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Doktorska disertacija

MENTOR: prof. dr. Sandi Klavžar
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ob čajankah.

Einen herzlichen Dank an Sie, Prof. Hinz für die Zeit und die Unterstützung, die Sie sich
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Abstract

In this thesis we study the metric properties of Sierpiński graphs. Sierpiński graphs form a
two-parametric family of graphs similar to Hanoi graphs that originate in the Tower of Hanoi
puzzle. Sierpiński graphs can be found in various areas of mathematics and elsewhere.

First we introduce the family of Sierpiński graphs and their variants. These families have
been known under various names, and sometimes vice versa - different graphs under the same
name. We therefore standardize their notations and names to avoid confusion in the future.
Next we summarize what has already been studied on Sierpiński graphs.

One chapter of the thesis is completely devoted to metric properties of Sierpiński graphs,
where we first list known related results, in particular we state the distance lemma and the the-
orem about the distance between arbitrary two vertices. Since this distance is expressed with
a minimum, we give improved results on distances in Sierpiński graphs for almost-extreme
vertices. Namely, the distance between an arbitrary vertex and an almost-extreme vertex in a
Sierpiński graph can be expressed with a closed formula. We conclude this part with determin-
ing the metric dimension of Sierpiński graphs.

To better understand the structure of Sierpiński graphs we study various embeddings, be-
ginning with the embeddings into Hanoi graphs. We also determine the canonical metric re-
presentation and induced embeddings. For the latter type of embeddings, we introduce the
Hamming dimension and bound it for Sierpiński graphs.

We conclude with some open problems.

Math. Subj. Class. (2010): 05C12, 05C57, 05C60, 05C75, 05C76, 05C78.

Keywords: Sierpiński graph, Sierpiński-type graph, distance, almost-extreme vertex, distance
of a vertex, metric dimension, Hanoi graph, Switching Tower of Hanoi, canonical metric repre-
sentation, Hamming dimension, induced embedding.
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Povzetek

V disertaciji preučujemo metrične lastnosti grafov Sierpińskega. Ti tvorijo 2-parametrično
družino grafov, podobno grafom Hanojskega stolpa. Grafe Sierpińskega srečamo na različnih
matematičnih področjih kot tudi v drugih vedah.

Najprej predstavimo družino grafov Sierpińskega in njihove različice. Te družine so po-
znane pod različnimi imeni, nekateri različni grafi pa si v literaturi delijo ime. V ta namen
standardiziramo njihove oznake in imena, da bi se izognili zmedi pri nadaljnjem raziskoval-
nem delu. Naslednji korak je predstavitev znanih rezultatov o grafih Sierpińskega.

Eno poglavje disertacije v celoti namenjamo metričnim lastnostim grafov Sierpińskega, kjer
najprej navedemo z metričnimi lastnostmi povezane znane rezultate. Posebno izpostavimo
dobro znano lemo o razdalji in izrek o razdalji med poljubnima dvema vozliščema. Ker je
ta razdalja določena z minimumom, izpeljemo izboljšane rezultate za razdalje do skoraj eks-
tremnih vozlišč. Natančneje povedano, razdaljo med poljubnim vozliščem in skoraj ekstrem-
nim vozliščem na grafu Sierpińskega izrazimo z eksplicitno formulo. Poglavje zaključimo z
določitvijo metrične dimenzije grafov Sierpińskega.

Da bi bolje razumeli strukturo grafov Sierpińskega, na koncu preučujemo različne vložitve.
Zaradi njihove povezave s Hanojskim stolpom si najprej ogledamo vložitve v grafe Hanojskega
stolpa. Prav tako določimo kanonično metrično reprezentacijo in inducirane vložitve. Za sled-
nje vpeljemo Hammingovo dimenzijo in določimo njene meje za družino grafov Sierpińskega.

Disertacijo zaključimo z navedbo nekaterih odprtih problemov.

Math. Subj. Class. (2010): 05C12, 05C57, 05C60, 05C75, 05C76, 05C78.

Ključne besede: graf Sierpińskega, graf tipa Sierpińskega, razdalja, skoraj ekstremno vozlišče,
razdalja vozlišča, metrična dimenzija, graf Hanojskega stolpa, zamenjevalni Hanojski stolp,
kanonična metrična reprezentacija, Hammingova dimenzija, inducirana vložitev.
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Chapter 1

Introduction

In the great temple at Benares, beneath the dome which marks the centre of the world, rests
a brass-plate in which are fixed three diamond needles, each a cubit high and as thick as the
body of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure
gold, the largest disc resting on the brass plate, and the others getting smaller and smaller
up to the top one. This is the Tower of Bramah. Day and night unceasingly the priests
transfer the discs from one diamond needle to another according to the fixed and immutable
laws of Bramah, which require that the priest must not move more than one disc at a time
and that he must place this disc on a needle so that there is no smaller disc below it. When
the sixty-four discs shall have been thus transferred from the needle on which at the creation
God placed them to one of the other needles, tower, temple, and Brahmins alike will crumble
into dust, and with a thunder-clap the world will vanish. [3, p. 92]

This is how the legend goes. The legend behind a puzzle called the Tower of Hanoi, invented by
Éduard Lucas in 1883. His original puzzle consists of 3 pegs (needles in the legend) and 8 discs
of different diameters which are all stacked on one of the pegs in decreasing order starting with
the largest disc at the bottom of the peg. The goal of the puzzle is to transfer all discs stacked
on one peg to another in such a way that we move only one disc at a time and obey the divine
rule: no larger disc may be placed onto a smaller one.

Scorer, Grundy and Smith [58] were the first ones to introduce a state graph for the Tower
of Hanoi puzzle (in 1944), and this is how the graph theory behind the game began to evolve.
They generalized the number of the discs from the puzzle to an arbitrary number of discs but
still assumed 3 pegs from the original version. It was Dudeney, however, who in his book from
1908 [10] indicated the extension of the problem to more than 3 pegs. His game, the Reve’s
puzzle, included 4 stools instead of pegs, and loaves of cheese instead of inedible discs, but the
glove was thrown.

