M is represented by infinitely many integers, we
can choose a large enough k so that M = M}, and M, on inputs of length k& makes at most 281
steps. By Algorithm 3, we have that M ,f rejects the string 1* if and only if B contains a string of
length k, which is true if and only if 1¥ € L by the definition of L. This is a contradiction with the
fact that M, ,f decides L. U

Together, Lemma 4.3.1 and Lemma 4.3.2 imply the following theorem.

Theorem 4.3.3. There exist oracles A and B in EXP such that P = NP and PP £ NP,

67

68

Chapter 5

Crossing Sequences

While the Chapters 2, 3 and 4 of the dissertation discussed results that are at least mentioned in
most standard textbooks, this chapter is more specific. It speaks about crossing sequences, a notion
that is defined only for one-tape Turing machines and it helps us to understand why one-tape Turing
machines are weaker than multi-tape Turing machines. In particular, crossing sequences help us
to prove that deciding the problem PaLINDROME takes at least quadratic time on one-tape Turing
machines, while linear time is enough on multi-tape Turing machines (see Proposition 5.1.10).

We begin by introducing the notion of crossing sequences and then we present the standard
cut-and-paste technique that is used in most of the results in this chapter, at least implicitly. We
prove that one-tape Turing machines that run in time o(nlogn) actually run in linear time and
accept a regular language. The main theorem in this section, called the compactness theorem
(Theorem 5.2.1), tells essentially that to verify whether a given one-tape Turing machine runs in a
specified linear time bound, we only need to verify that it does not run for too long on short inputs.

All the main results in this chapter relativize. We actually defined the oracle Turing machines
in such a way that the results in this chapter would relativize. Although we will only talk about
NTMs and DTMs, we will mention NOTMs where there needs to be a special notice.

5.1 Definition and Basic Results

For a one-tape Turing machine M, we can number the cells of its tape with integers so that the cell
0 is the one where M starts its computation. Using this numbering we can number the boundaries
between cells as shown in Figure 5.1.

CELLS: e | =31 =2|-=1]0 1 2 3 4 5

BOUNDARIES: -+ —3 —2 —1 0 1 2 3 4 5

Figure 5.1: Numbering of tape cells and boundaries of a one-tape Turing machine. The shaded
part is a potential input of length 4. If the Turing machine is an oracle Turing machine, there is the
symbol > in the cell —1.

Intuitively, a crossing sequence generated by a one-tape NTM M after t steps of a computation
¢ on an input w at a boundary 1 is a sequence of states of M in which M crosses the ith boundary
of its tape when considering the first ¢ steps of the computation ¢ on the input w. We assume that,

69

in each step, M first changes the state and then moves the head. A more formal definition is given
in the next paragraph.

Suppose that a one-tape NTM M in the first ¢ € N U {oo} steps of a computation ¢ on an
input w crosses a boundary ¢ of its tape at steps t1, ¢ . . . (this sequence can be finite or infinite). If
M was in a state g; after the step ¢; for all j, then we say that M produces the crossing sequence
CHM,¢,w) = q1,q2 ... and we denote its length by |C{(M,¢,w)| € NU {oco}. The sequence
alternates left-moves and right-moves and begins with a left move if and only if + < 0. Note that
C!(M, ¢, w) contains all information that the machine M carries across the ith boundary of the tape

in the first ¢ steps of the computation ¢. If we denote C;(M, (, w) = Cl-q (M, ¢, w), the following
trivial identity holds because the head of M must move in each step:

cl= Y [Ci(M, ¢ w)l.

1=—00

5.1.1 The Cut-and-Paste Technique

Let 7 be the tape of a one-tape NTM M with some symbols written on it. We can cut the tape
on finitely many boundaries to get tape segments 17,7 ... T so that 7 = 7175 - - - T3, Where 7 is
left infinite, 7, is right infinite and the other segments are finite. We can also start with a tuple of
segments 71, 72 . . . 7; and glue them together to get the tape 7 = 7172 - - - 7;. This can be done if
71 is left infinite, 7; is right infinite, other segments are finite and exactly one of the segments has
a prescribed location for the cell O (where M starts its computation). We consider a tape in the
same way as an input, i.e., we can give a tape to M and it will start computing on it as its transition
function determines. Hence, if M is given a tape 7, then for a step ¢ of a computation ¢ of M on
7, the crossing sequence generated at a boundary ¢ is denoted Cf (M, ¢, 7). Although a tape can
be filled with random symbols, in our main applications it will correspond to some input w being
written on it.

Because the crossing sequences contain all the information the Turing machine carries across
some boundary of the tape, the next proposition is very intuitive. The proofis a slight generalization
of a result of Hennie [17].

Proposition 5.1.1. Let M be a one-tape NTM and let 1175 and T T2 be two tapes. Let t be a step
of a computation ¢ of M on the tape 1175 and let t be a step of a computation f of M on the tape
T1T9. Suppose that the segments 1 and 1o are joined at a boundary i > 0 and the segments T, and
75 are joined at a boundary i > 0. If

Czt(Ma Ca TlTQ) = C%t(M, 57 7:17:2)7
then there exists a computation (5 of M on the tape 117> and a step t,5 € N U {oo} such that,

a) the crossing sequences generated by M at the corresponding boundaries of the segment T,
in the first t steps of the computation ¢ and in the first t|5 steps of the computation (5 are
identical,

b) the crossing sequences generated by M at the corresponding boundaries of the segment T
in the first t steps of the computation ¢ and in the first t,5 steps of the computation (5 are
identical.

70

What this proposition (together with its proof) tells is that, for tapes 772 and 7,72 and for
computations ¢ and é of an NTM M as in the proposition, we can cut the tapes and glue them to
get the tape 717 and there will exist a computation of M on the tape 7 T that will act as ¢ on the
part 71 and as C on the part 7 for the first few steps. If t = |¢| and £ = |C |, then there will exist a
computation of M on the tape 775 that will act as on the part 71 and as ¢ on the part 7o until the
end of the computation.

Proof. LetC = q1, ¢z . . . be the crossing sequence produced by M on the tape) 7 at the boundary
1 after the first ¢ steps of the computation (. This means that the boundary ¢ is crossed to the right
in the state ¢; for the first time and that the tape segment 7 is such that the head of M can return
across the ith boundary in the state go. Then the head of M is on the left side of the boundary 7 and
it does not know anything about the other side of the boundary except that it was able to “return
the head” when M went to the state ¢go. Then M computes on the left side of the boundary ¢ until
it again crosses the ¢th boundary in the state g3 and the right side of the boundary ¢ is such that M
can cross back in the state g4 ... The analogous situation is happening during the computation ¢
of M on the tape 717». Hence, the tape segments 7 and 7o are such that if M enters them from
the left in the state q;, then there exist computations of M such that M can leave these segments
in the state ¢o. If M then again enters in the state g3, M can cross back in the state q4 ... The same
philosophy is for the left tape segments 7 and 7;. They are such that M can leave them in the state
q1 and if M enters back in the state g9, it can leave them again in the state g3 ...

Hence, there exists a computation (5 of A/ on the tape 7172 and t;5 € N U {oco} such that a)
and b) hold. The computation (3 is just as ¢ on the tape segment 7 in the first ¢ steps and f on the
tape segment 75 in the first ¢ steps. U

Note that the conditions 7 > 0 and j > 0 cause the cell O to be in the left tape segments, which
makes it possible to swap the right tape segments. The same result also holds if we put i, 7 < 0.
However, for 7,5 < 0 (or ¢,7 < —1) the result does not hold for NOTMs, because changes in the
oracle part of the tape influence a computation when crossing the boundary 0.

The following corollary is now trivial.

Corollary 5.1.2. Let 117273 be the tape of a one-tape NTM M. Suppose that the segments 11 and
To are joined at a boundary i > 0 and the segments To and T3 are joined at a boundary j. If M
on a computation C on the tape T 7273 produces the same crossing sequence at the boundaries i
and j after t € NU {oo} steps then, for each n € N, there exists a computation (,, of M on the
tape 71(12)" 73 and a step t,, € NU{oc} such that M on the tape T1(72)" 73 on the first t,, steps of
the computation (,, produces the same crossing sequences at the corresponding boundaries of the
segments T1, T3 and of each copy of the segment T as in the first t steps of the computation on
the tape T17oT3.

Note that the condition 7 > 0 could be replaced by 7 < 0. In other words, if the same crossing
sequence appears on both ends of some tape segment that does not contain the cell 0, then we can
remove this segment or add extra copies of it next to each other without affecting the result of the
computation. The same result holds also for NOTMs, but only for 7 > 0.

Proof. Consider two copies of the tape 717273, one with 7; and 75 joined into a left segment and
one with 79 and 73 joined into a right segment and apply Proposition 5.1.1. The corollary follows
by induction. O

71

5.1.2 One-Tape Turing Machines that Run in Time o(n logn)

In this section we prove that a one-tape NTM (and also an NOTM) that runs in time o(n logn)
actually runs in linear time (Corollary 5.1.6) and that it accepts a regular language (Corollary 5.1.7).

The next lemma, implicit in Kobayashi [20], and in Tadaki, Yamakami and Lin [29] tells what
is so special with one-tape NTMs that run in time o(n logn).

Lemma 5.1.3. Let T : N — R+ be a function such that T'(n) = o(nlogn) and let

nlogn .
gy =4 Ty P =2
1 . n=0,1.

Then, for any integer q > 2, there exists a constant c such that any one-tape NTM with q states
that runs in time T'(n), on each computation on each input produces only crossing sequences of
lengths bounded by c. What is more, ¢ can be any constant satisfying ¢ > max{T(0),T'(1)} and
the following inequality:

(logq)/g(n)*/? _ 1 1/2
an <n_3- " 9™ (5.1)
q—1 g(m)t/2 "~ logn
foralln > 2.
Note that since lim g(n) = oo, then, for any ¢ > 2, there exists a constant
n—o0

¢ > max{7T'(0),T(1)} such that Inequality (5.1) holds for all n > 2. The lemma holds also
for one-tape NOTMs.

Proof. Let)M be a one-tape NTM with ¢ states that runs in time 7'(n). Let ¢ > max{7(0),7(1)}
be such that Inequality (5.1) holds for all n > 2 and suppose that M produces a crossing sequence
of length more than c on some input. Let w be a shortest such input, let ¢ be the corresponding
computation and let ng = |w|. Note that ny > 2 since ¢ > max{7'(0),7(1)}. Suppose w was
given to M and M followed the steps of the computation (.

Let h be the number of boundaries from {1, 2. .. ng—1} at which crossing sequences of lengths

less than (logn0)/g(ng)'/? were produced. Then we have
ng log ng log ng
———=T(ng)>c+(np—2—h)————
glng)) e 0B i
and hence
1/2
h>mny—2— 1o 9(no)
g9(ng)/2 ~ ~ logng
(log g)/g(no)"/?
> 3270 +1
q—1
(logno)/g(no)'/2+1 _
— 31 +1.
q—1

Moreover, a simple counting shows that there are at most

q(logno)/a(no)' /241 _ 4

q—1

72

distinct crossing sequences of lengths less than (log ng)/g(no)'/2.

Hence, by the pigeonhole principle, there exist at least four boundaries in {1,2...n¢ — 1} at
which the same crossing sequence C was produced. Now if a crossing sequence of length more
than ¢ was produced at some boundary ¢ € Z, we can find two boundaries in {1,2...n9 — 1} at
which C was produced, such that ¢ does not lie between them. If we cut away the substring of w
between those two boundaries, we get an input for M of length less than ng on which M produces
a crossing sequence of length more than c. This contradicts the selection of w and completes the
proof of the lemma. ([

This lemma has some interesting consequences.

Corollary 5.1.4. Ifa one-tape NTM M runs in time T'(n) = o(nlogn), then there exists a constant
D, such that M on each input w visits at most |w| + D cells.

Proof. By Lemma 5.1.3, the length of crossing sequences produced by M is bounded by a constant
and thus M produces only constantly many distinct crossing sequences. If K is this constant, let
us prove that M visits at most K cells to the right of the input.

Suppose that this is not true for some input w. If we run M on w, then there are at least two
boundaries with index greater than or equal to |w|, say i and 7, that produce the same non-empty
crossing sequence. At the beginning of the computation we only have blank symbols between those
two boundaries, thus all boundaries i + k|j — i| for k& € N produce the same crossing sequence.
This is a contradiction with M running in finite time, thus M visits at most K cells to the right of

the input.
The same way we can show that M visits at most K cells to the left of the input, which com-
pletes the proof. (]

While the above corollary holds also for NOTMs, we have to be more careful with the last sentence
of the proof because it claims something about the oracle part of the tape. Actually, if M is an
NOTM, a different argument is needed to show that it visits only O(1) cells to the left of an input.

Corollary 5.1.5. If a one-tape NOTM M runs in time T(n) = o(nlogn), then there exists a
constant D, such that M on each input w visits at most |w| + D cells.

Proof. We are only left to show that M visits O(1) cells to the left of each input. Suppose that this is
not true. Hence, for each cell with a negative index, M visits this cell on some computation on some
input. Recall that by Lemma 5.1.3, M produces only constantly many distinct crossing sequences.
Hence, there exist a crossing sequence C, non-empty inputs wo, wy . . . and computations (p, (i - . .
of M on these inputs such that M produces the crossing sequence C at the boundary 1 on each
of these computations and, for each ¢ € N, M visits the cell —¢ on the computation ¢;. For each
1 € N, let w; = a;w; for a; € 3 and w; € ¥*. By Proposition 5.1.1 it follows that M on inputs
apWg, a1Wo, aWy - . . visits each of the cells with a negative index on appropriate computations,
because left of the boundary 1 M can compute as (g, (1, (s ... and right from the boundary 1 it
can compute as p. This is a contradiction with the fact that A/ makes at most T'(|wy|) steps on the
inputs agwo, a1Wo, agly . . . which are all of length |wyg|. O

This corollary is interesting also because it implies that a one-tape NOTM that runs in time
o(nlog n) makes only a constant number of distinct oracle queries on all computations on all inputs.
This furthermore implies that an oracle query can be computed in constant time, which implies that
alanguage that is decided by some one-tape NOTM that runs in time o(n log n) can also be decided

73

by a (standard) one-tape NTM in time o(nlogn). This claim will be even more strengthened by
Proposition 5.1.7.

The next corollary, proven also by Pighizzini [26], tells us that time o(n logn) for one-tape
Turing machines actually means linear time. It holds also for NOTMs.

Corollary 5.1.6. If a one-tape NTM runs in time o(nlogn), then it runs in linear time.

Proof. Let M be a one-tape NTM that runs in time o(n logn). The main observation is that M
on each input w on each computation ¢ halts exactly after > |C| steps, where the sum is over all
crossing sequences C produced at boundaries of the tape. From Lemma 5.1.3 it follows that each
addend is bounded by a constant and from Corollary 5.1.4 it follows that there are at most |w|+ D
of them for some constant D. U

Finally, we show that one-tape NTMs that run in time o(n log n) accept only regular languages.
The idea of the proof is from Pighizzini [26] and it holds also for NOTMs because a one-tape NOTM
that runs in time o(n log n) can be simulated by a one-tape NTM that runs in time o(n logn) (see
the text before Corollary 5.1.6).

Proposition 5.1.7. If a one-tape NTM runs in time o(n logn), then it decides a regular language.

Proof. Let M be a one-tape NTM that runs in time o(n logn) and let L be the language that M
decides. We may assume that, for all n, M on inputs of length n in the last step of each of its
computations crosses the boundary n of its tape (in one of its halting states). This can be assumed
because M can, for example, in the first O(n) steps mark the cell with the last symbol of an input
(using additional symbols) and when the computation is finished, M can search for this cell (in
linear time by Corollary 5.1.4) and halt while moving its head to the neighboring cell on the right.
Let us describe an NFA M = (Q,%,0,qs, F) that decides L. By Lemma 5.1.3, the length of
crossing sequences produced by M is bounded by a constant and thus M produces only constantly
many crossing sequences. Let .S be the set of these crossing sequences and let F' C S be the subset
of S of such crossing sequences that end with an accepting state. Note that the crossing sequences
from F can only be produced at the rightmost boundary of some input. Define) = S U {g;} for
some new state g5 and, if M accepts input €, add g5 to F'. The definition of ¢ is the following.

e For each C € S and for each a € X, let there exist an edge from g5 to C with the weight a if
there exists some input w of M that begins with the symbol a and a computation ¢ of M on
w such that M produces the crossing sequence C at the boundary 1 on computation (.

e Foreach Cy,Cy € S and for each a € X, let there exist an edge from C; to Co with the weight
a if there exists some input w of M with the (i > 1)th symbol @ and a computation ¢ of M
on w such that M on computation ¢ produces the crossing sequence C; at the boundary ¢ — 1
and the crossing sequence Cz at the boundary .

It is clear that if M accepts an input w, then M also accepts the input w: M just follows the
sequence of states that are crossing sequences produced by an accepting computation of M on w
at boundaries 1,2. .. |w|.

Now suppose that M accepts an input w.

e If || = 0, then @ = ¢ and M accepts .