The extension of the original puzzle to more than 3 pegs, namely p, is the most intriguing
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2 Introduction

generalization of the original game. For 3 pegs, many aspects of the puzzle were studied,
starting with the minimal number of moves to transfer the entire stack of discs to another peg.
For a comprehensive summary of known results see [27, Chapter 2]. When we introduce the 4th
peg to the classical problem, we enter completely unfamiliar territory. The first ones to boldly
cross its borders were Frame and Stewart, who, in 1941 ([11], [60], respectively), independently
came to a similar solution for the minimal number of moves, assuming a generalized p-peg
case. In order to transfer the entire stack of discs from one peg to another, they used different
approaches to arrive to a similar conclusion, now jointly called the Frame-Stewart Conjecture
(FSC). To date it still remains to be proven, however, that the solutions they presented are also
the optimal ones. State graphs can also be defined for an arbitrary number of pegs (p ∈ N),
although, compared to those for p = 3, their nature is much, much more complex. These
graphs are called Hanoi graphs, after the puzzle.

Graphs that are similar to Hanoi graphs, yet quite a bit simpler in their structure, are Sier-
piński graphs. They play an important role in graph theory as well as in other fields of mathe-
matics. Their value, however, extends outside the mathematical domain as they can be found in
physics, psychology and elsewhere. The Sierpiński graphs were introduced in 1997 by Klavžar
and Milutinović [40]. Back then, the authors presented the two-parametric family of graphs
S(n, k) (now denoted by Snp , where k was replaced by p for “pegs”) the introduction of which
was motivated from topological studies of the Lipscomb space as well as by the Tower of Hanoi
puzzle. The name “Sierpiński graphs” was given later in 2002 [41], although the case p = 3 was
already considered in 1990 by Hinz and Schief [32] under the name Sierpiński graph. The graph
Sn3 is isomorphic to the Hanoi graph Hn

3 (cf. [40, Theorem 2]). In more general terms, any Snp
graph is isomorphic to the state graph of the Tower of Hanoi variant called the Switching Tower
of Hanoi. There we also have p pegs, but we adjust the divine rule, so that in one move we either
move the smallest disc (move of type 0) or, if we have a subtower of discs 1, . . . , δ − 1 on one
peg and disc δ lies on (top of) some other peg, we switch disc δ with the subtower of smallest
discs (move of type 1).

Sierpiński graphs have been studied to a great extent. Many of their properties are known,
but the studies are burdened with confusing names and notations. There are several types
of graphs that were presented with the same name and vice versa – one name can be found
in connection with different graphs. It was this mix-up that motivated us to embark upon a
classification quest. We have carefully studied the known graphs among the Sierpiński-type
graphs and tried to classify them once and for all.

After the classification, we will give a survey of known results on Sierpiński graphs. A lot
is known about their properties although some studies related to these graphs might still re-
main unexplored. Our focus were hamiltonicity and planarity, colorings, codes and labelings,
as well as some other properties. In Chapter 3, we narrowed our focus on metric properties
of Sierpiński-type graphs. We first discuss known results. Two of the most important are defi-
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nitely the distance lemma and the accompanying theorem [40], that already in 1997 started the
chase for metric properties. The first ones to join the chase were Romik [57], with a decision
automaton for shortest paths in the classical case (i.e., for p = 3), and Parisse [52], with nume-
rous results such as diameter, eccentricity and other metric-related outcomes, almost a decade
later. Wiesenberger pitched in with the average distance on Sierpiński graphs from his diploma
thesis [68] in 2010. The study of eccentricity was further deepened by Hinz and Parisse deter-
mining the average eccentricity [31]. The latest contribution is the generalization of Romik’s
automaton to an arbitrary p by Hinz and Holz auf der Heide [26].

Upon realizing that no proper explicit formulas for the distance between arbitrary vertices
of Sierpiński graph exist, we prove important new metric properties of the graph family – the
distance to almost-extreme vertices and the metric dimension of Sierpiński graphs. As previ-
ously mentioned, a relation exists between Hanoi and Sierpiński graphs. In order to connect
the newly deduced metric properties with the Hanoi graphs, we will study the embeddings
of Sierpiński graphs into Hanoi graphs. In particular we deal with the question whether a
Sierpiński graph Snp is a spanning subgraph of the Hanoi graph Hn

p . We prove that this is only
possible if p is odd (or trivially if n = 1).

Finally, we will consider embeddings of Sierpiński graphs into Cartesian product graphs.
More specifically, we will discuss their isometric and induced embeddings into Cartesian pro-
duct graphs. Of course we will be interested in embeddings into as many nontrivial factors as
possible. In the case of isometric embeddings there is precisely one such embedding and it is
called the canonical metric representation. We will explicitly determine this representation for
Sierpiński graphs.

There are various dimensions defined for product graphs, but many of them are trivial for
most graph families. Therefore we introduce the Hamming dimension of a graph as the ma-
ximal number of factors of a Hamming graph into which the graph embeds as an irredundant
induced subgraph. We will investigate this dimension on the Sierpiński graphs and establish
some bounds on it. During the process of establishing bounds we will also derive some par-
ticular embeddings of Sierpiński graphs, for instance into the Cartesian product of Sierpiński
triangle graphs.

Throughout the thesis, some of the topics here discussed presented us with further pro-
blems or, better said, motivation for additional research. This we discuss at the very end as it
is, it seems, far from being just it – the end.



4 Introduction

1.1 Basic definitions

In the thesis we will use standard notation from graph theory, where we will mainly follow
West [67]. Some other definitions and notation will be provided in this section. All graphs
considered will be simple and connected, unless stated otherwise.

For n ∈ N we will use [n] to denote the set {1, . . . , n} and [n]0 for {0, . . . , n−1}. In particular
we will deal with sets B := [2]0 = {0, 1} and T := [3]0 = {0, 1, 2}, where B stands for binary
and T for ternary.

Iverson bracket (or Iverson convention) is a conversion from a boolean value to B and is
defined as

[X] =

{
1 , if X is true,
0 , if X is false.

Obviously,
[X] = 1− [¬X] . (1.1)

A clique of a graph G is a complete subgraph of G and an n-clique is a clique of order n. The
clique number ω(G) is the order of a largest clique of G.

As usual, we will denote the open neighborhood of a vertex u in G by NG(u), and NG[u] =

NG(u) ∪ {u} is the closed neighborhood of u. For S ⊆ V (G) we set NS(u) := {v ∈ S | {u, v} ∈
E(G)}, and similarly NS [u] := NS(u) ∪ {u}.

Throughout the thesis we will often deal with isomorphic and induced subgraphs. We
say that a subgraph H of a graph G is an induced subgraph of G (or just induced in G), if it is
induced by V (H). In other words, H ⊆ G is induced, if for any two vertices u, v ∈ V (H),
{u, v} ∈ E(G) ⇒ {u, v} ∈ E(H). Similarly, a subgraph H of a graph G is an isometric subgraph
of G (or isometric in G, for short), if

dH(u, v) = dG(u, v) ,

holds for any distinct vertices u, v ∈ V (H).

Especially when defining some families of graphs, we will refer to the labeling of their
vertices. Such a labeling will be considered as specifying a vertex set of a class of isomorphic
graphs, so that we get a representative of that class. Note that this has nothing to do with the
term labeling of edges of some graph. The latter is a mapping from the edge set to the set of
labels, in our case those labels are numbers, for example elements of [`].
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1.2 Sierpiński graphs and their variants

The central theme of the thesis are Sierpiński graphs. Here we will give the definition of this
family of graphs together with some of its basic properties. Later in this section we will also
define its variants.

Definition 1.1. Let n ∈ N0 and p ∈ N. The Sierpiński graph Snp is the graph, defined on the vertex
set

V (Snp ) = [p]n0 ,

whose edge set is given recursively by

E(S0
p) = ∅

E(Snp ) = {{is, it} | i ∈ [p]0 , {s, t} ∈ E(Sn−1p )} ∪

{{ijn−1, jin−1} | i, j ∈ [p]0 , i 6= j} , n ∈ N .

For a Sierpiński graph Snp , p is its base and n its exponent. We will denote its vertices by
sn . . . s1. Consecutive equal entries in a string will be abbreviated with powers, for example
0000211111 = 04215. Note that i0 is the empty string.

Obviously there are pn vertices in a Sierpiński graph Snp , i.e., its order is

|Snp | = |V (Snp )| = pn .

Because of its recursive definition, it is also easy to determine its size, for example, one may
just solve the recurrence

|E(Snp )| = p · |E(Sn−1p )|+
(
p

2

)
, n ∈ N and |E(S0

p)| = 0 .

This gives us

‖Snp ‖ = |E(Snp )| =
(
p

2

) n∑
d=1

pn−d =
p

2
(pn − 1) .

Sierpiński graphs are connected which can be shown by a simple induction argument. More
about their connectivity is discussed later in Section 2.4.

Let us take a look at the first few Sierpiński graphs. For n = 0, the Sierpiński graph S0
p is a

one-vertex graph, so S0
p
∼= K1 for every p ∈ N. Similarly, Sn1 ∼= K1 for any n ∈ N0. Later we will

discuss metric properties and embeddings of Sierpiński graphs, but since for p = 1 or n = 0 the
Sierpiński graph has only one vertex, we will usually omit these cases. We get another known
family of graphs for n = 1, because S1

p
∼= Kp for every p ∈ N, and for p = 2, Sn2 is the path

graph on 2n vertices, Sn2 ∼= P2n .

The Sierpiński graphs S2
4 and S3

3 are shown in Figure 1.1. The latter case, i.e., when p = 3, is
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one of the reasons why Klavžar and Milutinović introduced these graphs in 1997 [40]: base-3-
Sierpiński graphs are isomorphic to the Hanoi graphs, i.e., Sn3 ∼= Hn

3 for every n ∈ N0. We will
return to this topic in Section 1.3.1.
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Figure 1.1: Examples of Sierpiński graphs: S2
4 (left) and S3

3 (right)

The edge set of Sierpiński graphs can be defined equivalently in the following way.

Proposition 1.2. If n ∈ N0 and p ∈ N, then two vertices s and t of Snp are adjacent if and only if they
are of the form s = ssδt

δ−1
δ , t = stδs

δ−1
δ with δ ∈ [n], s ∈ [p]n−δ0 , and sδ 6= tδ.

Let us introduce some further notation for Sierpiński graphs Snp . The vertex of the form
i . . . i = in is called an extreme vertex (of Snp ). The graph Snp contains p extreme vertices and
these are the only vertices of degree p− 1, all the other vertices having degree p.

A subgraph of Snp , whose vertices have a common prefix s ∈ [p]n−d0 , d ∈ [n+ 1]0, is denoted
by sSdp and is isomorphic to Sdp . For d = 1, any sS1

p induces a p-clique. This implies that the
clique number of a Sierpiński graph Snp is at least p.

If i, j ∈ [p]0 are distinct, the edge {ijn−1, jin−1} is the unique edge between subgraphs iSn−1p

and jSn−1p and is denoted by e(n)ij . Note that all the edges e(n)ij in Snp (for n > 1) are pairwise

disjoint. We can generalize this by considering the edge se(d)ij , d ∈ [n]0, between subgraphs

siSd−1p and sjSd−1p . The edges of the form se
(d)
ij , d > 1, will be called non-clique edges, since they

are included in none of the p-cliques (for p ≥ 2). They correspond to the moves of type 1 in
the Switching Tower of Hanoi. Accordingly, all the edges of a subgraph sS1

p are clique edges.
These edges correspond to the moves of type 0 in the Switching Tower of Hanoi. Note that
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for p = 2 the maximal cliques are of order 2. However, the non-clique edges are the unique
edges between two subgraphs of smaller dimension, therefore the definition makes sense also
for p = 2. Note that in this case we may distinguish between the clique and non-clique edges
by their form, {si, sj} and {ij`, ji`}, ` ∈ [n− 1], respectively.

Later we will consider Sierpiński triangle graphs, where the number of non-clique edges
will be useful. It can be determined recursively from the construction of Sierpiński graphs: for
a fixed p ∈ N, let fp(n) denote the number of non-clique edges in Snp , n ∈ N. Then

fp(n) = p · fp(n− 1) +

(
p

2

)
, and fp(1) = 0 ,

which gives us
fp(n) =

p

2
(pn−1 − 1) = ‖Sn−1p ‖ . (1.2)

An alternative way to determine the number of non-clique edges is through the number of the
clique edges. For a fixed p ∈ N let gp(n) denote the number of clique edges in Snp , n ∈ N. The
number gp(n) can be determined either by recursion or directly: since all p-cliques in Snp are of
the form sS1

p , we have

gp(n) = pn−1
(
p

2

)
=
pn

2
(p− 1) ,

and fp(n) = ‖Snp ‖ − gp(n) gives us (1.2).

In Chapter 3 we will discuss distances in Sierpiński graphs, in particular we will deal with
vertices that are very similar to extreme vertices; they only differ from extreme vertices in either
the first or the last coordinate. For that reason they will be called almost-extreme vertices. We
divide them into two classes.

Definition 1.3. Let n ∈ N, p ∈ N, and p ≥ 2. For any two distinct i, j ∈ [p]0 the vertex of the form
inj of the graph Sn+1

p is called an outer almost-extreme vertex (of Sn+1
p ) and the vertex ijn of Sn+1

p

is an inner almost-extreme vertex (of Sn+1
p ).