74

e If || = 1, then M accepts || in one step, hence there exists an edge from ¢, to some
C € F'. This implies that there exists an input w of M that begins with w and M produces
the crossing sequence C at the boundary 1 on some computation. Because C ends with the
accepting state and because M always finishes its computation at the end of its input, it
follows that |w| = 1 which implies @ = w and M accepts the input w.

o If || = k > 1, then let w = ayas . ..ay where, for each i, a; € X. Let ¢5,C1,Co...Ck
be a sequence of states of M that on the input w lead to an accepting state C;, € F. By
the definition of M there exists an input w; that begins with the symbol a; such that M on
the input w; produces the crossing sequence C; on some computation (; at the boundary 1.
Similarly, for each 1 < j < k there exists an input w; with the non-first symbol a; such
that M/ on the input w; on some computation (; produces the crossing sequences C;_1 left
of the symbol a; and the crossing sequence C; right of the symbol a;. Note that because
Cr ends with an accepting state and the computation (; produces the crossing sequence Cj,
on the right of the symbol ag, this symbol is the last symbol of the input wy. Let { be the
computation of M on the input w that computes as

— (1 when the head of M is over the first symbol of w or left of it,
— (; when the head of M is over the jth symbol of w for 1 < j <k,
— (i when the head of M is over the last symbol of w or right of it.
It is clear that M on the computation ¢ produces the crossing sequences Cy, Cs...Cy, at the

boundaries 1, 2. .. k, respectively. Hence, the computation ¢ of M on the input w is accept-
ing.

To sum up, the NTM M and the NFA M accept the same language L, thus L is regular. (]

An “algorithmic” version of the above proof will be given later in Theorem 5.2.10.

5.1.3 Simple Applications

In this section we prove lower and upper bounds on the number of steps required to solve the
problems CoMPARE LENGTH and PALINDROME by one-tape Turing machines. The lower bounds
will be proven with the help of crossing sequences.

The problem CompPARE LENGTH was defined in Section 1.1 and it asks whether a given string
is of the form 0%1* for some k € N. Let L., be the corresponding language

L.={0F1%; k e N} C ©*.

The problem PALINDROME was defined in Section 2.2.1 and it asks whether a given string is a
palindrome. We denote by L,, C ¥* the language of palindromes. In Section 2.2.1 we proved that
the language L, is not regular and in the next lemma we use crossing sequences to show that the
language L. is not regular either.

Lemma 5.1.8. The language L. is not regular.

Proof. If the language L. was regular, then it would be recognized by some DFA, hence there
would exist a one-tape DTM M that would decide L. and would generate only crossing sequences
of length 1 at all boundaries on all inputs. Hence, there would exist two different integers k1, ko > 0

75

such that the crossing sequence produced by A on the input 0111 at the boundary k; would be
the same as the crossing sequence produced by M on the input 0%21*2 at the boundary k. Because
both of these inputs are accepting, M also accepts the input 0¥ 1%2 by Lemma 5.1.1 which gives a
contradiction. 0

The next proposition gives a tight bound on how fast a one-tape Turing machines can solve the
problem CompaRE LENGTH. Together with Proposition 5.1.7 it also implies that the time bounds
©(nlogn) are the tightest that allow a one-tape Turing machine to recognize a non-regular lan-
guage.

Proposition 5.1.9. The language L. = {0*1%; k € N} can be decided in time O(nlogn) by a
one-tape DTM, but not in time o(nlogn) by any one-tape NOTM with any oracle.

Proof. Because L. is not regular, it cannot be solved in time o(n logn) by any one-tape NOTM
with any oracle by Proposition 5.1.7. Hence we only have to prove the upper bound. To do so,
let M be the following one-tape DTM. On an input w of length n, M first verifies in O(n) steps
whether the input is of the form 0%1¢ for some k,¢ € N and if not, it rejects. Additionally, M
writes some special symbols like # in the cell left and in the cell right of the input to mark the
input part of the tape. In all steps that follow, M will pass through the input part of the tape from
one symbol # to the other one, each time making O(n) steps. In one pass, M can verify whether
k and ¢ are of the same parity. If not, it rejects, else, it erases [k/2] zeros and [1/2] ones in one
pass by erasing every second 0 and every second 1. Now there are exactly |k/2] zeros and |1/2]
ones remaining on the tape. M again verifies the parity of | k/2| and [1/2] and if they are distinct,
M rejects. If they are the same, M erases one half of Os and one half of 1s that are left on the tape.
It continues this way until there are still some Os and 1s on the tape. If at the end all Os and all 1s
have been erased, then M accepts, else it rejects. What is M actually doing is verifying whether
the digits of the binary representation of the numbers &k and [match (starting from the last digit).
For each digit M needs O(n) steps, hence O(nlogn) altogether. O

The next proposition tells that the problem PaLINDROME is harder to solve on one-tape Turing
machines than the problem ComparE LENGTH. This result can be found in Kozen [21, Chapter 1].
The idea of the proof is from Hennie [17]. The proposition holds for NOTMs as well.

Proposition 5.1.10. If an NTM M decides the language of palindromes Ly, then it does not run
in time o(n?).

Proof. Let an NTM M with ¢ states decide the language of palindromes. Let us observe, for a
fixed integer k£ > log g, the inputs of the form

a10a20 . .. 0a;0b10020 . ..br0110b;0b;_10 . ..0b10ax0ar—10...0ay 5.2)

where a;,b; € X for all 7. Note that two symbols 1 are consecutive only in the middle of the
observed palindromes. Let us fix an accepting computation of M on each of these inputs (because
they are palindromes, such a computation exists).

First note that, over all inputs of the form (5.2) and over all boundaries 1,2, ... 4k (these are
the boundaries on the left of the two consecutive ones), M produces pairwise distinct crossing
sequences. If not, then there exist inputs

a10a20 N Oak0b10b20 N bk0110bk0bk710 PN Obl()akOak,lo PN 0a1

76

and
1090 .. .0c,0d10d20 . . . d;.0110d;0dr_10 . ..0d10c;0cr—10...0cq

such that we can cut them somewhere on the left of the two consecutive ones and cross-join them,
which would result in an input accepted by M. However, such crossbreeding inputs are not palin-
dromes.

Next, we claim that there exist symbols a1, as ... ax € X such that, for each b1, bo ... b € 3,
M on the fixed accepting computations on inputs

a10a20 . .. 0a;0b10020 . .. br0110b;0b_10 . .. 0b10ar0ag—10...0ay

produces only crossing sequences of length more than
k — [logq]
[log ¢

at boundaries 2k, (2k + 1), (2k + 2) ... (4k — 1), which are the boundaries between the symbols
b; and symbols 0. If this is true, then M on such inputs makes at least

k — [logq] _ 2
oggr)

steps, hence it does not run in time o(n?).

To prove that the desired symbols ay,as...ar € X exist, let us assume the contrary. Then,
for each of the 2F possible beginnings a10a20 . .. Oag, there exist symbols by, by ...b; € X and a
boundary from {2k, (2k + 1), (2k + 2) ... (4k — 1)} such that a crossing sequence of length at

most
k — [log q|

[log g
is produced on it. Note that these “short” crossing sequences have to be pairwise distinct over all
observed inputs. Because there are only

k/1
b gt e 4 qlhTosal)/Moga) _ €187 — 1
qg—1
distinct crossing sequences of length at most
k — [logq]
[log q]
which is strictly less than 2¥, we came to a contradiction. U

We have a tight bound on how fast a one-tape Turing machines can solve the problem PALIN-
DROME.

Corollary 5.1.11. The language of palindromes L,, can be decided in time O(n?) by a one-tape
DTM, but not in time o(n?) by any one-tape NOTM with any oracle.

Proof. The lower bound is proven by Proposition 5.1.10 and the upper bound follows by the fol-
lowing algorithm that can be implemented in O(n?) time on a one-tape DTM. Given an input w,
verify whether the first symbol and the last symbol are the same and delete them. If they were not
the same, reject, else continue comparing the first and the last symbol until there is only one or no
symbols left. Then accept. O

77

Interestingly, the complement of the problem PALINDROME can be solved faster then the prob-
lem itself by one-tape NTMs.

Proposition 5.1.12. The complement L,, of the language of palindromes L, can be decided in time
O(nlogn) by a one-tape NTM, but not in time o(n log n) by any one-tape NOTM with any oracle.

Proof. Because regular languages are closed under complementation, the language L,, is not reg-
ular and the lower bound follows. For the upper bound, consider the following algorithm that can
be implemented in O(nlogn) time on a one-tape NTM. Given an input w, non-deterministically
guess the middle of the input and mark it. If |w]| is even, then insert a new (arbitrary) symbol
between the middle two symbols and mark it. Next, non-deterministically choose and mark one
symbol left from the middle and one symbol right from the middle. If the symbols are the same,
reject, else we have the situation as in Figure 5.2. Everything until now can be done in linear time.
Next, verify whether there are equally many symbols of the input left from #1 as they are right
from #2 and if not, reject. This can be done deterministically in time O(n logn) as in the proof of
Proposition 5.1.9. Next, verify whether there are equally many symbols between #1 and # as they
are between # and #2 and if not, reject. Else, accept. Again, this can be done deterministically
in time O(nlogn) as in the proof of Proposition 5.1.9. It is clear that there exists an accepting
computation if and only if the input was not a palindrome. O

_ #1 # #2 =

Figure 5.2: Suppose that a one-tape NTM guessed the middle symbol # (wrongly) and the symbols
#1 and #2 left and right from the middle symbol. The shaded part is the input.

5.2 The Compactness Theorem

In this section, we present the compactness theorem proven by the author in [11]. Simply put, if we
want to verify that an NTM M runs in time C'n 4+ D, we only need to verify the number of steps
that M makes on inputs of some bounded length. The result can also be found, in a weaker form,
in [10].

The main technique used to prove the compactness theorem is the cut-and-paste technique
explained in Section 5.1.1. We show that a Turing machine that runs in time Cn + D must produce
some identical crossing sequences on each computation, if the input is long enough. Thus, when
considering some fixed computation, we can partition the input on some parts where identical
crossing sequences are generated, and analyze each part independently. We prove that it is enough
to consider small parts of the input.

Later in Section 5.2.3 we prove some supplementary results to the compactness theorem.
Among other we give an explicit upper bound on the length of the crossing sequences that are
produced by a one-tape NTM that runs in time Cn + D. We also give an algorithm that takes a
one-tape NTM M and integers C, D € N as input and, if M runs in time Cn + D, returns an
equivalent NFA.

78

5.2.1 Computation on a Part

Before we formally state the compactness theorem, let us define ¢/ (w, C). Intuitively, ¢y (w,C) is
the maximum number of steps that a one-tape NTM M makes on a part w of an imaginary input,
if we only consider such computations on which M produces the crossing sequence C at both (the
left and the right) boundaries of w. To define it more formally, we will describe a valid computation
of M on a part w with frontier crossing sequence C = (q1,q2-..q;). A similar but slightly less
general definition was given also by Pighizzini [26]. We will use the term standard case to refer to
the definition of a computation of an NTM on a given input (not on a part). Assume |w| =n > 1
and let M = (Q, X, T, _, 9, 4o, Gacc, Qres)-

e A valid configuration is a 5-tuple (Cy1,w, i, G, C2), where C; is the left crossing sequence,
is some string from ', 0 < ¢ < n — 1 is the position of the head, § € @ is the current state
of M and C, is the right crossing sequence. Intuitively, C; and Cy are the suffixes of C that
still need to be matched.

e The starting configurationis ((q2,q3 ... q),w,0,q1,(q1,92 . . . q;)). As in the standard case,
we imagine the input being written on the tape of A with the first symbol in the cell 0 (where
also the head of M is). The head will never leave the portion of the tape where the input
is written. Note that ¢; is missing in the left crossing sequence because we pretend that the
head just moved from the cell -1 to the cell 0.

e Valid configurations A = (C14,wA4,1%,q4,C24) and B = (Ci1p,wn, j,qpB,Cap) are succes-
sive, if one of the following holds:

— the transition function of M allows (wa4,4,q4) to change into (wp, j,qg) as in the
standard case, C14 = C1g and Co4 = Cap,

- i =3 =0,Cy4isof the form (¢, ¢5,C1B), wa = aw, wp = bw, (¢,b, —1) € 6(qa,a)
and Cy4 = Cop, or

- i=7j=mn—1,0Cyy4 is of the form (¢, qp,C2p), wa = Wa, wp = wb and (g,b,1) €
6(6]A,(1) and ClA = ClB-

e There is a special ending configuration that can be reached from configurations of the form

- ((@1),aw,0,4q,()), if (¢, b, —1) € 6(q,a) for some b € I or
- (), wa,n—1,4,(q)), if (g;,b,1) € (G, a) for some b € T.

o A valid computation of M on the part w with frontier crossing sequence C is any sequence
of successive configurations that begins with the starting configuration and ends with the
ending configuration.

Similar to the standard case, we can define C;(M, ¢, w, C) to be the crossing sequence generated by
M on the computation ¢ on the part w € X" with the frontier crossing sequence C at the boundary
1 (1 <i<n—1). Wedefine

n—1

i=1
as the length of the computation ((on the part w). Figure 5.3 justifies this definition.

We define ¢/ (w,C) € N|{J{—1} as the length of the longest computation of M on the part w

with the frontier crossing sequence C. If there is no valid computation of M on the part w with the
frontier crossing sequence C or |C| = oo, then we define ¢y, (w,C) = —1.

79

w1 w w2

BOUNDARIES: () w1 | lwq | + |wl [wi] + |w] + [we]

Figure 5.3: Suppose an input wjwws is given to M, |wy |, |w| > 1 and let a computation ¢ produce
the same crossing sequence C at boundaries |w1 | and |wq| + |w]. If ¢ is the corresponding com-
putation of M on the part w, then M on the computation ¢ spends exactly |(;| steps on the part w.
What is more, if the input wyws is given to M (we cut out w) and we look at the corresponding
computation ¢, extracted from ¢ thus forming a crossing sequence C at the boundary |w1|, then
|¢2] = |¢| —|¢1]- Such considerations will be very useful in the proof of the compactness theorem.

5.2.2 The Compactness Theorem

For a positive integer n and a one-tape NTM M, define
Su(M) = {CH(M, ¢, w); |w| =n, 1 <i<mn, ¢computation on input w, t < |(|}.

Thus S,,(M) is the set of all possible beginnings of the crossing sequences that M produces on the
inputs of length n at the boundaries 1,2...n.

Theorem 5.2.1 (The compactness theorem). Let M be a one-tape NTM with q states and let C, D €
N. Denote { = D +8¢°, r = D 4+ 12¢° and S = Uf;zl Sn(M). It holds:
M runs in time Cn + D if and only if

a) for each input w of length at most { and for each computation ¢ of M on w, it holds || <
Clw| + D and

b) for each C € S and for each part w of length at most r, for which tp;(w,C) > 0, it holds
tar(w,C) < Cluw).

Before going to the proof, let us argue that the theorem is in fact intuitive. If a Turing machine
M runs in time C'n + D, then a) tells us that A must run in that time for small inputs and b) tells
us that on small parts w that can be “inserted” into some input from a), // must make at most C'|w|
steps. For the opposite direction, one can think about constructing each input for M from several
parts from b) inserted into some input from a) at appropriate boundaries, which results in running
time Cn + D.

The following lemma already proves one direction of the compactness theorem.

Lemma 5.2.2. Let all assumptions be as in Theorem 5.2.1. If b) does not hold, then there exists
some input z of length at most ¢ + (C'r + D)r such that M makes more than C|z| + D steps on z
on some computation.

Proof. If b) does not hold, then there exists some finite crossing sequence C € S, a part w of
length at most and a valid computation ; of M on the part w with the frontier crossing sequence
C, such that |(;| > C|w| + 1. From the definition of S we know that there exist strings w; and ws
such that [wq| > 1 and |w;| + |wz| < ¢ and a computation (2, such that C is generated by M at
the boundary |w; | on the input wjws on the computation (s, after some number ¢ of steps. As in
Figure 5.3, we can now insert w between w; and ws. In fact we can insert as many copies of w

80

between w; and we as we want, because the crossing sequence C will always be formed between
them.

Let us look at the input z = w; wCT TPy, for M. Let ¢ be a computation of M on z that on the
part wy (and left of it) and on the part wo (and right of it) it acts like the first ¢ steps of (2, and on
the copies of w it acts like (;. Note that after spends ¢ steps on the parts w; and ws, the crossing
sequence C is generated at the boundaries |w1|, (|wi| + |w]) ... (Jlwi| + (Cr + D)|w|) and by that
time M makes at least ¢t + (Cr + D)(C|w| + 1) steps. Using ¢t > 1 and r > £ > |w| + |wa], we
see that M makes at least

C(Cr + D)|w| + C(lw1| + |w2]) + D+1=Clz| + D+1

steps on the computation ¢ on the input z. Because |w| < r and |wq| + |wa| < ¢, we have
|z| < €+ (Cr+ D)r and the lemma is proven. O

Next, we prove the main lemma for the proof of the other direction of the compactness theorem.

Lemma 5.2.3. Let C and D be non-negative integers, M a one-tape q-state NTM and w an input
for M of length n. Assume that, on some computation on the input w after at most Cn + D steps,

each crossing sequence produced by M at the boundaries 1,2 .. .n appears at most k times. Then
n < D + 4kqC.

Proof. Let M make at least t < Cn + D steps on a computation ¢ on the input w and suppose
that each crossing sequence produced by M on (after ¢ steps at the boundaries 1,2 ...n appears
at most k times. We know that Cn+ D >t > " | |CH(M, ¢, w)|, thus

n <D+ (C+1n— Y [CHM, ¢ w)l

=1

=1

C+1 n
<D+> > (C+1-})
j=0 i=1
IC}(M,¢w)|=j
c+1
<D+ kg!(C+1-j)
j=0
< D+ 4kq©,
where the last inequality follows by a technical lemma proven next. U

Lemma 5.2.4. For every q > 2 and C € N, it holds

<. O _(C+1)g+C
S PC-j=L OO o

(g—1)2 -

81

Proof.

c c g [

Zq](C—J)ZCZqJ—qCTq >

7=0 7=0 7=0
C+1 _ 1 d +

TP —(C+1)g+C
(q—1) '

It is easy to see that, for ¢ > 2, it follows

qC—H o (C+ 1)q—|—C - qC’—H
(q—1)? ~ (¢—1)?
< 4¢°7 1 O

Before going into the proof of the compactness theorem, let us recall the definition of w(i, j)
which is the substring of a string w, containing symbols from ith to jth, including ith and excluding
jth (we start counting with 0). Alternatively, if w is written on a tape of a Turing machine, w(3, j)
is the string between the ¢th and jth boundary.