An outer almost-extreme vertex inj is adjacent to the extreme vertex in+1, whereas an inner
almost-extreme vertex ijn can also be characterized as the vertex of iSnp , that is incident with the
edge e(n+1)

ij . Obviously, for n ≥ 2 the graph Sn+1
p contains p(p−1) outer almost-extreme vertices

and p(p− 1) inner almost-extreme vertices. Thus, for n ≥ 2, there are 2p(p− 1) almost-extreme
vertices in total. For n = 1 the vertices inj and ijn coincide, hence in S2

p there are exactly p(p−1)

almost-extreme vertices and any vertex is either extreme or almost-extreme. In Figure 1.2 the
extreme vertices of S3

5 are emphasized as gray circles, the outer almost-extreme vertices are red
(vertices of the form ij2) and the inner almost- extreme vertices are green (vertices of the form
i2j).

We will often refer to the shortest path between two extreme vertices, therefore let P (n)
ij

denote the shortest path between in and jn in Snp (for any distinct i, j ∈ [p]0). This path is indeed
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Figure 1.2: S3
5 with its extreme and almost-extreme vertices

unique, see [40, Lemma 4]. Note also, that all the vertices of the path P
(n)
ij have coordinates i

or j. In other words, the vertices whose entries are i or j induce the path P
(n)
ij . Similarly, for

pairwise distinct i, j, ` ∈ [p]0 let C(n)
ij` denote the shortest cycle in Snp that contains the edges

e
(n)
ij , e(n)i` , and e

(n)
j` . These cycles will play an important role later, because they are isometric.

For the proof of this fact we require the distance theorem (Theorem 3.6), so we will prove it in
Section 3.1.

For more advanced properties of Sierpiński graphs see Chapter 2.

Now let us take a look at the variants of the Sierpiński graphs. In a similar way as we
defined the family of Sierpiński graphs, we can also define Sierpiński triangle graphs and gene-
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ralized Sierpiński triangle graphs. Sierpiński triangle graphs can be defined in different ways,
but basically all come from the Sierpiński triangle fractal (see Section 1.3 and [51]). We will use
the notation STn3 for the Sierpiński triangle graph, which will make sense when generalizing
them to arbitrary p ∈ N.

Definition 1.4. Let n ∈ N0. Then the class of the Sierpiński triangle graph STn3 is obtained from
Sn+1
3 by contracting all non-clique edges (i.e., the edges of Sn+1

3 that lie in no triangle).

Beside the (ordinary) Sierpiński graphs Snp , these graphs have been most commonly studied
in the literature. We will discuss their occurrences in the next section. Here we will first give
two different labelings of their vertex set.

One way to label the Sierpiński triangle graphs is defined iteratively. We start with a com-
plete graph on 3 vertices, ST 0

3
∼= K3 and label it with V (ST 0

3 ) = T̂ := {0̂, 1̂, 2̂}. Those labels
will be of length 0. Now assume we have STn3 . To obtain STn+1

3 we subdivide each edge of
every triangle of STn3 and connect any two of the three new vertices of a triangle. The easiest
way to explain how we label them is with the help of Sierpiński graphs. We inscribe Sn+1

3 into
the half-labeled graph and mirror the labels of the Sierpiński graph Sn+1

3 on every unlabeled
triangle. An example is shown in Figure 1.3. The underlying Sierpiński triangle graph ST 3

3 is
drawn in black and the Sierpiński graph S3

3 is red.

With this construction we get

V (STn+1
3 ) = {0̂, 1̂, 2̂} ∪ { s ∈ Tm |m ∈ [n+ 1]} .

For reasons stemming from the Tower of Hanoi puzzle, we will call this labeling the idle peg
labeling of STn3 . (This will make sense later when we describe the connection between both
discussed labelings.) Obviously

V (STn+1
3 ) = V (STn3 ) ∪̇ V (Sn+1

3 ) ,

and the edge set can be explicitly described as

E(STn+1
3 ) =

{
{k̂, knj} | k ∈ T, j ∈ T \ {k}

}
∪

{{sk, sj} | s ∈ Tn, j, k ∈ T, j 6= k} ∪{
{s(3− i− j)id−2k, sj} | s ∈ Tn+1−d, d ∈ [n+ 1] \ {1}, i ∈ T, j, k ∈ T \ {i}

}
.

(1.3)

From the definition of the graphs STn3 we can derive another family of labeled Sierpiński
triangle graphs. Denote the vertex obtained by contracting the edge {sijd, sid} ∈ E(Sn+1

3 ) by
s{i, j}. So the vertex set can be written as

V (STn3 ) = {0̂, 1̂, 2̂} ∪
{
s{i, j} | s ∈ Tn−d, d ∈ [n], i, j ∈ T, i 6= j

}
.
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Figure 1.3: Combined Sierpiński triangle graph ST 3
3 (black) and Sierpiński graph S3

3 (red)

Let us call this labeling the contraction labeling of STn3 . Note that both definitions of Sierpiński
triangle graphs give us labels of different lengths. It is also possible to pass from one labeling
to the other. Let STn3 be labeled with the contraction labeling. The idle peg for i and j is defined
as k := 3− i− j (see [27, p. 74]). To obtain the idle peg labeling of STn3 we replace each vertex
s{i, j}with sk.

Here we have just briefly explained both labelings. More details about this topic can be
found in the survey paper on the Sierpiński graphs [29]. Teguia and Godbole [61] studied
the basic properties of (base-3-)Sierpiński triangle graphs. They proved that their chromatic
number is 3, and that the graphs STn3 are hamiltonian and pancyclic (i.e., they contain cycles of
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length `, for ` = 3, . . . , |STn3 |). In the same paper they also computed their domination number,
γ(STn3 ) = 3n−1, n ≥ 2, and γ(ST 1

3 ) = 2.

The definition of STn3 with the contraction can be generalized as follows:

Definition 1.5. Let n ∈ N0 and p ∈ N. Then the (generalized) Sierpiński triangle graph STnp is
obtained by contracting all non-clique1 edges of the Sierpiński graph Sn+1

p .

The vertex set of the graph STnp can be written similarly as in the case n = 3. Again, we
denote the vertex obtained from {sijd, sid} ∈ E(Sn+1

p ) by s{i, j}. Then

V (STnp ) = {k̂ | k ∈ [p]0} ∪
{
s{i, j} | s ∈ [p]n−d0 , d ∈ [n], i, j ∈ [p]0, i 6= j

}
.

Writing the vertex set this way enables us to describe explicitly the edge set in a similar way as
we described it for p = 3:

E(STnp ) =
{{

k̂, kn−1{j, k}
}
| k ∈ [p]0, j ∈ [p]0 \ {k}

}
∪{

{s{i, j}, s{i, k}} | s ∈ [p]n−10 , i ∈ [p]0, j, k ∈ [p]0, i 6= k
}
∪{{

skid−2{i, j}, s{i, k}
}
| s ∈ [p]n−d0 , d ∈ [n] \ {1}, i ∈ [p]0, j, k ∈ [p]0 \ {i}

}
. (1.4)

The (generalized) Sierpiński triangle graph ST 1
4 is shown in Figure 1.4. Note that for p = 3

converting all the vertices from (1.4) into the idle peg labeling gives us the same edge set as in
(1.3).

By the definition of Sierpiński triangle graphs and (1.2), we can deduce the order of Sierpiń-
ski triangle graphs, whereas their size follows directly from their construction, since we glue
together complete graphs of order p.

Proposition 1.6. [34, Proposition 2.3] If n ∈ N0 and p ∈ N, then

|STnp | =
p

2
(pn + 1) , and ‖STnp ‖ =

p− 1

2
pn+1 .

Directly from Definition 1.5 we can determine the degrees of the vertices in STnp . An ex-
treme vertex has obviously the same degree as the extreme vertex of Sn+1

p , that is p− 1. All the
other vertices have, by contraction, degree 2(p − 1). Some other properties of the graphs STnp
were studied by Jakovac [34]. He proved that the Sierpiński triangle graphs are hamiltonian
(for p ≥ 3) and that their chromatic number equals p.

All non-extreme vertices of the Sierpiński graph Snp have degree p and the extreme vertices
have degree p − 1. So Sierpiński graphs are almost regular. This was the motivation to define
two new families of Sierpiński-like graphs. Since there are p vertices of degree p− 1 in Snp there

1Note that non-clique edges of Sn+1
p have the unique form, {ij`, ji`}, for distinct i, j ∈ [p]0, and ` ∈ [n] and

correspond to the move of type 1 in the Switching Tower of Hanoi.
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{0, 1} {0, 2}
0̂

{0, 3}

3̂ {2, 3}{1, 3}

2̂1̂

{1, 2}

Figure 1.4: Sierpiński triangle graph ST 1
4

are two natural ways to regularize them, either we add another vertex to Snp and connect it
with all the extreme vertices, or we add another copy of Sn−1p and connect the extreme vertices
of Snp with extreme vertices of Sn−1p . To understand better the two possibilities, see Figure 1.5
for the case p = 4 and n = 2. The first possibility gives us the graph +Snp , where the additional
vertex w is called the special vertex of +Snp . Formally:

Definition 1.7. Let n ∈ N0 and p ∈ N. Then the graph +Snp is defined by

V (+Snp ) = [p]n0 ∪ {w} ,

E(+Snp ) = E(Snp ) ∪ {{w, in} | i ∈ [p]0} .

Directly from the definition of +Snp and the size of Snp , we get

Proposition 1.8. If n, p ∈ N0, then

|+Snp | = pn + 1 , and ‖+Snp ‖ =
p

2
(pn + 1) .

The other regularization, i.e., when adding another copy of Sn−1p to Snp , is denoted by ++Snp .
It can also be characterized as taking p + 1 copies of Sn−1p (when building a Sierpiński graph
Snp we take only p such copies) and joining their extreme vertices in the sense of the complete
graph Kp+1. On the right-hand side of Figure 1.5 there are 5 copies of K4 joined together as K5.
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w

Figure 1.5: Regularizations +S2
4 (left) and ++S2

4 (right)

We may think of K4s as the vertices of K5. This construction is similar to the construction of a
Sierpiński graph, but with complete graphs of different orders. Here is a formal definition:

Definition 1.9. Let n, p ∈ N. Then the graph ++Snp is defined by

V (++Snp ) = [p]n0 ∪ {ps | s ∈ [p]n−10 } ,

E(++Snp ) = E(Snp ) ∪ {{ps, pt} | {s, t} ∈ [p]n−10 } ∪ {{pin−1, in} | i ∈ [p]0} .

Similarly, we can deduce the order and the size of graphs ++Snp :

Proposition 1.10. If n, p ∈ N0, then

|++Snp | = (p+ 1)pn−1 , and ‖++Snp ‖ =
p+ 1

2
pn .

1.3 Occurrences of Sierpiński-type graphs

As already mentioned before, when Klavžar and Milutinović [40] defined the graphs Snp , one of
their main motivations was the connection to the Tower of Hanoi problem. This is also our main
motivation to study metric properties on Sierpiński graphs. We will review this connection in
more detail in the next subsection. The other main motivation was their connection to topology,
because these graphs can also be derived from the Lipscomb spaces. For a comprehensive
overview on the studies of these spaces see [51]. In particular, base-3-Sierpiński graphs Sn3 and
the Sierpiński triangle graphs STn3 are closely related to the Sierpiński triangle fractal. For more
information on the connection to topology see [27, Section 4.3].
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Because of the way Sierpiński graphs are constructed, they are sometimes also called i-
terated complete graphs, denoted by Kn

p . See for instance the paper by Cull et al. [5] or any
paper of his students, eg. [37, 66], which were done during the Summer Research Experiences
for Undergraduates Program in Mathematics at the Oregon State University. They consider
graphs isomorphic to Sierpiński graphs in relation to codes. Some variants of the Tower of
Hanoi puzzle for which the corresponding graphs are the iterated complete graphs were also
studied by the group of students, but only for odd p. For even values of p they generalize the
idea of the spin-out puzzle. The spin-out puzzle is actually the same puzzle as Chinese rings,
see [27, Chapter 1].

Another very similar structure to Sierpiński graphs is the class of WK-recursive networks. It
was introduced by Della Vecchia and Sanges [7] in 1988 as a model for interconnection net-
works. In fact, WK(p, n) is almost isomorphic to Snp . Both graphs are defined on the same
vertex set V (WK(p, n)) = [p]n0 = V (Snp ), and the edges are also the same, with the only excep-
tion thatWK(p, n) has additional p open edges or links, each at one of the extreme vertices. The
open edges serve for further expansions. In this context various properties of these networks
were studied, see for example [27, Section 4.2.3] or [29].