Proof of the compactness theorem (Theorem 5.2.1). If M runs in time C'n + D, then a) obvi-
ously holds and b) holds by Lemma 5.2.2. Now suppose that a) and b) hold. We will make a proof
by contradiction, so suppose that M does not run in time Cn + D. Let w be a shortest input for
M such that there exists a computation of M on w of length more than C|w| + D. Denote this
computation by ¢ and let n = |w|, t = Cn + D.

Before we continue, let us give an outline of what follows in one paragraph. Our first goal
is to find closest boundaries j; and jo such that M produces the same crossing sequence C =
C;fjl (M, ¢, w) = C;;rl(M, ¢, w) at them after the (¢)th and the (¢ + 1)st step of the computation
¢ (see Figure 5.4). Then using the fact that w is a shortest input for M such that there exists
a computation of M on w of length more than C|w| + D, we argue that tj;(w(j1,j2),C) >
Clw(j1, j2)|. Now the most important part of w is between the boundaries j; and jo, so we want to
cut out the superfluous parts to the left of j; and to the right of jo (see Figure 5.5). After the cutting
out we get an input wyw(j1, j2)ws on which M on the computation corresponding to ¢ on the time-
step corresponding to ¢ generates the crossing sequence C at boundaries |w1 | and |w1 |+ j2 — j1 and
all other crossing sequences are generated at most 3 times at boundaries 1,2 ... (jwi| 4+ jo — j1 +
|wal): once left from w(j1, j2), once at the boundaries of w(7j1, j2) and once right from w(j1, j2).
Using Lemma 5.2.3 twice, we see that |wyws| < £and [wyw(j1, j2)we| < 7, which implies C € S
and |w(j1,j2)| < r. This contradicts b) because 57 (w(j1, j2),C) > Clw(j1, j2)|-

As we stated in the above outline, our first goal is to find boundaries j; and j2. From a) it follows
thatn > £ = D +4-2¢%, so by Lemma 5.2.3 there exist at least three identical crossing sequences
produced by M on the input w on the computation (after ¢ steps at the boundaries 1,2...n. Let
these crossing sequences be generated at boundaries i; < iy < %3 (see Figure 5.4). Because
Cy (M, ¢, w) and C}, (M, ¢, w) are of equal length, the head of M is, before the (¢+ 1)st step of the
computation (, left of the boundary #; or right of the boundary i3. Without the loss of generality
we can assume that the head is right from ¢3 (if not, we can rename ¢; = i3 and i2 = i3 and
continue with the proof). Thus, no crossing sequence at the boundaries i1, (i1 + 1) ... i2 changes
in the (¢ + 1)st step of the computation (. Let iy < j; < j2 < iy be closest boundaries such that

82

C;fjl(M, C,w) = C;;I(M, ¢, w). Then the crossing sequences C;(M, C,w), for j1 < j < jo, are
pairwise distinct and do not change in the (¢ + 1)st step of the computation (.

BOUNDARIES: () 11 J1 J2 9 13 n

Figure 5.4: Finding boundaries j; and jo. The shaded area represents the input w. First, we
find boundaries 71, i3 and 73 at which the same crossing sequence is generated after ¢ steps of the
computation . Because the crossing sequences generated at the boundaries ¢1, i2 and i3 are of the
same length, after ¢ steps of the computation ¢ the head of M is on some cell left of the boundary
11 or on some cell right of the boundary 73, hence either the crossing sequences generated at the
boundaries between (and including) i1 and i3 remain intact in the (¢4 1)st step of the computation ¢,
either the crossing sequences generated at the boundaries between (and including) 72 and ¢3 remain
intact in the (¢ + 1)st step of the computation ¢. Without loss of generality we may assume that the
former holds. We choose i1 < j1 < j2 < 49 to be closest boundaries such that C;jl(M ,Cw) =

1
Ciy (M, ¢, w).

Let (3 be the computation on part w(j1, j2) with frontier crossing sequence C that corresponds
to ¢ and let (2 be a computation on input w(0, j1)w(j2,n) such that its first ¢ + 1 — |(1] steps
correspond to the first ¢ + 1 steps of {. Because the input w(0, j1)w(j2, n) is strictly shorter than
n, M makes at most C'(|w(0, j1)| + |w(j2,n)|) + D steps on any computation on this input, thus

t+1—1¢| < ¢
< C(Jw(0,41)| + [w(ja, n)]) + D.

Fromt = Cn + D and n = |w(0, j1)| + |w(j2,n)| + j2 — j1 it follows that

|Gl = t+ 1= C(|w(0,j1)] + [w(j2, n)]) — D
= C(]Q *Jl) + 17

thus ¢ar(w(j1, j2),C) > Clw(ji, j2)|.

Next, we will cut out some pieces of w to eliminate as many redundant parts as possible (if
they exist), while leaving the part of w between the boundaries j; and js intact. Redundant parts
are those where identical crossing sequences are generated on the computation (after ¢ steps. We
will cut out parts recursively and the result will not necessarily be unique (see Figure 5.5).

Suppose that C}. (M, ¢, w) = C}(M, ¢, w) for1 < k <1< jjorjo <k <1< n.Cutout the
part of w between the kth and /th boundary. Let w’ be the new input. Let the boundaries 51 and j,
for the input w’ correspond to the boundaries j; and js for the input w. Let ¢/ be a computation on
w’ that corresponds to ¢ (at least for the first ¢ steps of ¢) and let ¢’ be the step in the computation
¢’ that corresponds to the step ¢ of the computation (. Now recursively find new k& and [. The
recursion ends when there are no k, [to be found.

From the recursion it is clear that at the end we will get an input for M of the form wy
= wyw(J1, jo)we, where |wi| > 1. Let {y be a computation that corresponds to (after the cutting
out (at least for the first ¢ steps of () and let ¢y be the step in (y that corresponds to ¢. If we denote
ng = |wol, then it holds tg < C'ng + D because either there was nothing to remove and wy = w,
to = t, or wy is a shorter input than w and tg < Cng + D must hold by the minimality in the

83

BOUNDARIES: () ki I 71 J2 ko ks la I3

Figure 5.5: Cutting out parts of w to the left and to the right of w(j1,72). If M on the input
w (shaded) on the computation (after ¢ steps produces the same crossing sequence at bound-
aries k1 and [y, then we can cut out w(k1, ;). The same holds also for pairs (k2,l2) and (ks, l3).
What is more, we can cut out both w(ky,11) and w(ks, l2) if C (M,(,w) = C}, (M, ¢, w) and
Cr, (M, ¢, w) = C}, (M, ¢, w). However, we cannot cut out both w(kz, l2) and w(ks, I3) because
they overlap, and we may get a different outcome if we cut out w(ks, l3) or w(ks, l3).

definition of w. From the construction it is clear that M on input wg on computation (y after ¢
steps generates the crossing sequence C at the boundaries |w; | and |wi| + j2 — ji1. What is more,
the crossing sequences at the boundaries 1,2. . . |w1 | are pairwise distinct. The same is true for the
crossing sequences at the boundaries (|wq| + 1), (Jwi| 4+ 2) ... (Jwi1| + j2 — j1) and the crossing
sequences at the boundaries (|w1| + jo — j1), (|wi| +j2 —j1+ 1) ... ng. Because ty < Cng+ D,
we get that ng < D + 4 - 3¢° = r by Lemma 5.2.3, hence |w(j1, j2)| < 7.

Denote @ = wywy and 7 = |w| + |ws|. Let the computation ¢ on @ be a computation that
corresponds to ((at least for the first ¢ steps of (o) and let ¢ be the time step of E that corresponds
to the time step ¢ of (p. Because n < ng < n and because w is a shortest input for M that violates
the bound Cn + D, M makes at most C7 + D steps on any computation on the input w, thus also
on the computation {. Note that no three crossing sequences from {C/(M,{,w);1 < i < 71} are
identical, thus by Lemma 5.2.3, 7 < D +4-2¢% = ¢. Because lewﬂ (M, 5, w) = C, it follows that

C € S, which together with |w(j1, j2)| < rand tar(w (41, j2),C) > Clw(j1, j2)| contradicts b).[]

5.2.3 Supplementary Results to the Compactness Theorem

In this section we prove several corollaries of the results in the previous section, Section 5.2.2,
which supplement the compactness theorem. For all positive integers C' and D, we will show that
a one-tape NTM runs in time Cn + D if and only if it runs in that time on short inputs. We will
use this to construct an algorithm that takes integers C', D € N and a one-tape NTM M as inputs
and if M runs in time Cn + D, returns an equivalent finite automaton. We will also give some
results that hold if we have a g-state one-tape NTM M that runs in time Cn + D, most notable an
explicit upper bound on the length of crossing sequences that M can produce and a description of
a structure on X* that is induced by M.

The following corollary reveals why we use the name compactness theorem. It is because it
implies that a fixed linear running time of a Turing machine has to be verified only on finitely many
inputs.

Corollary 5.2.5. For positive integers C and D and for the polynomial
p(C,D)=1+C+ D +CD+ D* + CD?,

a one-tape q-state Turing machine runs in time C'n + D if and only if, for each input of length
n < 144p(C, D)¢*C, it makes at most Cn + D steps.

Proof. The only if part is trivial and the if part follows by Theorem 5.2.1 and Lemma 5.2.2. [

84

Corollary 5.2.6. Let all assumptions be as in Theorem 5.2.1. If the NTM M runs in time Cn+ D,
then it only produces crossing sequences of length at most C{ + D.

Proof. Let C be a crossing sequence produced by M on a computation ¢ on the input w. Let us
use induction on the length of |w| to prove that |C| < C¢+ D. If |w| < ¢, then |C| < C|w| + D
and hence |C| < C¢ + D. If |w| > ¢ then by Lemma 5.2.3 there exist at least three boundaries
from {1,2...|w|} such that M on the computation ¢ produces the same crossing sequence at
them. We can choose two of these three boundaries ¢ < j, such that the crossing sequence C is
produced at some boundary that is not strictly between them. If we cut out w(z, j) from w, then the
computation that corresponds to ¢ on the input w(0, 7)w(j, |w|) produces the crossing sequence C
at some boundary. By the induction hypothesis, U

Corollary 5.2.7. Let all assumptions be as in Theorem 5.2.1. If the NTM M runs in time Cn +
D and it produces a crossing sequence C on a computation ¢ on an input w at some boundary

To tell the corollary in other words, if the NTM M runs in time Cn+D, then S = | J,;~; S,,(M).

Proof. We use induction on the length |w|. If |w| < ¢, the corollary follows by the definition of
the set S. If |w| > ¢, then by Lemma 5.2.3 there exist at least three boundaries from {1,2...|w|}
such that M on the computation ¢ produces the same crossing sequence at them. We can choose
two of these three boundaries ¢ < j, such that the crossing sequence C is produced at some bound-
ary from {1,2...|w|} that is not strictly between them. If we cut out w(7, j) from w, then the
computation that corresponds to ¢ on the input w(0, 7)w(j, |w|) produces the crossing sequence C
at some boundary from {1,2... |w(0,7)w(j, |w|)|}. By the induction hypothesis, C € S. O

Corollary 5.2.8. Let all assumptions be as in Theorem 5.2.1. If the NTM M runs in time Cn + D
then, for every string w € ¥, for every computation of M on the input w and for every two
indices 1 < i < j < |w| such that the crossing sequences produced by M on the computation ¢ at
the boundaries i,i + 1...(j — 1) are pairwise distinct, it holds j — i < r.

Proof. We use induction on the length |w|. If |w| < r, the corollary holds. If |w| > r then by
Lemma 5.2.3 there exist at least four boundaries 7; < 2 < i3 < 4 from {1,2...|w|} at which
the same crossing sequence is produced by M on the computation ¢ on the input w. Because the
crossing sequences produced at the boundaries 7,7 + 1...(j — 1) are pairwise distinct, it either
holds i5 < i or i3 > j. Hence, we can cut out one of the substrings w(i1, i2) or w(is,i4) from w
such that the substring w(i, j) remains intact. Then M on the new input on the computation that
corresponds to ¢ produces pairwise distinct crossing sequences at the boundaries corresponding to
i,i+1...(j — 1). Because the new input is shorter than w, it holds j — 7 < r by induction. [

The above corollary has an interesting implication. Recall Proposition 5.1.7 which stated that every
one-tape NTM that runs in time o(n log n) decides a regular language. Now suppose that an NTM
M with ¢ states runs in time Cn + D and it decides a language L. In the proof of Proposition 5.1.7
we explained how an NFA M can be defined so that it will accepted the language L. The states
of M were all possible crossing sequences that M can produce, hence M could have up to qQ(q)
states. What Corollary 5.2.8 tells is that every (non-self-intersecting) path in the graph of M is at
most 7 = O(¢®) states long.

The next simple corollary induces a structure on * that is related to some one-tape linear-time
NTM.

85

Corollary 5.2.9. Let all assumptions be as in Theorem 5.2.1. If the NTM M runs in time Cn + D,
then for every string w € X* and for every computation ¢ of M on the input w, at least one of the
following holds:

1. |w| < {lor

2. there exist indices 1 < i < j < |w| such that j — i < r and M on the computation C on the
input w produces the same crossing sequence at boundaries i and j.

This corollary could be rephrased as follows. If a one-tape NTM M runs in time Cn + D,
then we can construct every string from X* the following way. Begin with some string wy € %* of
length at most ¢ and a computation (y of M on wy. Next, choose a boundary from {1,2... |wg|}
and insert some part yp € X* of length at most r at this boundary, where ¢5s(yo,Co) > 0 and Cy
is the crossing sequence produced by M on (j at the chosen boundary. Let w; be the obtained
string and let ¢; be a computation of M on w; that computes as (y on the parts of wy. Because
tar(yo,Co) > 0, the computation (; exists. Next, choose a boundary from {1,2...|w;|} and
insert some part y; € X* at this boundary, where ¢5/(y1,C1) > 0 and C; is the crossing sequence
produced by M on (; at the chosen boundary. Continue in this a way for finitely many steps.

Proof. Suppose |w| > ¢. By Lemma 5.2.3 it holds that M on the computation ¢ produces some
crossing sequence at least at three boundaries from {1,2. .. |w|}. Leti < j be such two boundaries
at which the same crossing sequence C is produced and the crossing sequences produced at the
boundaries i,7 4+ 1...(j — 1) are pairwise distinct. By Corollary 5.2.8 it holds that j — i < r. [J

We finish this chapter with an algorithmic adornment of Proposition 5.1.7.

Theorem 5.2.10. There exists an algorithm that takes integers C, D € N and a one-tape NTM M
as inputs and, if M runs in time C'n + D, it returns an equivalent NFA.

By Proposition 2.2.2, the algorithm could as well return an equivalent DFA. This result rel-
ativizes, however the algorithm has to use the same oracle as the input NOTMs. To prove the
relativized version, note that, given a one-tape NOTM that runs in time Cn 4+ D, we can construct
an equivalent one-tape NTM that runs in time Cn + D for some C,D € N using ideas from the
proof of Corollary 5.1.5 (see also the paragraph after the corollary).

Proof. Let integers C, D € N and a one-tape NTM M with q states be given. We can use Corol-
lary 5.2.5 to verify whether M runs in time C'n+ D. If this is the case, we can define an equivalent
NFA M = (Q,%,0,qs, F) as in the proof of Proposition 5.1.7, only that this time we do it con-
structively.

We may assume that, for all n, M on inputs of length n in the last step of each of its computa-
tions crosses the boundary n of its tape (in one of its halting states). For £ = D + 8¢, let S be the
set of all the crossing sequences up to the length C'¢ + D. Note that the set of crossing sequences
that can be produced by M is a subset of S by Corollary 5.2.6. Let £* C S be the subset of .S
of such crossing sequences that are formed by an NTM M on some input w on some accepting
computation at the boundary |w|. Note that by Corollary 5.2.7 we can search for such crossing
sequences by only considering inputs of length at most ¢. Define Q = S'U {gs} for some new state
gs and, if M accepts the input &, add g, to F'. The definition of § is the following.

e For each C € S and for each a € %, there is an edge from ¢, to C with the weight a if there
exists some input w of M that begins with the symbol a and a computation ¢ of M on w

86

such that M produces the crossing sequence C at the boundary 1 on the computation (. By
Corollary 5.2.9 it is enough to consider only inputs of length at most ¢, because longer inputs
can be appropriately shortened.

e Foreach C1,Cy € S and for each a € 3, there is an edge from C; to Cs if there exists a valid
computation of M on the part a with frontier crossing sequences C; and Cy. Although such
a computation was formally defined only for C; = Ca, the definition for C; # Cj is intuitive
and analogous.

Clearly, M can be constructed from C, D and M.

First suppose that M accepts an input w. If |w| = 0 then M accepts w, else there exists
an accepting computation ¢ of M on w that produces crossing sequences C1,Cs ...C), at the
boundaries 1,2 ... |w|. By the comments in the definition of M there exists a computational path
qs,C1,Ca ... Cjy for M on the input w where C},,| € F' which means that M accepts w.