Even more frequent are occurrences of base-3-Sierpiński graphs. Here we will mention two
of them. The first are truncations of maps, studied by Pisanski and Tucker [56]. By truncating a
triangle (graph), for example S1

3 , we get a graph isomorphic to S2
3 . If T denotes the truncation

operation on a graph, then T (S1
3) ∼= S2

3 . Repeating this, we get Tn(Sn3 ) ∼= Sn+1
3 . Another very

similar family of graphs are Schreier graphs, see [20] and [19]. As opposed to the truncated
triangle, the Schreier graphs are not completely isomorphic to graphs Sn3 . To each extreme
vertex a loop is attached. Schreier graphs were introduced in relation to the Hanoi Towers
groups by Grigorchuk and Šunić [20] and are more closely related to Hanoi graphs, which we
will define in the next subsection.

1.3.1 The Tower of Hanoi puzzle

In the introduction we presented the background of the Tower of Hanoi puzzle. Let us now
consider the general version with n discs and p pegs. Keeping in mind that we may only move
one disc at a time, we must also obey the divine rule, saying that no larger disc may be placed
onto a smaller one. A regular state s ∈ [p]0 of the puzzle is an arbitrary distribution of discs on
p pegs such that no larger disc lies on a smaller one. A perfect state is a regular state where all
discs are stacked on one peg. Finally, a legal move represents a move of a top disc obeying the
divine rule.

There are three standard tasks:

• P0 task or perfect to perfect task, where the goal is to transfer all discs stacked on the starting
peg i to the goal peg j;
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• P1 task or regular to perfect task with the goal of transferring the discs from a regular state
s ∈ [p]0 to a perfect state in (where i ∈ [p]0);
• P2 task or regular to regular task where we move discs from one regular state to another.

As already mentioned, the Tower of Hanoi puzzle can be modeled with a state graph:

Definition 1.11. Let n ∈ N0 and p ∈ N. The Hanoi graph Hn
p is the graph with the vertex set

consisting of the regular states of the Tower of Hanoi puzzle, V (Hn
p ) = [p]n0 , where two vertices are

adjacent if one can be obtained from the other by a legal move.

Similarly to Sierpiński graphs, we will denote a vertex of Hn
p by sn . . . s1 meaning that a

disc d lies on peg sd ∈ [p]0, for d ∈ [n]. A vertex of the form in is called a perfect vertex (of Hn
p ),

because it corresponds to the perfect state when all discs are on peg i.

For p = 1 we have a one-vertex graph, as well as for n = 0, Hn
1
∼= K1

∼= H0
p . Similarly,

for p = 2 and n ∈ N, Hn
2
∼= nK2, since we are only allowed to move the smallest disc from

one peg to another. As with Sierpiński graphs, H1
p
∼= Kp. The case when p = 3 is also called

the classical case and is isomorphic to Sn3 . The isomorphism can be given by an automaton,
see [27, p. 143–145] for the automaton and a nice explanation of the isomorphism. To picture
the isomorphism, compare H3

3 (drawn in Figure 1.6) with the graph S3
3 (drawn in Figure 1.1).
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Obviously,
|Hn

p | = pn .

The size of the Hanoi graphs can be determined from their recursive construction. They are
built in a similar way as Sierpiński graphs. We start with a complete graph H1

p
∼= Kp and make

p copies of it. But when building a Hanoi graphHn
p for p > 3, we add more edges between each

two copies of Hn−1
p than we did with Sierpiński graphs. These edges correspond to the moves

of the largest disc. So when moving the disc n from peg i to peg j, the discs 1, . . . , n − 1 are
neither on peg i nor on peg j. This means there are (p−2)n−1 edges between iHn−1

p and jHn−1
p .

(Note that in the case of Sierpiński graphs the edge between iSn−1p and jSn−1p is unique.) For
p ≥ 3 get

‖H0
p‖ = 0 ,

‖Hn
p ‖ = p · ‖Hn−1

p ‖+

(
p

2

)
(p− 2)n−1 , n ∈ N ,

which gives us

‖Hn
p ‖ =

p(p− 1)

4
(pn − (p− 2)n) .

Note that the minimum number of moves for a P2 task from a state s to a state t corresponds
to the distance dHn

p
(s, t). Therefore the study of metric properties of Hanoi graphs is both

popular and important. Later (in Chapter 3) we will be studying distances in Sierpiński graphs.
This might help us with distances in Hanoi graphs because of their similarity. In order to use
these metric results we will also study embeddings of Sierpiński graphs into Hanoi graphs
(Section 4.1). Therefore the following lemma about cliques in Hanoi graphs will be very useful.

Lemma 1.12. If p, n ∈ N, then every complete subgraph of Hn
p is induced by edges corresponding to

moves of one and the same disc. In particular, ω(Hn
p ) = p and the only p-cliques of Hn

p are of the form
sn . . . s2H

1
p .

Proof. The cases p = 1 and p = 2 are trivial. For p ≥ 3 take any vertex s joined to two vertices s′

and s′′ by edges corresponding to the moves of two different discs. Then the positions of these
discs differ in s′ and s′′. Since vertices in Hn

p can only be adjacent if they differ in precisely
one coordinate, s′ and s′′ cannot be adjacent. This proves the first assertion. Any state s is
contained in the p-clique induced by s and those states which differ from s only by the position
of the smallest disc. On the other hand, a disc d 6= 1 can be transferred to at most p − 2 pegs,
namely those not occupied by disc 1, so that no clique larger than p exists. �
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1.4 Classification of Sierpiński-type graphs

There are many graphs similar to Sierpiński graphs. In the literature we find different names
for the same graphs, which can be confusing and, what is even worse, the same name for
different graphs. In this section we will therefore standardize and harmonize the terms of
Sierpiński graphs, Sierpiński triangle graphs etc, which we now call with one word Sierpiński-
type graphs. We can characterize a representative of Sierpiński-type graphs as a graph which
is derived from or leads to the Sierpiński triangle (fractal). The main representing classes of
Sierpiński-type graphs are shown in Figure 1.7.

The first row of the diagram in Figure 1.7 represents the origins of Sierpiński-type graphs.
These are the classical Hanoi graphs Hn

3 . In 1990, the graphs Sn3 were used to determine the
average distance on the Sierpiński triangle fractal. They were introduced with the help of the
Sierpiński triangle fractal by Hinz and Schief [32]. There the name “Sierpiński graphs” was
used for the first time. In [32] the authors also proved that Sn3 ∼= Hn

3 , represented in Figure 1.7
with an arrow between Hn

3 and Sn3 in both directions. There is also an arrow in both directions
between Sn3 and STn3 . The reason for the direction S → ST is the way we defined Sierpiński
triangle graphs in Definition 1.4, and the other direction can be derived by taking a vertex for
each (clique) triangle of STn3 and connecting two of them if the corresponding triangles share a
vertex. Note that for the direction S → ST we actually take the graph Sn+1

3 to obtain STn3 , but
by the procedure we have just described we get the graph Sn3 .