Now suppose that M accepts an input w. If jw| = 0 then M accepts w, else there exists an
accepting computational path gs,Cy,Cz . .. C,| for M on the input w. We claim that we can build
a computation of M on w that produces the crossing sequences Cy,Cs .. .Cj,| at the boundaries
1,2...|w|. For each non-first symbol a of w, we know that there exists a computation on the part
a that produces the desired left and right crossing sequence. We also know that there exists an
input wy that begins with the same symbol as w and a computation (y of M on wq such that M
forms the crossing sequence C; at the boundary 1. Furthermore, because C|,,| € F', we know that
there exists an input w; and an accepting computation (; of M on w; that produces the crossing
sequence C,,| at the boundary |wy|. Now the computation of M on w that produces the crossing
sequences C1,Cz . . . C},,| at the boundaries 1,2. .. [w| is the following: on the first symbol and left
of this symbol it computes like (g, right from the last symbol it computes as (; and above each of
the non-first symbols of w it computes as the desired computation. Hence, M accepts w, which
implies that M and M accept the same language. U

87

88

Chapter 6

Verifying Time Complexity of Turing
Machines

This chapter contains the main results of the author [10, 11]. For a function 7' : N — R >(, we
show the following in the first part of the chapter, Section 6.1.

e The problem of whether a given multi-tape Turing machine runs in time 7'(n) is undecidable
if and only if, for all n € N, T'(n) > n + 1 (Theorem 6.1.3).

e The problem of whether a given one-tape Turing machine runs in time 7'(n) is undecidable
if T'(n) = Q(nlogn) and T'(n) > n + 1 for all n € N (Theorem 6.1.5).

e The problem of whether a given one-tape Turing machine runs in time 7'(n) is decidable if
T is “nice” and T'(n) = o(nlogn) (Theorem 6.1.10).

e The problem of whether a given one-tape or multi-tape Turing machine runs in time O(7'(n))
is undecidable for all reasonable functions 1" (Theorem 6.1.6).

All these results hold for deterministic as well as non-deterministic Turing machines. In the second
part of the chapter, Section 6.2, we prove Theorem 1.2.1, which is stated in the introduction. It
characterizes computational complexity of the problems of verifying whether a given one-tape
Turing machine runs in time C'n + D, for parameters C, D € N. In Section 6.2.5 we argue that
our techiques relativize.

6.1 Decidability Results

First, we define the problems that will be in our interest in this section. For a class of functions
F C{T : N — R0}, define the problem HaLt £ as

Given a multi-tape NTM, does it run in time 7'(n) for some T € F?
and the problem D-HaLT £ as
Given a multi-tape DTM, does it run in time 7'(n) for some T € F?

The problems HALT}_- and D—HALT}_- are defined analogously for one-tape Turing machines as in-
puts.

89

If 7 has only one element, we write HaLT(7y = HALT7(,,), thus HALT(,,) is the problem of
whether a given multi-tape NTM runs in time 7'(n). If F is the class of polynomials, we write
Harrz = Harrp, thus HaLrp is the problem of whether a given multi-tape NTM runs in polyno-
mial time. For a function 7' : N — R>q, if F = {f : N = R>q; f(n) = O(T'(n))}, we write
HaLrr = HALTO(7 (), thus HALTQ(7(5,)) is the problem of whether a given multi-tape NTM runs
in O(T'(n)) time.

Problems HALT%F(n), HALTll:) and HALTg) (T(n)) AT€ defined similarly for one-tape NTMs and the
problems D-HALT7(;,), D—HALTlT(n , D-HArtp, D—HALTll:), D-Harro(1(n)) and D—HALT%)(T(n)) are
defined similarly for DTMs. We will prove undecidability results only for the problems involving
DTMs and decidability results only for the problems involving NTMs. This implies that all the
results in this section hold for DTMs as well as for NTMs.

6.1.1 Folkloric Results and Extended Considerations

In this section we prove that all the “basic” problems D—HALT}C are undecidable (hence also all
basic problems D-HALT r are undecidable), we give a tight bound on the function 7" for which the
problems HaLtp(,,) and D-HALT7(,,) are decidable and we prove undecidability of D—HALTIT(n) for
all functions T'(n) = Q(nlogn) with T'(n) > n + 1.

Let us begin with an easy positive result. It gives a reason for why we need the technical
condition 7'(n) > n + 1 when proving undecidability results.

Lemma 6.1.1. Ler T : N — R be a function such that, for some ng € N, it holds T (ny) <
no + 1. Then the problem HALTT(,,) is decidable.

Proof. Let ngy be such that T'(ng) < ng + 1 and let a multi-tape NTM M be given. We will
describe an algorithm which decides whether M runs in time 7'(n), thus proving decidability of
HaLrp(p,:

o First, check if the length of each computation of M on inputs of lengths n < ng is at most
T'(n). If not, reject. Else, let T, be the length of a longest computation of M on inputs of
length ng and suppose this maximum is achieved on an input w.

e If T, < T(n) for all n > ng, accept. Else, reject.

To prove finiteness and correctness of the algorithm, note that if M/ makes at most 7'(ng) steps
on all computations on inputs of size ng, then by Lemma 3.3.1 M never reads the (n9+1)st symbol
of any input. In this case M makes at most T}, steps on each computation on inputs of length more
than ng. Moreover, for each n > nyg, there exists an input of length n on which M makes exactly
T, steps on some computation (all inputs that begin with w are such). There are only finitely many
possibilities for T, because T, < T'(ng), thus the last line of the algorithm can be done in constant
time. O

The following lemma proves the converse of Lemma 6.1.1.

Lemma 6.1.2. Let T : N — R > be a function such that, for all n € N, it holds T'(n) > n + 1.
Then the problem D-HALT () is undecidable.

Proof. We will describe a reduction of the complement of the problem D-Hart! to the problem
D-Hart7(,). Because the problem D-Harr! is undecidable by Lemma 4.1.2, this implies that
D-HALt7(y,) is also undecidable. The reduction is as follows.

90

Given a one-tape DTM H, construct a 2-tape DTM H that on the input tape always moves its
head to the right and halts when it reaches a blank symbol and on the work tape it simulates H on
input €. If H halts, H starts an infinite loop (and does not halt when it reaches a blank symbol on
the input tape). It is clear that H runs in time T'(n) if and only if H does not halt on the empty
input. (]

Combining Lemma 6.1.1 and Lemma 6.1.2 we get a tight bound on a function 7" for when the
problems HaLrr(,,) and D-HALT7(,,) are decidable.

Theorem 6.1.3. For a function T : N — R >, the problem HavLT(,,) is undecidable if and only
if the problem D-HALTT (. is undecidable if and only if, for all n € N, T(n)>n+1

Proof. Combine Lemma 6.1.1 and Lemma 6.1.2. O

There is no such a sharp bound for one-tape Turing machines as it is n+1 for multi-tape. As dis-
cussed in the introduction, the decidability of D—HALTIT(n) changes roughly at 7'(n) = O(nlogn)
and the next lemma will be the main tool in proving undecidability of D—HALT%F(N) for T'(n) =
Q(nlogn). In the proof of the lemma we will see how timekeeping and simulating another Turing
machine can be done fast on one-tape Turing machines.

Lemma 6.14. Let T : N — R be a function such that T'(n) = Q(nlogn) and, for all n € N,
it holds T'(n) > n+ 1. Then there exists an algorithm that takes as input a one-tape DTM H and
returns a one-tape DTM H such that

H(e) = 0o <= H runsintime T(n) <= H always halts.

In the statement of the lemma we used the notation H (¢) = oo to denote that H does not halt on
input €.

Proof. Because T'(n) = 2(nlogn), there exist constants C, ng € N such that 6 < C' < ny and,
for all n > ny, it holds
T(n) > 3nlogsn + 6n+ 1.

_ For an arbitrary one-tape DTM H with a tape alphabet I, let us describe a new one-tape DTM
H:
e The tape alphabet of H is I'(JT"{J{&,#}, where I = {a/;a € T'}. Without loss of
generality we can assume that the sets {&, #}, I and I" are pairwise disjoint.

e On an input w of length n, H first reads the input and if n < ng, accepts in n + 1 steps. If
n > ng, then H overwrites the input with

#1"4,
leaving the head above the last written one. This all can be done in n + 1 steps.

e 1 will never again write or overwrite the symbol #, which will serve as the left and the right
border for the head. From now on, the head will move exactly from the right # to the left #
and vice versa. Thus we only need to count how many times the head will pass from one #
to another and multiply the result with n to get how many steps were done. A transition of
the head form one # to another will be called a (head) pass.

91

For m = [logen], H can transform its tape into
m &n73fm#

in the next 2m + 2 head passes'.

This can be done if on each pass to the right, H turns C' — 1 successive 1s into symbols &,
leaves the next symbol 1, turns the next C' — 1 successive 1s into &s ... until it comes to #.
Also when passing to the right, it adds another blank symbol after the rightmost previously
written blank symbol. When passing to the left it changes nothing. When there are no more
Is, it makes two additional passes to write _.’_. after the previously written blank symbols.

Until this point we did not need any information about H.

The tape is now prepared for the simulation of H on input . The symbols from I" tell us
how the tape of H looks like and the (only) symbol from I" tells us the current head position
in H. Because H will simulate at most m steps of H, it will need at most m tape cells to
the left of /. H will also not run out of blank symbols to the right of the symbol from I,
because during the simulation the symbols & will gradually get replaced by blank symbols.

The simulation goes as follows: in each pass, H turns C' — 1 successive &s into blank
symbols, leaves out the next symbol &, turns the next C'— 1 successive &s into blank symbols
... and when the head comes to the “simulation part” of the tape, it simulates one step of H
if and only if the head of H would move in the same direction as the head of H is currently
moving. Thus H simulates at least one and at most two steps of H in two head passes.

If H runs out of &s on its tape before the simulation of H has finished, it halts (e.g. goes in
dacc)- Else, H starts an infinite loop so that H (w) = oc.

From 6 < C' < ng < n it follows that n — 3 —m > C™ 2, so H needs at least m — 1 head
passes to erase all &s.

Thus if A halts, this means that H does not complete its computation on input ¢ in LmTflJ

steps. In this case H makes at most m head passes from the beginning of the simulation
until it halts and thus makes at most 7'(n) steps altogether on the input w.

If H does not halt, this means that H halts on input €.

Note that since m = Q(logn) # O(1) it holds that
H(e) = 00 <= H runsintime T'(n) <= H always halts.

To sum up, we have described a desired one-tape DTM H and it is clear from the description

that there exists an algorithm that constructs it from H. O

The following theorem is a direct corollary of Lemma 6.1.4.

Theorem 6.1.5. Let T' : N — R > be a function such that T'(n) = Q(nlogn) and, for alln € N,
it holds T'(n) > n + 1. Then the problem D—HALT%F(H) is undecidable.

Proof. Given a one-tape DTM H, let H be a one-tape DTM that runs in time 7'(n) if and only if

= o0. By Lemma 6.1.4 we can construct it from H, thus we can reduce the complement of

the problem HaLr! to the problem HALTlT(n). O

Note that C™ ™1 <mn—1< C™.

92

For the last thing in this section, we prove that all “basic” problems D—HALTlf (and hence also
D-HALr r) are undecidable.

Theorem 6.1.6. Let F C {f : N — R} be a class of functions that contains arbitrarily large
constants. Then the problem D—HALTlf is undecidable.

Proof. Define the class F' = {T € F, T'(n) > n + 1 for all n} and consider two separate cases:

1. If for all functions T" € F, it holds T'(n) # Q(n logn), then the following is a reduction of
D-Harr! to D—HALT}C. Given a one-tape DTM H, construct a one-tape DTM H that works
as follows on an input w:

e [simulates |w| steps of H on input .
e If H halts in less than |w| steps, then H also halts and does not make any additional
steps.

e Else, H makes at least additional |w|log |w| arbitrary steps and halts.

This can easily be done, for example, by using the input portion of the tape only for counting
steps and the left portion of the tape for simulation of (H on input ¢). We do not need H to
efficiently simulate H, but it is necessary that I runs in constant time if 7 halts on ¢.

It is clear that H halts on input ¢ if and only if H runs in constant time, which happens if
and only if H runs in time 7'(n) for some function 7'(n) that is not 2(n logn).

Now if H € D—HALT_17_—, then there exists a function 7' € F, such that H runs in time T(n).
If T € F,then T'(n) # Q(nlogn), thus H halts on inpute. If T ¢ F, then by the definition
of F' there exists ng such that 7'(ng) < ng + 1, which by Lemma 3.3.1 implies that H runs
in constant time and consequentially H halts on input &, which implies H € Harr!.

If H ¢ D—HALT_17_-, then H does not run in constant time because F contains arbitrarily large
constants. So H does not halt on input ¢ and hence H ¢ Harr..

So we have proven i € D-Harry <= H € D-Hart}.

2. If for some function T € F it holds T'(n) = Q(nlogn), then the following is a reduction of
the complement of D-Harr! to D-HaLT-.

For an arbitrary one-tape DTM H, use Lemma 6.1.4 to construct a one-tape DTM H that
runs in time 7'(n) if and only if H always halts which is if and only if H(¢) = oco. This
implies that H (¢) = oo if and only if H runs in time 7'(n) for some function 7' € F. [

Some well known corollaries follow from Theorem 6.1.6, namely that the problems D-HavLtp,
D—HALTll:), D-HALT o (7)) and D-Hartgy (T(ny) fOr T'(n) = (1) are undecidable. Consequentially,
the problems D-HarLtg 1) and D—HALT})(l) are undecidable.

6.1.2 One-Tape Turing Machines and an o(n log n) Time Bound

Until this point we know that, for 7'(n) = Q(nlogn), we can solve HALTIT(n) if and only if, for
some ng € N, it holds 7'(ng) < ng + 1. It remains to see that HALT%F(H) is decidable for all nice
functions T'(n) = o(n logn). But first, we have to define “nice”.

For a function f : N — R >, we say that f computably converges to cc if, for each K € N,

we can construct nx € N (i.e. the function K — ng is computable) such that, for all n > ng, it
holds f(n) > K.

93

Manageable Functions

We say that a function f : N — R is manageable if there exists a Turing machine that, given
Ap, Ay ... A € N\{0} and By, By ... By, € N, it decides whether the inequality

f(Ao + 21 A1 + x2As + - + 2 Ag) < By +21B1 + x2Bo + - - + 21, By,

holds for some z1, x5 ... € N.
Note that there are only integers on the right-hand side of the inequality. Thus the following
holds.

Lemma 6.1.7. A function f : N — R>(is manageable if and only if its integer part | f| is
manageable. O

The next proposition gives examples of manageable functions.
Proposition 6.1.8. Let f : N — N be a computable function. If

o fis linear (i.e. of the form Cn + D) or
f(n)

e = computably converges 10 o0,

then f is manageable.

Proof. The case when f is linear is easy and is left for the reader, so suppose that @ computably
converges to oo. The next algorithm proves manageability of f:
o Let Ag, Ay ... A € N\{0} and By, By ... By, € N be given.
e Find C € Nsuch that, foralli = 0,1...k, it holds CA; > B;.
f(n)

e Find n¢ such that f(n) > Cn for all n > ne. This can be done because
converges to oo.

=~ computably
e Fori=1,2...k,lety; € Nbe suchthat Ay + y; 4; > nc.
It follows that the inequality
f(Ao + 21 A1 + 20As + -+ + 2 Ag) > Bo+ 1 B1 + 22Ba + -+ + 2By,
holds for x1, x> . ..z € N if there exists an index ¢ such that z; > ;.

Indeed, x; > y; implies Ag + x1 A1 + w9 As + - - - + x A, > ne, which implies f(Ag +
1A+ 20As + -+ xAg) > C(Ag + 21 A1 + 2242 + -+ - + T Ay).

e Check if the inequality
J(Ag +21A1 +22A2 + - - + 23 A) < Bo +21B1 +22By + - - + 2. By,
holds for some non-negative integers 1 < y1,Z2 < ¥y2...Tk < Yk-]

We just proved (using also Lemma 6.1.7) that n, 3n + 2, ny/logn, n?, 2" are all manageable
functions. The next lemma tells us that the integer part of a manageable functions cannot be too
complicated.

Lemma 6.1.9. An integer part | f| of a manageable function f : N — R>q is a computable
function.

Proof. For n € N, the following algorithm computes | f | (n):
e If n = Oreturn | f(0)]. Else, return the largest 7 for which f(n) > i. O

94

The decidability Result

In this section we prove that the problem HALTlT(n) is decidable for all nice functions 7'(n) =
o(nlogn).

nlogn
T(n)

Theorem 6.1.10. For any manageable function T' : N — R, for which the function

computably converges to oo, the problem HALT%(n) is decidable.

Note that Theorem 6.1.10 tells us that we can solve the problem HALT (n+1)y/Tog(n+2) as well

as the problems HALT¢,, 1 p for constants C, D € N. The following lemma makes an introduction
to the proof of the theorem.

Lemma 6.1.11. Let T : N — R~ be a function for which | T | is computable and the function

nlogn
gny={ T G "=2
1 ; n=0,1

computably converges to co. Then given q € N, we can compute a constant upper bound on the
length of the crossing sequences produced by any q-state one-tape NTM that runs in time T'(n).

Proof. By Lemma 5.1.3, we only need to construct a constant ¢ > max{7'(0), 7'(1)} which
satisfies the inequality

(logq)/g(n)'/? _ | 1/2
qn n g(n)
=1 Sn_g_g(n)1/2+clogn 6.1

for the given ¢ and all n > 2. The construction of ¢ can go as follows:

e Use computable convergence of g to find N € N such that for all n > N it holds g(n) >
4(log q)%. Increase N if necessary so that, for all n > N, it also holds v/n < Ln and

1
g(n) > 16.
It is easy to see that Inequality (6.1) holds for all n > N independently of the value of ¢ > 0.

e Use computability of |T'] to find such ¢ € N that Inequality (6.1) holds for 2 < n < N.

Note that g(n) > W forn > 2.

141
e Increase c to get ¢ > max{7(0), T(1)}. O

The following proof is simpler than the proof from [10] because we use the compactness the-
orem.

Proof of Theorem 6.1.10. Let 7' : N — R be a manageable function for which the function

nTh()TgL)" computably converges to co. Because 7' is manageable, | T'| is computable by Lemma 6.1.9.

The following algorithm verifies whether a one-tape NTM M with ¢ states runs in time 7'(n), thus
solving HALT%F(n).

e Use Lemma 6.1.11 to construct an upper bound C' € N on the length of the crossing se-
quences produced by any one-tape Turing machine with g states that runs in time 7'(n).

95

e Compute
O 1
q—1
which is an upper bound on the number of distinct crossing sequences produced by any one-
tape Turing machine with ¢ states that runs in time 7'(n).

e Define D =2KC +C.

Note that any one-tape NTM with g states that runs in time 7°(n) also runs in time Cn + D
(see Corollaries 5.1.4 and 5.1.6).

K =

9

e Use Corollary 5.2.5 to verify whether M runs in time Cn + D. If not, reject.

e Define / = D + 8¢ and 7 = D + 12¢“ and construct the set S = Ufz:l Sn(M). The
notation is the same as in the compactness theorem (Theorem 5.2.1).

e Construct the set

X = {(w,(); |w| < £ and ¢ is a computation of M on the input w }.

e For each crossing sequence C € S, construct the set

Yo ={(w,(); |w| < and ¢ is a computation of M on the part w

with the frontier crossing sequence C }

By the compactness theorem, the set Y can be constructed in finite time because for each
(w,() € Y¢ itholds [¢] < Clw|.

The main observation (and the key idea of the algorithm) is that every pair (w, ¢) where ¢
is a computation of M on an input w can be constructed in the following way: Begin with
some pair (wp, (o) € X and insert on appropriate places pairs from sets Y (an appropriate
place for an element of Y¢ is where a crossing sequence C is generated). This follows by
Corollaries 5.2.7 and 5.2.9.

Hence, we divided the computations of M into finitely many parts and we computed all of

them. Now we must only verify whether putting these parts together can cause M to run for
too long on some input.

e For each pair (wg, {p) € X and for all the choices of subsets (?c - Yc) ces

— Verify whether some input w can be constructed together with a computation 5 of M
on w by starting from (wg, (p) and inserting one by one on appropriate places all the

pairs (w, ¢) from all the sets Y¢. It is enough to restrict that each pair (w, ¢) from each
set Y¢ is used exactly once, which gives a finite number of options.

* If not, continue with the for loop.
In this case it is impossible to use only and all parts from sets Y¢ at once in a
construction of a pair (w,) as described above.

— Use manageability of T" to check whether the inequality

Gl +Y 0 D kol ST [lwol +> . Y kool

ceS (w)eYe ceS (w)eve
holds for all k¢, € N\{0}. If it does not, reject.

96

Note that in the argument of 7" on the right-hand side of the inequality, we have the length of
some string constructed by starting with (wo, (o) € X and inserting k¢, ¢) pairs (w, () €
Yo on appropriate places. On the left-hand side we have the length of the corresponding
computation of M on such an input. The comments before this step imply that all compu-
tations on non-empty inputs are considered this way and the condition before the inequality
assures that it is possible to use only and all parts from sets Y¢ at once.

e accept.

The comments inside the description of the algorithm show its finiteness and correctness. [

6.2 Complexity Results

Because we can essentially only verify time bounds o(n log n) for a given one-tape Turing machine
and because such Turing machines actually run in linear time, linear time bounds are the most
natural time bounds for one-tape Turing machines that are algorithmically verifiable. The purpose
of this section is to prove Theorem 1.2.1, stated in the introduction, that gives sharp complexity
(lower and upper) bounds for the problems HALTlcn 4+p and D—HALTlon ., p- Before we go into the
proofs, let us give the main proof ideas in two paragraphs.

We use the compactness theorem to prove the upper bound (Proposition 6.2.1). To prove the
lower bounds, we make reductions from hard problems whose hardness is proven by diagonaliza-
tion. The diagonalization in Proposition 6.2.7 (non-deterministic lower bound) is straightforward
and the diagonalization in Proposition 6.2.5 (co-non-deterministic lower bound) is implicit in the
non-deterministic time hierarchy. The reductions are not so trivial and we describe the main idea
in the following paragraph.

Suppose that a one-tape non-deterministic Turing machine M solves a computationally hard
problem L. Then, for any input w, we can decide whether w € L by first constructing a one-
tape Turing machine M,, that runs in time C'n + D if and only if M rejects w and then solving
the complement of HALTén 4p for M,,. If we can construct M, efficiently, then because L is
computationally hard we get a complexity lower bound for solving the complement of HALTlcn D
The machine M, is supposed to simulate M on w, but only for long enough inputs because we do
not want to violate the running time C'n + D. Hence, on the inputs of length n, M,, will first only
measure the input length using at most (C' — 1)n + 1 steps to assure that n is large enough, and
then it will simulate M on w using at most n steps. If M accepts, M, starts an infinite loop. It
turns out that the main challenge is to make M,, effectively measure the length of the input with
not too many steps and also not too many states. The latter is important because we do not want
the input M,, for HALTlcn . p to be blown up too much, so that we can prove better lower bounds.
We leave the details for Section 6.2.3. Let us mention also Section 6.2.4, where we argue that our
method of measuring the length of the input is optimal, which implies that using our methods, we
cannot get much better lower bounds.

6.2.1 Encoding of One-Tape Turing Machines

To simplify things, let us fix a tape alphabet I', hence we will actually be analyzing the problems
HALTICn +p(2,T). This enables us to have the codes of g-state one-tape Turing machines of length
O(q?). Because g now describes the length of the code up to a constant factor, we can express the

97

complexity of algorithms with a g-state one-tape NTM (or DTM) as input in terms of ¢ instead of
n=0(g%).
Let us state the properties that should be satisfied by the encoding of one-tape Turing machines.

e Given a code of a g-state one-tape NTM M, a multi-tape NTM can simulate each step of M
in O(¢?) time. Similarly, given a code of a ¢-state one-tape DTM M, a multi-tape DTM can
simulate each step of M in O(g?) time.

e A code of a composition of two one-tape Turing machines can be computed in linear time
by a multi-tape DTM.

e The code of a g-state one-tape Turing machine has to be of length ©(¢?). This is a technical
requirement that makes arguments easier and it gives a concrete relation between the number
of states of a one-tape Turing machine and the length of its code. We can achieve this because
we assumed a fixed input and tape alphabet.

An example of such an encoding is given in Section 3.6. It is clear that we can easily convert
any standard code of a one-tape Turing machine to ours and vice versa.

6.2.2 The Upper Bound
Let us define the problem Hart!, | as
Given a one-tape NTM M and integers C', D € N, does M run in time Cn + D?

Hence, the problem HALTEn +_is the same as the problem HALTlcn 4 p»only that C and D are parts
of the input. Recall that we use an overline to denote the complement of a problem.

Proposition 6.2.1. There exists a multi-tape NTM that solves Hart', | in time O(p(C, D)q“*?)
for some quadratic polynomial p.

Proof. Let us describe a multi-tape NTM M,,¢ that solves HALTin L

e On the input (C, D, M), where M is a g-state one-tape NTM, compute £ = D + 8¢ and
r=D+12¢°.

e Non-deterministically choose an input of length n < ¢ and simulate a non-deterministically
chosen computation of M on it. If M makes more than C'n + D steps, accept.

e Non-deterministically choose an input wg = wiwows such that |wy| > 1,1 < |we| < r
and |w;| + |ws| < ¢. Initialize C; and Ca to empty crossing sequences and counters ¢y =
C’|w0] + D, ty = C’|w2|.

e Simulate a non-deterministically chosen computation { of M on the input wy. After each
simulated step t of M, do:

decrease t(by one,

if the head of M is on some cell |w;| < i < |wi| + |wz|, decrease t5 by one,

update the crossing sequences C; = Cltwl\ (M, ¢, wp) and Cy = Cltw1|+\w2|(M’ ¢, wp).

If ty < 0, accept.

98

— Non-deterministically decide whether to do the following:
x If C; = Cy and to < 0, accept. Else, reject.
— If M halts, reject.

Note that the counter ¢y counts the number of simulated steps, while the counter {2 counts
the number of steps done on the part wo.

It is clear that My accepts if either a) or b) from the compactness theorem are violated and
it rejects if M runs in time C'n + D and b) from the compactness theorem is not violated. Hence
Myt correctly solves the problem HALT}n -

Because the condition C; = Cs is verified at most once during the algorithm and

C1l, [Co| < Clwo| + D
<C(+r)+D
=0 ((CD+C+D+1)¢%),

testing whether C; = Cs contributes O((C'D + C + D +1)q“*!) time to the overall running time.
Because M, needs O(qz) steps to simulate one step of M’s computation and it has to simulate
at most C'(2¢ 4) 4 D steps, My runs in time O((C'D + C + D + 1)¢°*2). O

Corollary 6.2.2. The problems HALTlon ,pand D-HALTlon o p are in co-NP and their complements
can be solved in time O(qc+2) by a non-deterministic multi-tape Turing machine.

6.2.3 The Lower Bounds

Let us state again the idea that we use to prove the lower bounds in Theorem 1.2.1. Suppose a
one-tape non-deterministic Turing machine M solves a problem L. Then, for any input w, we
can decide whether w € L by first constructing a one-tape Turing machine M,, that runs in time
Cn + D if and only if M rejects w and then solving HaLtg,,, . 1, for M,,. If we choose L to be a
hard language, then we can argue that we cannot solve HALTlcn o p fast. The next lemma gives a
way to construct M.

Lemma 6.2.3. Let C > 2 and D > 1 be integers, let T(n) = Kn* + 1 for some integers K,k > 1
and let M be a one-tape q-state NTM that runs in time T'(n). Then there exists an

O (T(n)2/(cfl) + n2) -time

multi-tape DTM that, given an input w for M, constructs a one-tape NTM M,, such that

My, runs in time Cn + D <= M rejects w.

Proof. Let us first describe the NTM M,,. The computation of M., on an input w will consist of
two phases. In the first phase, M,, will use at most C' — 1 deterministic passes through the input to
assure that w is long enough. We will describe this phase in detail later.

In the second phase, M, will write w on its tape and simulate M on w. Hence O(|w|) states
and O(T'(Jw|)) time are needed for this phase (note that g is a constant). If M accepts w, M,, starts
an infinite loop, else it halts. Let ¢ be a constant such that M, makes at most ¢7'(|w|) steps in the
second phase before starting the infinite loop.

99

To describe the first phase, define
m= [(cT(\wD(C - 2)!)1/(071)-‘
-0 (T(|w\)1/<0—1>).

In the first phase, the machine M,, simply passes through the input C'— 1 times, each time verifying
that |@| is divisible by one of the numbers m + i, fori = 0,1...(C — 2). If this is not the case,
M, rejects. Else, the second phase is to be executed. It suffices to have m + i states to verify in
one pass if the length of the input is divisible by m + ¢, so we can make M,, have

c—-2
o) (Z(m +z’)> =0((C—-1m)

=0
= O(m)

states for the first phase such that it makes at most (C' — 1)|w| 4 1 steps before entering the second
phase®. We assume that M, erases all symbols from the tape in the last pass of the first phase so
that the second phase can begin with a blank tape.

If the second phase begins, we know that

|| > lem{m,(m+1)...(m+C —2)}

where we used the inequality

1cm{m7(m+1)...(m+0—2)}Zm.(m+0—2>

C-2

proven in [7]. Hence, M,, makes at most |w| steps in the second phase if and only if it does not go
into an infinite loop. So we have proven that

M, runs in time Cn + 1 <= M, runs in time Cn + D <= M rejects w.

To construct M,,, we first compute m which takes O(|w|) time and then in O(m?) time we
compute a Turing machine M that does the first phase (the construction is straightforward). Finally
we compose M7 with the Turing machine M, only that M first writes w on the tape and M, instead
of going to the accept state, starts moving to the right forever. Because M is not a part of the input
and because we can compute compositions of Turing machines in linear time, the description of
M,, can be obtained in O(m? + |w|?) time, which is O (T'(n)% €~V + n?). O

We now combine Corollary 6.2.2 and Lemma 6.2.3 to show that most problems Harr},, D
are co-NP-complete.

Proposition 6.2.4. The problems HALTlcn p are co-NP-complete for all C' > 2 and D > 1.

The “plus one” in (C' — 1)]0| + 1 is needed because each Turing machine makes at least one step on the empty
input. This is also the reason for why we need D > 1 in the statement of the lemma.

100

Proof. Corollary 6.2.2 proves that these problems are in co-NP and Lemma 6.2.3 gives a reduction
of an arbitrary problem in co-NP to the above ones. O

The first lower bound for the problems HALTlcn . p follows. To prove it, we will use Lemma 6.2.3
to translate a hard problem to HaLtt,,,, .

Proposition 6.2.5. For all positive integers C and D, the problem HALTlcn p cannot be solved by
a multi-tape NTM in time o(q(©~1/2),

Proof. For C' < 5, the proposition holds (the length of the input is ©(¢?)), so suppose C' > 6.
By the non-deterministic time hierarchy theorem (Theorem 4.2.3) there exists a language L and
a multi-tape NTM M that decides L and runs in time O(n®~1), while no multi-tape NTM can
decide L in time o(n®~!). We can reduce the number of tapes of M to get a one-tape NTM M’
that runs in time O(n*(©~1) and decides L (Proposition 3.3.8). By Lemma 6.2.3 there exists a
multi-tape DTM My, that runs in time O(n*) and given an input w for M’, constructs a one-tape
qw-state NTM M, such that

M, runs in time Cn + D <= M’ rejects w.

Because the description of M, has length O(|w|?), it follows that ¢, = O(|w|?).

If there was some multi-tape NTM that could solve HALTévn 4 p intime o (q(c_l)/ 2), then for
all w, we could decide whether w € L in o(n®~!) non-deterministic time: first run My to get
M, and then solve HALTlcn o p for M,,. By the definition of L this is impossible, hence the problem
m cannot be solved by a multi-tape NTM in time o (q(c_l)/ 2). U

For all of the remaining lower bounds, we need to reformulate Lemma 6.2.3 a bit. Recall from
Section 3.3.5 the definition of a two-choice NTM, which is an NTM that has at most two possible
non-deterministic choices in each step.

Lemma 6.2.6. Let C > 2 and D > 1 be integers and let T(n) = Kn* + 1 for some integers
K,k > 1. Then there exists a multi-tape DTM M,y,,;;, which given an input (M, w), where w is an
input for a one-tape two-choice q-state NTM M, constructs a one-tape DTM M,, such that

M., runs in time Cn + D <= M makes at most T'(|w|) steps on any computation
on the input w.

We can make M, run in time
O (T(ll)/C=D + ¢ + |w]?)
for some integer k > 1, independent of C, D, K and k.

Proof. The proof is based on the same idea as the proof of Lemma 6.2.3. The main difference is
that this time we will have to count steps while we will simulate M and we will have to use the
symbols of an input of the DTM M, to simulate non-deterministic choices of M.

Again, we begin with the description of M,,. The computation of M,, on an input w0 will consist
of two phases. In the first phase, M., will use at most C' — 1 deterministic passes through the input
to assure that w is long enough. This phase will be the same as in Lemma 6.2.3, only that we will
need more states to measure longer inputs because the second phase will be more time consuming.

101

This time we define

m = R(cT(]wD)Z(C — 2)!) 1/(0_1)-‘
= 0 (T(jw)¥)

for some constant ¢ defined later. In the first phase, the machine M,, simply passes through the
input C' — 1 times, each time verifying that |w| is divisible by one of the numbers m + i, for
i =20,1...(C —2). If this is not the case, M,, rejects. Else, the second phase is to be executed.
It suffices to have m + i states to verify in one pass if the length of the input is divisible by m + i,
so we can make M, have

c-2
o) <Z(m + z’)) = 0(m)

=0

states for the first phase such that it makes at most (C' — 1)|w| 4 1 steps before entering the second
phase. We also need that while the Turing machine M, passes through the input in the first phase,
it does not change it, except that it erases the first symbol of w (if not, M,, would need n + 1 steps
for one pass through the input). Additionally, if the input w contains some symbol that is not O or
1, M,, rejects.

w ||l 1] --- |1 Wnl— 12T (Jwl)

Figure 6.1: The preparation for the simulation in the phase two. After the phase one, the head of
M, could be on the left side of the input w or on the right side of it, depending on the parity of C.
Let us assume that C' is even and hence the head of M, is on the right side of w after the phase one.
Before the simulation begins, M,, writes the following on the right side of w: . .0 followed by
w with the symbol 1 inserted between each two of its symbols. Then on the right of w it computes
2T (Jw|) in unary so that we get the situation as shown in the figure. The input @ (without the first
symbol) is much longer compared to what is on the right side of it (phase one takes care for that).
If C'is odd, we can look on the tape of M, from behind and do everything the same as in the case
of C being even.

In the second phase, M, will compute T'(|w|) and simulate M on w for at most T'(Jw|) steps,
using the non-deterministic choices determined by w. If M will not halt, M,, will start an infinite
loop, else it will halt. In Figure 6.1 we see how M., makes the preparation for the second phase.
Let us call the part of the tape with the symbols of w written on it the non-deterministic part, the
part of the tape from 0 to w,, the simulating part and the part of the tape with 127(wD) written on
it the counting part. During the simulation, the following will hold.

o In the simulating part, it will always be the case that the symbols from the tape of M will be
in every second cell and between each two of them will always be the symbol 1, except on
the left of the cell with the head of M on it where it will be 0.

e There will always be at least two blank symbols left of the simulating part and there will
always be at least one blank symbol right of the simulating part. This will be possible because
before each simulated step of M, as explained below, the number of blank symbols left and

102

right of the simulating part will be increased by two for each side, hence when simulating a
step of M, the simulating part can be increased as necessary.

e Before each simulated step of M, M,, will use the rightmost symbol of the non-deterministic
part of the tape to determine a non-deterministic choice for M and it will overwrite the two
rightmost symbols of the non-deterministic part of the tape with two blank symbols.

e Before each simulated step of M, M, will overwrite the two leftmost symbols of the counting
part of the tape with two blank symbols.

o If M halts before the counting part of the tape vanishes, M,, halts. Else, M,, starts an infinite
loop.