Independently from the aforementioned authors, the name “Sierpiński graphs” was given
to the graphs which we now call Sierpiński triangle graphs STn3 . The list of names for the
graphs STn3 is hereby far from over. Mostly they were called Sierpiński gasket graphs, the
name which in our opinion is not suitable, or similarly Sierpiński sieve graphs. Some authors
even call graphs STn3 just Sierpiński gasket, without “graphs”, which is actually one of the
names of the Sierpiński triangle fractal and is therefore even more confusing.

Let us move to the second row of the diagram in Figure 1.7. Since Sn3 ∼= Hn
3 , in 1997 the

idea arose to introduce the family of Sierpiński graphs S(n, k) (in our notation Snp , where we
replaced k by p for “pegs”) as a state graph of the Switching Tower of Hanoi [40]. So the graphs
Sn3 were generalized to Snp , where p ∈ N. In a similar way that we constructed Sierpiński trian-
gle graphs STn3 from graphs Sn3 we can perform this for an arbitrary p ∈ N, see Definition 1.5.
The family of generalized Sierpiński triangle graphs was first introduced by Jakovac in [34]. He
used the notation S[n, k] for the graphs which we now denote by STnp (with k again replaced
by p) and called them generalized Sierpiński gasket graphs. Later we decided to call them ge-
neralized Sierpiński triangle graphs, but we first used the notation Ŝnk in [44]. Since we wanted
to standardize this notation we came up with STnp , so that S in Snp stands for generic Sierpiński,
and ST for Sierpiński triangle.

As mentioned at the end of Section 1.2, there are two ways to regularize Sierpiński graphs
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Snp , i.e., the graphs +Snp and ++Snp . Other similar families are the WK-networks and Schreier
graphs (for p = 3), which have some additional open edges and loops, respectively. All these
families will be called Sierpiński-like graphs, since they are similar to Sierpiński graphs but
not isomorphic to them. All these families are represented in the last, third row of the diagram.
They can also be called variants of Sierpiński graphs or, even better, as regularizations of Sierpiński
graphs. The rightmost family is a regularization of Sierpiński triangle graphs ++STnp and has
not been introduced yet. The regularization can be done in a similar way as in the case of the
graphs ++Snp . We will say more about this topic when discussing future work in Chapter 5.



Sierpiński graphs Sn3Hanoi graphs Hn
3 Sierpiński triangle graphs STn3

Sierpiński graphs Snp
(Generalized)

Sierpiński triangle graphs STnp

Graphs +Snp Graphs ++Snp
Graphs

++STnp , . . .
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Schreier graphs H(n)

Figure 1.7: A diagram of the Sierpiński-type graphs





Chapter 2

A survey of known results on
Sierpiński graphs

Ever since the family of Sierpiński graphs was introduced, it has been studied in different
fields of mathematics and elsewhere. These studies were mostly motivated by the relation of
the Sierpiński graphs to the Tower of Hanoi puzzle and also by their nice recursive structure.
Although the recursive structure of these graphs is simple and similar to the structure of com-
plete graphs, it is sometimes very difficult to prove their properties.

In this chapter we present known results on Sierpiński graphs. Sections that follow are
organised into groups of similar properties. In the first section we discuss some standard pro-
perties of Sierpiński graphs, such as hamiltonicity or planarity. Next we devote a section to
colorings of Sierpiński graphs, since many different colorings have been studied on this family.
Another topic that has been studied extensively on these graphs is the theory of codes, domi-
nation and related problems. Known results from this area are given in the third section. In the
last section we gather miscellaneous properties that have been observed on Sierpiński graphs.

The relation to the Tower of Hanoi is why metric properties of Sierpiński graphs play a very
important role. Since the entire Chapter 3 is devoted to metric properties of Sierpiński graphs,
we postpone a presentation of known results on this topic to Section 3.1.

2.1 Hamiltonicity and planarity

Already in 1997, when Klavžar and Milutinović introduced the family of Sierpiński graphs,
they proved the following result about hamiltonicity of Sierpiński graphs.

Theorem 2.1. [40, Proposition 3] If n, p ∈ N and p ≥ 3, then the graph Snp is hamiltonian.

A hamiltonian cycle of Snp can be constructed as follows. Let iQ(n−1)
j,k be a path in iSn−1p

21
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between vertices ijn−1 and ikn−1, such that it includes all the vertices from iSn−1p (such a path
exists, for example use induction to prove it). Then we can build a hamiltonian cycle with

0Q
(n−1)
(p−1),1 ∪ e

(n)
01 ∪ 1Q

(n−1)
0,2 ∪ e(n)12 ∪ · · · ∪ e

(n)
(p−2)(p−1) ∪ (p− 1)Q

(n−1)
(p−2),0 ∪ e

(n)
(p−1)0 .

Later Klavžar also showed [39] that in the case p = 3, the Sierpiński graphs contain a unique
hamiltonian cycle. Xue et al. [70] deepened the study of hamiltonicity of Sierpiński graphs.
They proved the following result.

Proposition 2.2. [70, Theorem 3.1] If n, p ∈ N and p ≥ 2, then Snp can be decomposed into an
edge-disjoint union of bp2c hamiltonian paths the end vertices of which are extreme vertices.

They also determined the number of edge-disjoint hamiltonian cycles of Snp .

Theorem 2.3. [70, Theorem 3.2] If n, p ∈ N and p ≥ 3, then Snp contains dp2e − 1 edge-disjoint
hamiltonian cycles.

Another interesting and standard property to study on graphs is planarity. Let us establish
which Sierpiński graphs are planar by determining for which values n ∈ N0 and p ∈ N, Snp
is planar. We have already seen that Sn1 ∼= K1 and Sn2

∼= P2n and thus Sierpiński graph Snp is
obviously planar for p = 1, 2 and arbitrary n ∈ N0. The graph Sn3 is planar for every n ∈ N0

as well. This for instance can be proved by induction. The graphs S1
4
∼= K4 and S2

4 are planar,
but S3

4 is not planar. A planar drawing of S2
4 is shown on the left side of Figure 2.1 and a

K5- subdivision of S3
4 is depicted with gray vertices on the right side of Figure 2.1. Since S3

4

is contained in any Sn4 for n ≥ 3, none of these graphs is planar. Any Snp contains Kp as a
subgraph and is thus not planar for p ≥ 5.