We see that M,,, if it does not go into an infinite loop, finishes the second phase in time O(7'(|w])?)
using O(Jw| + ¢) states. Note that to achieve that, the counting part of the tape really has to be
computed and not encoded in the states, which takes O(T'(|w|)?) steps. A possible implementation
of this would be to first write |w| in binary (Jw| can be encoded in the states), then compute 7'(|w|)
in binary and extend it to unary.

To define the integer c that is used in the first phase, suppose that M, makes at most (¢7'(|w]|))?
steps in the second phase before starting the infinite loop. Note that c is independent of M and w.
If the second phase begins, we know that

|w| > lem{m,(m+1)...(m+C —2)}
mC—l

= (C—2)
> (cT(jw))?,

as in the proof of Lemma 6.2.3, thus M,, makes at most |w| steps in the second phase if and
only if it does not go into an infinite loop. This inequality also implies that the non-deterministic
part of the tape in the phase two is long enough so that it does not vanish during the simulation of
M.

Now if M makes at most 7'(|w|) steps on all computations on the input w, then M,, runs in
time C'n + 1. But if there exists a computation ¢ on input w such that M/ makes more than 7'(|w|)
steps on it, then because M is a two-choice machine, there exists a binary input w for M,, such
that the non-deterministic part of the tape in the phase two corresponds to the non-deterministic
choices of ¢, hence M, on the input w simulates more than 7'(|w|) steps of M which means that
the counting part of the tape vanishes and thus M, does not halt on the input w. So we have proven
that

M,, runs in time Cn + 1 <= M, runs in time Cn + D <= M makes at most
T'(|w]) steps on the input w.

Now let us describe a multi-tape DTM My that constructs M, from (M, w). First we prove
that, for some integer x independent of C'; D, K and k, the DTM My can construct, in time
O(g" + |w|?), a one-tape DTM M that does the second phase. To see this, let M7 be a one-tape
DTM that given a number x in binary, its head never crosses the boundary —1 and it computes
T(z) in unary in time O(T'(z)?). Note that M7 does not depend on the input (M, w) for My
and thus it can be computed in constant time. Now M5 can be viewed as a composition of three
deterministic Turing machines:

103

e The first DTM writes down the simulating part of the tape, followed by |w| written in binary.
Mt needs O(Jw|?) time to construct this DTM.

e The second DTM is My and M needs O(1) time to construct it.

e The third DTM performs the simulation of M on w and My needs O(¢") time to construct
it, where « is independent of C, D, K and k.

Because the composition of Turing machines can be computed in linear time, we can construct M»
in time O(g" + |w/?).

Because the first phase does not depend on M and we need O(m) states to do it, My can
compute the DTM M that does the first phase in time

O(m?) = O (7(w])*/V),

as in the proof of Lemma 6.2.3. Since M,, is the composition of M; and Ms, My can construct
M,, in time

O (T(Jwl)/CD + ¢ + w]?) 0

Proposition 6.2.7. For all positive integers C and D, the problem D—HALTlcn | p cannot be solved
by a multi-tape NTM in time o(q(C—1/%),

Proof. For C < 9, the proposition holds (the length of the input is ©(¢?)), so suppose C' > 10.
Let x be as in Lemma 6.2.6 and let M be the following one-tape NTM:

e On an input w which is a padded code of a one-tape two-choice NTM M, construct a one-
tape q,-state DTM M, such that

M, runs in time Cn 4+ D <= M’ makes at most |w|*(©~1 steps on the input
w.

The machine M,, can be constructed by a multi-tape DTM in time O(|w|**) by Lemma 6.2.6,
hence it can be constructed in time O(|w|®*) by a one-tape DTM (as in Proposition 3.3.8).
It also follows that g, = O(|w|?*).

e Verify whether M, runs in time C'n + D. If so, start an infinite loop, else halt.

Now we make a standard diagonalization argument to prove the proposition. Suppose that
D-HaLtl,, ., can be solved by a multi-tape NTM in time o(¢(“~1)/4). Then it can be solved in
time o(q(c_l)/ 2) by a one-tape NTM (Proposition 3.3.8). Using more states and for a constant
factor more time, D-HAL1,,, | 1, can be solved in time 0(¢'“~1/2) by a one-tape two-choice NTM
(Proposition 3.3.16). If M uses this machine to verify whether M., runs in time Cn + D, then
considering ¢, = O(Jw|?*) and C' > 10, M is a one-tape two-choice NTM that makes

O (Jwf*) + o (|w|n(0—1)) —5 <‘w|n(c—1))

steps on any computation on the input w, if it does not enter the infinite loop.
Let w be a padded code of M. If M makes at most \w|"(c_1) steps on the input w, the Turing
machine M,, will run in time Cn + D which implies that M will start an infinite loop on some

104

computation on the input w, which is a contradiction. Hence, M must make more steps on the
input w than |w["“(c_1) which implies that M, does not run in time Cn + D and hence M does
not start the infinite loop, thus it makes o (|w|*(“~1) steps. It follows that

o Ow’n(cq)) > ‘w’m(cq)

which is impossible since the padding can be arbitrarily long. (]

Corollary 6.2.8. For all positive integers C and D, the problem HALTlcn | p cannot be solved by
a multi-tape NTM in time o(q(©=1/%),

Proof. The result follows by Proposition 6.2.7 because a Turing machine that solves HALTlcn D
also solves D—HALTlcn D" ([

The following lemma is a “deterministic” analog of Lemma 6.2.3.
Lemma 6.2.9. Let C > 2 and D > 1 be integers, let T(n) = Kn* 41 for some integers K,k > 1
and let M be a one-tape two-choice q-state NTM that runs in time T (n). Then there exists an
O (T(n)4/(c_1) + n2> -time
multi-tape DTM that given an input w for M, constructs a one-tape DTM M, such that
My, runs in time Cn + D <= M rejects w.

Proof. Let M’ be a one-tape two-choice (g + 1)-state NTM that computes just like M only that it
starts an infinite loop whenever M would go to the accepting state. It follows that

M’ makes at most T'(|w]) steps on the input w <= M rejects w.
Now we can use Lemma 6.2.6 to construct a DTM M,, such that

M, runs in time Cn + D <= M’ makes at most 7'(|w|) steps on the input w
<= M rejects w.

Because M and M’ are fixed, we can construct M, in time
O (T(l])/ €D + Ju?)
by Lemma 6.2.6. O

We now combine Corollary 6.2.2 and Lemma 6.2.9 to show that D-HALTlcn +p I8
co-NP-complete.

Proposition 6.2.10. The problems D-Hart},, 4 p are co-NP-complete for all C' > 2 and D > 1.

Proof. Corollary 6.2.2 proves that these problems are in co-NP and Lemma 6.2.9 gives a reduction
of an arbitrary problem in co-NP to the above ones. U

To prove the last lower bound, we use Lemma 6.2.9 to translate a hard problem to D-HaLt},, D>
the same way as in Proposition 6.2.5.

Proposition 6.2.11. For all positive integers C and D, the problem m cannot be solved
by a multi-tape NTM in time o(q(C—1/%),

Proof. The proof is the same as the proof of Proposition 6.2.5, only that we use Lemma 6.2.9
instead of Lemma 6.2.3. [l

To sum up this section, we have proven Theorem 1.2.1 which states

105

For all integers C' > 2 and D > 1, all of the following holds.

(i) The problems HALTlon pand D-HALTlon +p are co-NP-complete.
Proposition 6.2.4 and Proposition 6.2.10 prove this.

(ii) The problems HALTICR 4p and D—HALTlcn +p cannot be solved in non-deterministic time
(C-1)/4
o(q)-
Proposition 6.2.7 and Corollary 6.2.8 prove this.

(iii) The problems HALTlcn . p and D-HALTlcn L p can be solved in non-deterministic time
O(qc+2).
Corollary 6.2.2 proves this.

(iv) The problem HALT,,,, ;, cannot be solved in non-deterministic time o(q(¢~1)/2).
Proposition 6.2.5 proves this.

(v) The problem D-HaLt},,, , cannot be solved in non-deterministic time o(q(¢~1/4).
Proposition 6.2.11 proves this. 0

6.2.4 Optimality of Our Measuring of the Length of an Input

Let us again have a look at how we proved the lower bound in Proposition 6.2.5. A very similar
idea was also used to prove all the other lower bounds in Theorem 1.2.1, so what follows can be
applied to any of them.

Let a one-tape non-deterministic Turing machine M solve a problem L in time 7'(n). Then,
for any input w, we can decide whether w € L by first constructing a one-tape Turing machine
M,, that runs in time C'n + D if and only if M rejects w and then solving HALTICn 4p for My,. On
the inputs of length n, the Turing machine M, computed in two phases (see Lemma 6.2.3): in the
first phase M, only measured the input length using at most (C' — 1)n + 1 steps to assure that n
was large enough, specifically n = Q(T'(Jw|)), and then in the second phase it simulated M on w
using at most n steps. In our implementation M, used O(T'(|w|)'/(€~1) states for the first phase
and we claim that this is optimal.

If we want M, to measure the length 7'(|w|) in the first phase using at most (C' — 1)n + 1
steps, then for each computation on inputs of length 7'(|w|), it cannot produce the same crossing
sequence at two boundaries. By Lemma 5.2.3, M,, has Q(T'(|w|)*/(¢~1) states which implies
that our measuring of the length of the input was optimal. What is more, Lemma 5.2.3 is tight and
our method for proving lower bounds cannot give much better bounds.

6.2.5 Relativization in Theorem 1.2.1

While the upper bounds in Theorem 1.2.1 relativize, our lower bound proofs give slightly less
powerful lower bounds for NOTMs than for NTMs. The following list gives reasons and indicates
where one has to be careful when using NOTMs.

e The property of our encoding of one-tape NTMs that the composition of two NTMs can be
computed in linear time is not that clear for NOTMs because defining a composition of two
NOTMs is quite more technical, as it is discussed in Section 4.3.2. However, in relativized
versions of the proofs of our results it is always the case that the first Turing machine in a
composition of two oracle Turing machines does not need an oracle, hence it can be treated

106

as an NTM. In such a case we can compute a composition of an NTM and an NOTM in
linear time.

o In several results, for example in Lemma 6.2.3, we did the following: given an NTM M and
an input w for M, construct a one-tape NTM M that computes in two phases: in the first
phase it makes several passes through the input and in the second phase it simulates M on
w. Note that the simulation of M on w can only be done on the left part of the input to be
able to make oracle queries, thus M has to make an even number of passes in the first phase.
This results in comparable, but slightly weaker lower bounds.

e Note from Section 4.3.3 that if a multi-tape NOTM decides a language in time 7'(n), then
there exist a one-tape NOTM that decides the same language in time O(7'(n)3). To prove
lower bounds, we used the better bound O(7(n)?) that holds for NTMs. This results in
comparable, but slightly weaker lower bounds for NOTMs.

e In Figure 6.1 we can see the tape of a one-tape NTM prepared for the simulation of another
one-tape NTM. A similar preparation could be done also in the case of NOTMs (only on the
left part of the input), however we may need more steps to simulate a computation because
we have to keep time somewhere on the tape, mark the head position (also on the oracle part
of the tape) and later possibly do an oracle query ... This again results in comparable, but
slightly weaker lower bounds.

Because our methods from Section 6.2 can be applied also to NOTMs and they give comparably
good results, using only such methods cannot give the solution to the P versus NP problem.

6.2.6 An Open Problem

For D € N, how hard are the problems HALT}HD and D-HALT}LJFD?

It is clear that we can solve the problems HALTICn and D—HALTICn, for C' € N, in constant time.
The answer is always no, since any Turing machine makes at least one step on the empty input.

It is also easy to see that we can solve the problems Hart}, and D-Harrl, for D € N, in
polynomial time. The algorithm would be to simulate a given one-tape Turing machine M on all
the inputs up to the length D and accept if and only if the time bound was not violated. Now, if
the algorithm rejects, M clearly does not run in time D and if it accepts, then M never reads the
(D + 1)st symbol of an input by Lemma 3.3.1 and hence it was enough to verify the running time
on inputs up to the length D.

For C > 2 and D > 1, good complexity bounds for HaLt¢,,, . , and D-HALT(,, | 1, are given
in Theorem 1.2.1. Hence only the bounds for C' = 1 are missing. For this case we can prove the
following proposition.

Proposition 6.2.12. The problems Havt}, 41 and D-Harrt} 41 areinP.

Proof. The main observation is that a one-tape NTM which runs in time n 4+ 1 never moves its
head to the left, except possibly in the last two steps of a computation. To prove this, we suppose
the opposite. Let M be a one-tape NTM that runs in time n + 1 and let w be an input for M such
that on some computation on w, M moves its head to the left for the first time in step ¢t < n = |w)|
and it makes at least two more steps afterwards. As can be seen in Figure 6.2, M makes more than
t + 1 steps on some computation on the input w(0, t) of length ¢, which is a contradiction.

107

BOUNDARIES: () t n

Figure 6.2: Suppose that a Turing machine M on input w of length n moves its head to the left
for the first time in step ¢ (the head turns left just before crossing the boundary ¢) and let M make
at least two more steps after this step (we assume some fixed computation). Then M on the input
w(0, t) makes at least ¢ + 2 steps.

Hence, to solve HaLty, ,; and D-HaLt), , ; it is enough to verify, for a given one-tape Turing
machine M, whether the head of M never moves to the left, except possibly in the last two steps
of a computation. This can be verified in polynomial time. U

Does a similar proof go through for all problems HALT&L +p?

108

Slovenski povzetek

Ta povzetek ima enako strukturo kot uvodno poglavje disertacije. Razdeljen je na tri dele. Prvi
del je namenjen SirSemu krogu bralcev; v njem podamo motivacijo za probleme, ki jih obravna-
vamo Vv disertaciji, in opiSemo, kako predstavljeni koncepti zrcalijo realnost. Drugi del je namenjen
bralcem, ki so seznanjeni z osnovami teorije racunske zahtevnosti; v tem delu preletimo vsebino
vseh poglavij ter podamo glavne ideje dokazov pomembnejSih rezultatov. Tretji del je namenjen
poznavalcem teorije racunske zahtevnosti, ki jih zanima tudi sorodna literatura.

Kazalo
Motivacija v v v v it e i e e e e e e e e e e e e e e 110
Pregled disertacije i i i e e 112
Poglavie 6 112
Poglavie 5. 114
Sorodna in uporabljena literatura 116

109

Motivacija

Vse od pojava prvih racunalnikov obstaja naravna opredelitev zahtevnosti ra¢unskih problemov:
problem je tezak, ¢e ga z racunalnikom ni mogoce hitro resiti. Ta empiri¢na definicija dobi trde
temelje, ¢e namesto ra¢unalnika vzamemo neki dobro definirani model ra¢unanja. Skozi zgodovino
se je izkazalo, da je Turingov stroj ravno pravsnji model. Lahko torej reCemo, da je problem tezak,
¢e ga noben Turingov stroj ne more hitro resiti.

Dobro osnovo za tak§no obravnavo zahtevnosti problemov nam predstavljata dve tezi. Church-
Turingova teza pravi, da je mnoZica funkcij, ki jih lahko ra¢unamo s Turingovim strojem, enaka
mnoZici intuitivno izracunljivih funkcij. Teza ni matematicna trditev in je zato ni mogoce formalno
dokazati, Ceprav so nekateri poskusili storiti prav to [S]. Dober argument v prid tezi je predvsem
ta, da je moc¢ s Turingovim strojem simulirati veliko znanih modelov racunanja, tudi modele nasih
racunalnikov. Se ve¢, simulacije so efektivne. To pomeni, da Turingov stroj ne naredi bistveno
veC korakov kot simulirani model racunanja. Ta ugotovitev je osnova za krepko razlicico Church-
Turingove teze, ki pravi, da so vsi “smiselni” modeli raCunanja polinomsko ekvivalentni Turingo-
vemu stroju (tj. so primerljivo hitri). Krepka razli¢ica teze med teoretiki ni tako sploSno sprejeta
kot Church-Turingova teza in kvantni racunalniki jo domnevno kr$ijo. Na tem mestu omenimo, da
sodobna tehnologija Se ne omogoca izgradnje primerno velikih kvantnih ra¢unalnikov.

Turingovi stroji lahko izracunajo vse, kar lahko izra¢unajo teoreti¢ni modeli osebnih rac¢unal-
nikov, in to lahko storijo (teoreti¢no) primerljivo hitro. Najvecja prednost Turingovih strojev pred
temi modeli pa je “enostavnost”. Da bi pokazali, kako preprosti so, na kratko predstavimo enotracni
deterministi¢ni Turingov stroj (enotracni DTS) M; formalno definicijo najdemo v poglavju 3.1.6.
Fizicno M sestavljajo v obe smeri neskoncen trak, glava in kontrolni mehanizem, ki omogoca, da
je stroj zmeraj v natanko enem izmed koncnega Stevila stanj. Nekatera stanja so posebna: eno je
zacetno, nekaj pa jih je koncnih. Trak je razdeljen na celice, v vsaki celici je zapisan neki simbol
in nad natanko eno izmed celic je glava (glej sliko 1). M zmeraj zacne raunati v zaetnem stanju,
pri ¢emer je na traku zapisan vhod (vsak simbol vhoda v svoji celici, ostale celice pa vsebujejo
tako imenovani prazni simbol _) in je glava nad prvim simbolom vhoda. V vsakem koraku glava
najprej prebere simbol zapisan pod njo na traku, ki skupaj s trenutnim stanjem popolnoma doloci
naslednji korak stroja M tipa: prepi$i simbol pod glavo z drugim simbolom, lahko tudi enakim,
premakni glavo za eno celico v levo ali v desno ter zamenjaj stanje. Torej M racuna zelo lokalno,
saj je vsak naslednji korak dolocen le s trenutnim stanjem in simbolom pod glavo. Izracun se konca,
ko M preide v eno izmed konénih stanj. Ce se to nikdar ne zgodi, potem se M nikdar ne ustavi.
Rezultat izracuna je lahko stanje na traku ob koncu izracuna ali pa kon¢no stanje, v katerem M
zakljuci izvajanje. Kot smo Ze navedli, lahko tak stroj (navkljub enostavnosti) efektivno simulira
izracune sodobnih racunalnikov.

Slika 1: Trak enotracnega DTS-ja M z vhodom input. Preden M zacne raCunati, je v zaCetnem
stanju in njegova glava je nad simbolom i.

V disertaciji se ukvarjamo ve¢inoma z odlocitvenimi problemi, to so taki problemi, ki zahte-
vajo odgovor da ali ne. Podrobneje so predstavljeni v poglavju 2.1.4, tukaj bomo predstavili le tri
primere.

110

PrRIMERJAVA DOLZIN ... Ali je dani niz w oblike 00...011...1, kjer je Stevilo nicel enako
Stevilu enic?

HamiLTONOV CIKEL ... Ali je dani enostavni neusmerjeni graf Hamiltonov3?

D-Harr} ... Ali se dani enotra¢ni DTS M ustavi na praznem vhodu, tj. vhodu, ki
ne vsebuje nobenega simbola?

NajteZji problemi so taki, ki jih ni mogoce resiti s Turingovimi stroji, in dobro poznano dejstvo
je, da je D-Havr! tak problem (za dokaz glej poglavje 4.1.1). To dejstvo je zanimivo Ze samo
po sebi, za SirSo javnost pa je najbrZ bolj zanimiva njegova posledica, da ne obstaja racunalniski
program, ki bi resil problem:

Za dani program v programskem jeziku Java, ki ne sprejme nobenega vhoda, ali bi se
program kdaj ustavil, ¢e bi ga pognali?

Torej je preverjanje pravilnosti programske kode naloga, ki je ne moremo povsem avtomatizirati.

Naravno je odlocitvene probleme razvrstiti v razrede glede na to, kako hitro jih lahko reSimo s
Turingovimi stroji. Tako dobimo hierarhijo razli¢nih razredov racunske zahtevnosti, ki jo podrob-
neje opiSemo v poglavju 4.2.2. Najbolj znani razred racunske zahtevnosti je razred P, ki vsebuje
tiste odlocitvene probleme, ki so reSljivi z enotracnimi Turingovimi stroji v polinomskem casu.
Ce povemo drugace, je odlocitveni problem v razredu P natanko tedaj, ko obstaja polinom p in
enotraéni DTS, ki resi problem in za vsak n naredi najve¢ p(n) korakov na vhodih dolZine n.

Zelo znan razred odlocitvenih problemov je tudi NP, ki vsebuje natanko tiste odlocitvene pro-
bleme, katerih odgovore da lahko preverimo v polinomskem casu z enotracnim DTS-jem, ki ob
vhodu sprejme $e kratek niz, ki mu pravimo certifikat (nekakSen namig). Razred je natanc¢no de-
finiran v poglavju 3.4; tukaj ga bomo raje predstavili na primeru. Problem HamiLTONOV CIKEL je
v NP, saj za vsak graf, ki ima Hamiltonov cikel, obstaja certifikat, da je to res: zaporedje vozlisc,
ki tvori Hamiltonov cikel. Ce ob vhodnem grafu dobimo $e neko zaporedje vozlis¢ (kot certifikat),
lahko v polinomskem ¢asu preverimo, ali je to zaporedje Hamiltonov cikel ali ne. Po drugi strani
pa niso znani kratki certifikati, ki bi pomagali pri reSevanju komplementa problema HamiLTonov
CIKEL, ki se glasi:

Ali je res, da dani enostavni neusmerjeni graf G ni Hamiltonov?

Ta problem je v razredu co-NP, ki vsebuje natanko komplemente odlocitvenih problemov iz raz-
reda NP (odgovori da in ne so zamenjani). Obstaja mnogo znanih problemov, ki so v razredih
NP ali co-NP, ni pa znano, ali so tudi v razredu P. Eden takih je tudi problem HamiLToNnov

o
cikeL [12]. Medtem ko ocitno velja P € NP N co-NP, pa je vprasanje P = NP Ze desetletja
osrednje vpraSanje v teoriji raunske zahtevnosti, ki je motiviralo Stevilne znane rezultate na tem
podrocju. To vpraSanje predstavlja enega izmed problemov, poznanih pod imenom Millennium

Prize Problems, in njegova reSitev je vredna milijon ameriskih dolarjev [23]. Problem P Z NP
se je pojavil tudi v naslovu knjige Richarda J. Liptona [22] in objavljene so bile analize o tem, kaj
teoretiki menijo o njem [13]. Obstaja Se veliko drugih naravnih razredov odlocitvenih problemov,
za katere ni znano, v kaksni relaciji so s P, NP in med seboj. Naj omenimo le dve sorodni odprti

vprasanji, NP £ co-NP in P = NP N co-NP.

3Graf je enostaven, &e nima vzporednih povezav in zank. Graf je Hamiltonov, &e obstaja cikel, ki vsebuje vsa njegova
vozlica.

111

Ker je veliko naravnih razredov odlocitvenih problemov definiranih s pomocjo Turingovih stro-
jev, je temeljito poznavanje tega modela ra¢unanja raziskovalcu na podrocju ra¢unske zahtevnosti
lahko v veliko korist. Ena glavnih lastnosti Turingovih strojev je ¢asovna zahtevnost. Glavni av-
torjevi rezultati [10, 11] v Casu doktorskega Studija govorijo o tem, kako preveriti in ali je sploh
mogoce algoritmicno preveriti casovno zahtevnost danega Turingovega stroja. Ti rezultati so pred-
stavljeni v poglavju 6.

Pregled disertacije

Osrednji rezultati v disertaciji so v poglavjih 5 in 6, ostala poglavja sluzijo predvsem za predsta-
vitev ozadja. V poglavju 6 predstavimo rezultate o preverjanju casovne zahtevnosti Turingovih
strojev. Medtem ko so rezultati v primeru vectra¢nih Turingovih strojev relativno enostavni, pa
za analizo Casovne zahtevnosti enotra¢nih Turingovih strojev potrebujemo ve¢ razli¢nih koncep-
tov. Eden glavnih so prekriZna zaporedja, o katerih je govora v poglavju 5. Vecina rezultatov v
poglavjih 5 in 6 je avtorjevih [10, 11] in so podrobneje predstavljeni spodaj.

Preletimo najprej ostala poglavja. Poglavje 1 je uvodno in je v grobem angleSka verzija tega
slovenskega povzetka. V poglavju 2 predstavimo osnovno notacijo, definiramo regularne jezike,
konc¢ne avtomate ter regularne izraze. DokaZemo tudi, da regularni izrazi in kon¢ni avtomati opi-
Sejo natanko regularne jezike. V poglavju 3 definiramo ve¢ razli¢nih modelov Turingovih strojev:
enotracne in vectracne, deterministicne in nedeterministi¢ne. Definiramo tudi ¢asovno pogojene
razrede odlocitvenih problemov, med drugimi razreda P in NP. V pomembnem in zelo tehni¢nem
podpoglavju 3.3 analiziramo, kako zaostritve razli¢nih parametrov Turingovih strojev vplivajo na
casovno zahtevnost razpoznavanja jezikov. Parametri, ki jih obravnavamo, so velikost tracne abe-
cede, Stevilo trakov in uporaba nedeterminizma.

V poglavju 4 dokazemo neodlocljivost zaustavitvenega problema ter neodlocljivost problema
D-Harrt!. Prav tako dokaZemo izreka o deterministi¢ni in nedeterministi¢ni ¢asovni hierarhiji. De-
finiramo tudi Turingove stroje z orakljem in sicer tako, da obstajajo tudi enotracni Turingovi stroji
z orakljem in da se tehnike dokazovanja, ki jih uporabljamo v poglavjih 5 and 6, enostavno prene-
sejo iz “navadnih” Turingovih strojev nanje. Tehnikam, ki jih lahko tako “prenesemo”, pravimo,
da relativizirajo. Na koncu poglavja 4 pokazemo, da le s tehnikami, ki relativizirajo, ne moremo

resiti problema P Z NP,

Poglavje 6

To poglavje je zadnje in nosi enak naslov kot disertacija: Preverjanje Casovne zahtevnosti Turin-
govih strojev. Vsi rezultati, ki jih bomo v tem povzetku poglavja predstavili, veljajo tako za de-
terministicne Turingove stroje (DTS) kot za nedeterministi¢ne Turingove stroje (NTS), razen ce
napiSemo drugace.

Za funkcijo T' : N — R obstajata vsaj dva naravna tipa problemov preverjanja ¢asovne
zahtevnosti, podane s pomocjo funkcije 7'(n):

e Ali je dani Turingov stroj ¢asovne zahtevnosti O(7'(n))?

e Ali je dani Turingov stroj ¢asovne zahtevnosti 7'(n), tj. ali za vsak n dani Turingov stroj
napravi najve¢ T'(n) korakov na vsakem izra¢unu na vhodih dolZine n?

Teoretikom je Ze dolgo znano, da ne obstaja algoritem, ki bi preveril, ali je dani Turingov stroj
Casovne zahtevnosti O(1). Torej je prvi problem neodlo¢ljiv za vse uporabne funkcije 7. V iz-

112

reku 6.1.6 najdemo posploSitev tega rezultata. Po drugi strani pa je drugi problem odlocljiv za vsako
konstantno funkcijo 7'(n) = C. Namreé, da bi preverili, ali je dani Turingov stroj ¢asovne zah-
tevnosti C', ga moramo le simulirati na vhodih do dolZine C (za argumente glej dokaz leme 6.1.1).
Izkaze se celo, da lahko natancno karakteriziramo funkcije 7, za katere je drugi problem odlo-
Cljiv. Izrek 6.1.3 nam namrec pove, da je drugi problem odlocljiv natanko tedaj, ko imamo izrojeni
primer T'(ng) < no+ 1 zaneki ng € N. Meja ¢asovne zahtevnosti 7+ 1 je posebna zato, ker je mi-
nimalna taka, ki omogoca vectraénemu Turingovemu stroju, da meri ¢as svojega izvajanja in hkrati
simulira drug Turingov stroj. Cas izvajanja lahko meri na vhodnem traku s tem, da glavo pomika v
desno, dokler ne prebere praznega simbola, na preostalih trakovih pa simulira drug Turingov stroj.

Ta strategija se podre, e se omejimo na enotracne Turingove stroje. Na slednjih moramo
merjenje ¢asa ter simulacijo opraviti na istem traku in izkaZe se, da za to v splosnem potrebujemo
Q(nlogn) Casa. Da je ©(nlogn) dovolj, je razvidno iz dokaza izreka 6.1.5, ki pravi:

Naj za funkcijo T : N — R velja T(n) = Q(nlogn) in naj za vsak n € N velja
T(n) > n + 1. Potem ni odlocljivo, ali je dani enotracni Turingov stroj casovne
zahtevnosti T'(n).

Po drugi strani pa nam izrek 6.1.10 pove, da je meja ©(n logn) tesna:

NajboT : N — R~ “lepa” funkcija, za katero velja T'(n) = o(nlogn). Potem je
odlocljivo, ali je dani enotracni Turingov stroj casovne zahtevnosti T'(n).

Meje ¢asovne zahtevnosti reda ©(n logn) so zanimive Se zaradi necesa. So minimalne take,
ki omogocajo enotracnim Turingovim strojem, da sprejmejo neregularen jezik. Vsak enotracni
Turingov stroj asovne zahtevnosti o(n logn) namre¢ odlo¢i neki regularni jezik (trditev 5.1.7).
Po drugi strani pa obstaja neregularni jezik, ki ga sprejme neki enotracni Turingov stroj v Casu
O(nlogn) (trditev 5.1.9).

Zanimivo je, da je vsak enotra¢ni Turingov stroj ¢asovne zahtevnosti o(nlogn) tudi linearne
Casovne zahtevnosti (posledica 5.1.6). Torej je linearna ¢asovna zahtevnost najnaravnejsa algo-
ritmi¢no preverljiva ¢asovna zahtevnost enotracnih Turingovih strojev. To dejstvo je motivacija
za drugi del zadnjega poglavja, v katerem analiziramo racunsko zahtevnost naslednjih problemov,
parametriziranih s C, D € N. Problem HALTlcn 4 p je sledec:

Ali je dani enotra¢ni NTS Casovne zahtevnosti Cn + D?
Problem D—HALT}M 4 p Jje sledec:
Ali je dani enotracni DTS ¢asovne zahtevnosti C'n + D?

Za laZjo analizo teh problemov fiksirajmo vhodno abecedo X, ki naj vsebuje vsaj dva simbola,
in tra¢no abecedo I' D 3. Posledi¢no za vecino klasi¢nih kodiranj enotra¢nih Turingovih strojev
velja, da je dolZina kode Turingovega stroja s ¢ stanji O(q?). Da analizo e olaj$amo, vzemimo
tako kodiranje, da bo dolZina kode enotraénega Turingovega stroja s ¢ stanji ©(g?). Primer takega
kodiranja je podan v poglavju 6.2.1. Ob teh predpostavkah lahko ra¢unsko zahtevnost proble-
mov HaLtl,,, |, in D-HALT(,, |, izraZamo s parametrom ¢, ki do konstantnega multiplikativnega
faktorja doloca dolZino vhoda. Racunsko zahtevnost teh problemov nam zelo natan¢no opredeli
naslednji izrek (izrek 1.2.1).

113

Za poljubni naravni stevili C > 2 in D > 1 veljajo vse naslednje tocke.

(i) Problema HALTlcn Lpin D—HALTlcn +p sta co-NP-polna.

(ii) Problema HAvLT} in D-HALT} nista resljiva v casu o q(C_l)/ 4) z vec-
Cn+D Cn+D J
tracnimi NTS-ji.
(iii) Komplementa problemov HALT} inD-HaLT} stareljiva v casu O(q¢+2
Cn+D Cn+D
z vectracnimi NTS-ji.
(iv) Komplement problema HALTlcn 4 p ni resljiv v casu o(q(c_l)/ 2) z vectracnimi
NTS-ji.
(v) Komplement problema D-HaLt} ni resljiv v casu o q(c_l)/ 4) z vectracnimi
Cn+D)
NTS-ji.

Ce povzamemo, sta problema HaLt(,,, | 1, in D-HALT/,,, |, co-NP-polna, njuna konedetermi-
nisti¢na ¢asovna zahtevnost je navzgor omejena z O(¢“*2), navzdol pa z Q(¢%2°¢~1), s &imer je
navzdol omejena tudi njuna nedeterministi¢na ¢asovna zahtevnost.

Zgornja meja ra¢unske zahtevnosti v izreku 1.2.1 je dokazana s pomocjo prekriznih zaporedij,
predstavljenih v poglavju 5. Vec o tem, kako jo dokaZemo, je napisano spodaj v pregledu omen-
jenega poglavja. Spodnje meje racunske zahtevnosti dokaZzemo s pomocjo polinomskih prevedb
racunsko zahtevnih odlocitvenih problemov na probleme HALTlcn Lpin D—HALTlcn +p- Racunsko
zahtevne probleme dobimo z diagonalizacijo.

Opisimo Se glavno idejo pri prevedbah. Recimo, da enotraéni NTS M reSi racunsko zahteven
odlocitveni problem L. Potem lahko L reSimo tudi tako, da na vhodu w najprej skonstruiramo
enotracni Turingov stroj M,,, ki je Casovne zahtevnosti Cn + D natanko tedaj, ko M zavrne w,
in nato reSimo komplement problema HALTlcn LpZa M,,. Ce uspemo M, skonstruirati z malo
koraki, potem nam racunska zahtevnost problema L zagotavlja spodnjo mejo racunske zahtevnosti
za komplement problema HALTlcn + p- Glavna naloga stroja M, je simulacija M na vhodu w, ki pa
jo izvede le na dovolj dolgih (lastnih) vhodih, da ne krsi Casovne zahtevnosti C'n + D. To stori na
naslednji na¢in. Najprej s (C' — 1)n+ 1 koraki preveri, ali je vhod dovolj dolg, nato pa v naslednjih
(najvec) n korakih simulira M na w. Ce M sprejme, M, poZene neskon¢no zanko in se ve¢ ne
ustavi, sicer se ustavi. IzkaZe se, da je za M, klju¢no, da efektivno izmeri vhod z malo koraki in
ob uporabi malega Stevila razli¢nih stanj. Slednje je pomembno predvsem zato, ker manjsi opis
stroja M,, pomeni boljSo spodnjo mejo racunske zahtevnosti za komplement problema HALTlcn D
Podrobnosti najdemo v poglavju 6.2.3. V poglavju 6.2.4 pokazemo, da je na$ nacin merjenja dol-
Zine vhoda stroja M, optimalen, torej z naS§imi metodami ne moremo dokazati bistveno boljsih
spodnjih mej racunske zahtevnosti.

Omenimo Se poglavje 6.2.5, v katerem pokaZemo, da tehnike, uporabljene pri dokazovanju

2
izreka 1.2.1, relativizirajo, torej izklju¢no z njimi ne moremo resiti problema P = NP.

Poglavje 5

V tem poglavju definiramo prekriZna zaporedja in glavne rezultate v zvezi z njimi. Definirana
so le za enotrane Turingove stroje. PrekriZno zaporedje, generirano z enotracnim Turingovim
strojem M na locnici i (glej sliko 2) po t korakih izracuna (na vhodu w, je zaporedje stanj, v
katerih M precka lo¢nico ¢, ¢e upoStevamo le prvih ¢ korakov izracuna ¢ na vhodu w. Pri tem
predpostavljamo, da M v vsakem koraku najprej preide v naslednje stanje in Sele nato premakne
glavo. To zaporedje vsebuje vse informacije, ki jih M v prvih ¢ korakih izracuna (prenese iz leve
strani lo¢nice ¢ na desno in obratno.

114

CELICE! s — f— — f— —

LOCNICE: e =3 =2 -1 0 1 2 3 4 5

Slika 2: Ostevil€enje lo¢nic med celicami traku enotra¢nega Turingovega stroja. Osenceni del je
potencialni vhod dolZine 4.

Osrednja tehnika pri obravnavi prekriznih zaporedij je fehnika rezanja in lepljenja, s katero
dokaZemo glavni rezultat v poglavju 5, izrek o kompaktnosti. Preden ga zapiSemo v splosnem, si
poglejmo posledico, po kateri je dobil ime.

Naj bosta C' in D poljubni naravni stevili in naj bo M enotracni NTS s q stanji. Potem
je M casovne zahtevnosti Cn + D natanko tedaj, ko M za vsak n < O(qzc) naredi
najve¢ Cn + D korakov na vsakem izracunu na vhodih velikosti n.

Z drugimi besedami, problem HALTlcn . p lahko resimo tako, da za vhodni NTS M preverimo
le Stevilo korakov, ki jih M naredi na vhodih velikosti najvec O(q2C). Konstanta pod notacijo
veliki O je polinomska v C in D (glej posledico 5.2.5). Ceprav nam ta posledica poda nadin
za reSevanje problema HALTlcn 4 p» Pa potrebujemo mocnejsi rezultat (izrek o kompaktnosti), da
dokaZemo izrek 1.2.1.

Podajmo sedaj dve oznaki, ki nastopata v izreku o kompaktnosti. Za enotra¢ni NTS M, niz w
in prekrizno zaporedje C intuitivno opisimo Stevilo ¢/ (w, C). To je najvedje Stevilo korakov, ki jih
lahko naredi M na strnjenem delu w nekega namisljenega vhoda, ¢e upostevamo le tiste izracune,
ki na levem in desnem kraji$¢u niza w proizvedejo enako prekrizno zaporedje C. Ce tak izraun ne
obstaja, definiramo t,7(w,C) = —1. Stevilo ¢5s(w, C) lahko enostavno izratunamo s simulacijo
M na delu w, kot je razvidno iz njegove bolj formalne definicije v poglavju 5.2.1.

Zaenotra¢ni NTS M in naravno Stevilo n oznac¢imo s S, (M) mnoZico vseh zacetkov prekriznih
zaporedij, ki jih lahko M ustvari na vhodih velikosti n na lo¢nicah 1, 2 .. . n. Izrek o kompaktnosti
(izrek 5.2.1) je sledec.

Naj bo M enotracni NTS s q stanji in naj bosta C in D naravni stevili. Oznacimo
(=D+8¢“, r=D+12¢° inS = Ui:1 Sn(M). Potem velja:

Mje casovne zahtevnosti Cn + D natanko tedaj, ko

a) za vsak niz w dolZine najvec ¢ in za vsak izracun ¢ Turingovega stroja M na
vhodu w velja |C| < Clw| + D ter

b) zavsako prekrizno zaporedje C € S in za vsak niz w dolZine najvec r, za katerega
jety(w,C) >0, velja ty(w,C) < Clw|.

Spomnimo se posledice, ki smo jo omenili pred izrekom, in ki nam pove, da je za preverjanje
Casovne zahtevnosti Cn + D danega NTS-ja dovolj NTS simulirati na vhodih velikosti O(g%“).
Opazimo, da v izreku o kompaktnosti nastopajo le nizi dolzine O(¢®). To je klju¢no v dokazu
zgornje meje asovne zahtevnosti O (¢ *2) za reSevanje komplementa problema HALTén L pzvet-
tracnimi NTS-ji (izrek 1.2.1).

Glavna tehnika pri dokazovanju izreka o kompaktnosti je tehnika rezanja in lepljenja. Najprej
pokazemo, da poljuben NTS ¢asovne zahtevnosti Cn + D na dovolj velikih vhodih zmeraj na

115

nekaj lo¢nicah generira enaka prekrizna zaporedja. Ce fiksiramo neki izra¢un na dovolj velikem
vhodu, potem lahko ta vhod razreZemo na mestih, kjer se pojavi enako prekrizno zaporedje, in
obravnavamo vsak del posebej. DokaZemo, da je dovolj obravnavati le (konstantno) kratke dele
vhodov.

V poglavju 5.1.2 dokaZemo standardni rezultat o enotracnih Turingovih strojih ¢asovne zahtev-
nosti o(n logn): taki Turingovi stroji generirajo le kon¢no mnogo razli¢nih prekriznih zaporedij in
odlocijo le regularne jezike. Se ve¢, vsak enotraéni Turingov stroj ¢asovne zahtevnosti o(n log n) je
tudi linearne ¢asovne zahtevnosti. V poglavju 5.2.3 opiSemo algoritem, ki sprejme naravni Stevili
C'in D ter enotra¢ni NTM M in v primeru, da je M Casovne zahtevnosti C'n+ D, vrne ekvivalenten
kon¢ni avtomat.

V poglavju 5.1.3 s pomocjo prekriznih zaporedij dokaZemo dve preprosti, dobro znani spodnji
meji Casovne zahtevnosti za reSevanje problemov z enotraénimi NTS-ji. Prva je reda ©(nlogn) za
problem PRIMERJAVA DOLZIN, ki je ocitno resljiv v linearnem casu z vectraCnim DTS-jem. Druga
spodnja meja Se bolj poudari razliko med efektivnostjo enotraénih in vectra¢nih Turingovih strojev.
Naj bo PaLinDrROM naslednji odlocitveni problem:

Ali je dani niz palindrom, tj. ali se dani niz prebere od leve proti desni enako kot od
desne proti levi?

Medtem ko lahko vectra¢ni DTS resi problem PaLinDROM Vv linearnem Casu, pa za vsako funk-
cijo T(n) = o(n?) enotratni NTS potrebuje ve¢ kot O(7T'(n)) korakov. Kot zanimivost poka-
Zemo tudi, da obstaja enotra¢ni NTS ¢asovne zahtevnosti O(n log n), ki resi komplement problema
PaLiNnDROM, s ¢imer pokaZemo, da nedeterministi¢na ra¢unska zahtevnost problema ne sovpada
nujno z nedeterministicno racunsko zahtevnostjo njegovega komplementa.

Sorodna in uporabljena literatura

Poglavja 2, 3 in 4 vsebujejo standardno snov iz podro¢ja racunske zahtevnosti in so v ve¢ini pokrita
v knjigah Arore in Baraka [2] ter Sipserja [28]. Nekaj dokazov v teh poglavij je povsem avtorjevih,
nekaj jih podrobneje sledi literaturi. Izreki in trditve so oblikovani tako, da ustrezajo kontekstu,
v katerega so postavljeni. Dodatna literatura, ki je bila uporabljena, je na ustreznih mestih tudi
navedena.

Poglavji 5 in 6 slonita na avtorjevih delih [10, 11]. Medtem ko je Se veliko druge literature
o prekriZnih zaporedjih (poglavje 5), pa je dodatno literaturo za poglavje 6 teZje najti. A nekaj
je vseeno obstaja. V sedemdesetih letih prej$njega stoletja je Hdjek [19] dokazal, da ne obstaja
algoritem, ki bi za dani vec¢tracni DTS povedal, ali je asovne zahtevnosti n + 1. PribliZno v istem
obdobju je Hartmanis objavil monografijo [16], v kateri se v poglavju 6 ukvarja z vpraSanjem:
katere izjave o racunski zahtevnosti je mogoce dokazati? V tem delu med drugim primerja razred
jezikov, ki jih razpoznavajo Turingovi stroji ¢asovne zahtevnosti 7'(n), z razredom jezikov, ki jih
razpoznavajo Turingovi stroji, katerih ¢asovno zahtevnosto 7'(n) lahko dokaZzemo. Naj omenimo $e
publikacijo Adachija, Iwate and Kasaija [1] iz leta 1984, v kateri predstavijo dobre deterministi¢ne
spodnje meje ¢asovne zahtevnosti reSevanja problemov, ki so P-polni. Struktura tega rezultata je
primerljiva strukturi izreka 1.2.1.

Studij prekriznih zaporedij sega v Sestdeseta leta prej$njega stoletja, z zaCetniki Hartmani-
som [15], Henniejem [17] in Trakhtenbrotom [30]. Leta 1968 je Hartmanis [15] dokazal, da eno-
tracni DTS-ji Casovne zahtevnosti o(n log n) sprejmejo natanko regularne jezike. Ob tem je omenil,
da je do istega rezultata neodvisno prisel tudi Trakhtenbrot [30, v ruscini]. V dokazu je Hartmanis

116

kot delni rezultat uporabil dejstvo, da enotra¢ni DTS-ji asovne zahtevnosti o(n log n) generirajo
le prekrizna zaporedja dolZine O(1), nato pa je uporabil Henniejev rezultat [17], ki pravi, da taki
Turingovi stroji razpoznavajo le regularne jezike. Kasneje (v osemdesetih letih prejSnjega stoletja)
je Kobayashi [20] podal drugacen dokaz istega rezultata, a za razliko od Hartmanisovega pristopa,
je njegov dokaz podal nacin, kako izraunati zgornjo mejo za dolZino prekriZnih zaporedij. Ne-
davno so Tadaki, Yamakami in Lin [29] pokazali, da tudi enotra¢ni NTS-ji ¢asovne zahtevnosti
o(nlogn) generirajo le prekrizna zaporedja dolzine O(1), iz Cesar sledi, da sprejmejo le regularne
jezike. Sledili so Kobayashijevemu dokazu in s tem implicitno podali nacin, kako izracunati zgor-
njo mejo za dolZino prekriZznih zaporedij, kar je klju¢no v dokazu izreka 6.1.10. Le-ta pravi, da
za “lepe” funkcije T'(n) = o(nlogn) obstaja algoritem, ki za dani enotraéni NTS pove, ali je ¢a-
sovne zahtevnosti 7'(n). V [26] je Pighizzini dokazal, da so NTM-ji ¢asovne zahtevnosti o(n log n)
tudi linearne c¢asovne zahtevnosti. Pregled lastnosti razli¢nih tipov enotracnih Turingovih strojev
linearne ¢asovne zahtevnosti najdemo v [29].

117

118

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

[13]

[14]

A. Adachi, S. Iwata, and T. Kasai. Some combinatorial game problems require Q(nk) time.
J. ACM, 31(2):361-376, 1984.

S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, 2009.

T. P. Baker, J. Gill, and R. Solovay. Relativizatons of the P = ? NP question. SIAM J. Comput.,
4(4):431-442, 1975.

S. Cabello and D. Gajser. Simple PTAS’s for families of graphs excluding a minor. Discrete
Appl. Math., 189:41-48, 2015.

N. Dershowitz and Y. Gurevich. A natural axiomatization of computability and proof of
Church’s thesis. Bull. Symb. Log., 14(3):299-350, 2008.

R. Diestel. Graph Theory, 3rd ed., volume 173 of Graduate Texts in Mathematics. Springer-
Verlag, 2005.

B. Farhi. Nontrivial lower bounds for the least common multiple of some finite sequences of
integers. J. Number Theory, 125(2):393 — 411, 2007.

L. Fortnow and R. Santhanam. Robust simulations and significant separations. In Proceedings
of the 38th International Colloguim Conference on Automata, Languages and Programming
- Volume Part I, ICALP’11, pages 569-580. Springer-Verlag, 2011.

D. Gajser. The limit of binomial means of a sequence. 2014. Preprint, arXiv:1407.4410.

D. Gajser. Verifying time complexity of turing machines. Theor. Comput. Sci., 600:86 — 97,
2015.

D. Gajser. Verifying whether one-tape Turing machines run in linear time. ECCC, TR15-036,
2015.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., 1979.

W. L. Gasarch. Guest column: the second P = ? NP poll. SIGACT News, 43(2):53-77, 2012.

D. Goldin and P. Wegner. The interactive nature of computing: Refuting the strong Church-
Turing thesis. Minds and Machines, 18(1):17-38, 2008.

119

http://arxiv.org/abs/1407.4410

[15] J. Hartmanis. Computational complexity of one-tape Turing machine computations. J. ACM,
15(2):325-339, 1968.

[16] J. Hartmanis. Feasible computations and provable complexity properties. CBMS-NSF re-
gional conference series in applied mathematics. Society for Industrial and Applied Mathe-
matics, Philadelphia, 1978.

[17] F. C. Hennie. One-tape, off-line Turing machine computations. Information and Control,
8(6):553-578, 1965.

[18] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape Turing machines. J. ACM,
13(4):533-546, 1966.

[19] P. Hajek. Arithmetical hierarchy and complexity of computation. Theor. Comput. Sci.,
8(2):227-237, 1979.

[20] K. Kobayashi. On the structure of one-tape nondeterministic Turing machine time hierarchy.
Theor. Comput. Sci., 40(2-3):175-193, 1985.

[21] D. Kozen. Theory of Computation. Texts in Computer Science. Springer, 2006.
[22] R.J. Lipton. The P = NP Question and Gédel’s Lost Letter. Springer, 2010.

[23] Millennium prize problems. Retrieved Oct 11, 2015, from http://www.claymath.org/
millennium-problems/p-vs-np-problem.

[24] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1995.

[25] W. J. Paul, N. Pippenger, E. Szemerédi, and W. T. Trotter. On determinism versus non-
determinism and related problems (preliminary version). In 24th Annual Symposium on
Foundations of Computer Science, Tucson, Arizona, USA, 7-9 November 1983, pages 429—
438, 1983.

[26] G. Pighizzini. Nondeterministic one-tape off-line Turing machines and their time complexity.
J. Autom. Lang. Comb., 14(1):107-124, 2009.

[27] J. L. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity
classes. J. ACM, 25(1):146-167, 1978.

[28] M. Sipser. Introduction to the Theory of Computation, 2nd ed. PWS Publishing Company,
1997.

[29] K. Tadaki, T. Yamakami, and J. C. H. Lin. Theory of one-tape linear-time Turing machines.
Theor. Comput. Sci., 411(1):22—43, 2010.

[30] B. A. Trakhtenbrot. Turing computations with logarithmic delay. Algebra i Logica 3, pages
33-48, 1964. In Russian.

[31] S.Zdk. A Turing machine time hierarchy. Theor. Comput. Sci., 26(3):327 — 333, 1983.

120

http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem

	Introduction
	Motivation
	Outline of the Dissertation
	Literature and Related Work

	Preliminaries
	Notation, Languages and Problems
	Basic Notation
	Languages over Alphabets
	Encodings
	Decision Problems

	Finite Automata, Regular Languages and Regular Expressions
	Deterministic Finite Automata and Regular Languages
	Non-Deterministic Finite Automata
	Regular Expressions

	Turing Machines
	One-Tape Turing Machines
	The Formal Definition of a Computation of a One-Tape NTM
	Giving an Input to a Turing Machine
	Running Time
	Language of a Turing Machine
	About Our Definition of a One-Tape NTM
	One-Tape Deterministic Turing Machines

	Multi-Tape Turing Machines
	About Our Definition of a Multi-Tape NTM
	Multi-Tape Deterministic Turing Machines

	How Different Attributes of Turing Machines Influence the Time Complexity
	Reducing the Tape Alphabet
	Linear Speedup
	Reducing the Number of Tapes
	Non-Determinism and Determinism
	Reducing the Number of Non-Deterministic Options

	Complexity Classes
	Complexity Classes of Decision Problems
	The Complexity of Regular Languages
	Complexity of Computing Functions

	The Church-Turing Thesis
	Encoding Turing Machines
	Universal Turing Machine

	Classes NP and co-NP
	Reductions and Complete problems

	Diagonalization and Relativization
	Halting Problems
	Proving Undecidability of Problems

	Time Hierarchy Theorems
	Time Constructible Functions
	The Deterministic Time Hierarchy
	The Non-Deterministic Time Hierarchy

	Relativization
	Oracle Turing Machines
	Encodings of Oracle Turing Machines
	Results that Relativize
	Limits of Proofs that Relativize

	Crossing Sequences
	Definition and Basic Results
	The Cut-and-Paste Technique
	One-Tape Turing Machines that Run in Time o(nlogn)
	Simple Applications

	The Compactness Theorem
	Computation on a Part
	The Compactness Theorem
	Supplementary Results to the Compactness Theorem

	Verifying Time Complexity of Turing Machines
	Decidability Results
	Folkloric Results and Extended Considerations
	One-Tape Turing Machines and an o(nlogn) Time Bound

	Complexity Results
	Encoding of One-Tape Turing Machines
	The Upper Bound
	The Lower Bounds
	Optimality of Our Measuring of the Length of an Input
	Relativization in Theorem 1.2.1
	An Open Problem

	Slovenski povzetek
	Motivacija
	Pregled disertacije
	Poglavje 6
	Poglavje 5

	Sorodna in uporabljena literatura

	Bibliography