Because most of the Sierpiński graphs are not planar, it is natural to study the crossing
numbers of Sierpiński graphs. The crossing number, cr(G), of a graph G, is the minimum
number of (edge) crossings of a drawing of G in the plane. In the case of Sierpiński graphs this
was first studied by Klavžar and Mohar in 2005 [42]. The main result of the paper is an estimate
of the crossing number of Sn4 .

Theorem 2.4. [42, Proposition 3.2] If n ∈ N, n ≥ 3, then

3

16
4n ≤ cr(Sn4 ) ≤ 1

3
4n − 12n− 8

3
.

In case n = 3 this asserts cr(S3
4) = 12 and a drawing of S3

4 with 12 crossings is shown in
Figure 2.1.

An upper bound on the crossing number of Snp for arbitrary p ≥ 5 was also discussed in [42],

cr(Snp ) ≤ p(pn−1 − 1)

p− 1
· cr(Kp+1) + cr(Kp) .
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Figure 2.1: A planar drawing of S2
4 (left) and a drawing of S3

4 (right) with 12 crossings

This estimation is made using the regularization +Sn−1p , but is not always optimal (for example,
it also holds for p = 4, but the result in Theorem 2.4 gives us a better estimation on the crossing
number of Sn4 ).

Later, in 2011 Köhler studied crossing numbers of Sierpiński graphs in his diploma the-
sis [46]. For n = 2 he expressed the crossing number of S2

p with crossing numbers of complete
graphs and the graphs we get from complete graphs by deleting an edge (notation: K−n ).

Theorem 2.5. [46, Satz 3.11] If p ∈ N, then

cr(S2
p) = p · cr(K−p+1) + cr(Kp) .

Determining the crossing number of graphs is in general NP-hard, therefore it is extremely
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satisfactory that we at least have these two results for Sierpiński graphs. Although, it would be
interesting to find a better upper bound for arbitrary p.

2.2 Colorings

Different colorings have been studied on Sierpiński graphs so far. Before summarizing these
results let us list the basic definitions about colorings of graphs.

A (proper) k-coloring of a graph G is a mapping c from the vertex set V (G) to a set of size k
(the colors), such that adjacent vertices receive different colors. If there is a k-coloring of G, we
say that G is k-colorable. Then the chromatic number, χ(G), of G is the minimum integer k, such
that G is k-colorable.

A (proper) k-edge-coloring of a graph G is a mapping c′ from the edge set E(G) to a set of
size k, such that adjacent edges receive different colors. If there is a k-edge-coloring of G, we
say that G is k-edge-colorable. Then the chromatic index, χ′(G), of G is the minimum integer k,
such that G is k-edge-colorable.

A (proper) k-total-coloring of a graph G is a mapping c′′ from the set V (G) ∪ E(G)1 to a set
of size k, such that adjacent vertices or edges and incident vertices and edges receive different
colors. If there is a k-total-coloring ofG, we say thatG is k-total-colorable. Then the total chromatic
number, χ′′(G), of G is the minimum integer k, such that G is k-total-colorable.

It was already observed by Parisse [52, p. 147] that χ(Snp ) = p (for p ≥ 2). Since Kp is a
subgraph of Snp , it is obvious that χ(Snp ) ≥ p. A coloring of Snp with p colors can be defined by

c : [p]n0 → [p]0 ,

sn . . . s1 7→ s1 .

Later Klavžar [39] showed χ′(Sn3 ) = 3 and even more, these graphs are also uniquely 3-
edge-colorable. The proof uses the fact that χ(STn3 ) = 3 and the 3-colorings of STn3 are in 1-1
correspondence with the 3-edge-colorings of Sn3 .

Afterwards Jakovac and Klavžar studied vertex, edge- and total-colorings of Sierpiński
graphs [36]. Some of their results were also independently proved by Hinz and Parisse [30].
The next theorem about the chromatic index of Sierpiński graphs is one of them.

Theorem 2.6. [36, Theorem 4.1], [30, Theorem 3] If n, p ∈ N and n, p ≥ 2, then χ′(Snp ) = p.

Since chromatic number and index was now known for all Sierpiński graphs, the only open
question was the total chromatic number of Sierpiński graphs. Jakovac and Klavžar [36] proved
that it is bounded by p+ 2 and also showed the exact value when p is odd.

1For our purposes we may assume that V (G) ∩ E(G) = ∅.
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Proposition 2.7. [36, Proposition 4.3] If n, p ∈ N, n ≥ 2 and p ≥ 3 is odd, then χ′′(Snp ) = p+ 1.

It seemed a little bit more complicated if p is even. In [36] it was proved that the total
chromatic number of Sn4 is 5 and conjectured that the total chromatic number of Snp for even
p > 4 equals p+ 2. Hinz and Parisse [30] disproved the conjecture and found the missing result
about total chromatic number of Sierpiński graphs.

Theorem 2.8. [30, Theorem 4] If n, p ∈ N and n, p ≥ 2, then χ′′(Snp ) = p+ 1.

In this article they also gave explicit vertex-, edge- and total-colorings of Sierpiński graphs.
An example is shown in Figure 2.2. In the figure one can find a 5-edge-coloring of S2

5 and a
5-total coloring of S2

4 .
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Figure 2.2: A 5-edge-coloring of S2
5 (left) and a 5-total-coloring of S2

4 (right)

In the last years different colorings with special properties have been defined, for exam-
ple b-colorings, distance colorings, {Pr}-free colorings and linear colorings. A k-coloring of a
graph G is a b-coloring of G, if there is a vertex in each color class that is adjacent to a vertex in
every other color class. The b-chromatic number, ϕ(G), of G is the maximum integer k, such that
there exists a b-coloring of G with k colors. It is well known, that any proper χ(G)-coloring of
G is also a b-coloring. The b-chromatic number of a graph G is bounded above with ∆(G) + 1:

χ(G) ≤ ϕ(G) ≤ ∆(G) + 1 .

Jakovac studied b-colorings of Sierpiński graphs in his Ph.D. thesis [35], where he determined
their b-chromatic number. For n = 1 we have by the above estimation ϕ(S1

p) = ϕ(Kp) = p. The
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same holds for p = 1, ϕ(Sn1 ) = ϕ(K1) = 1, and for other values of n and p the following result
holds.

Proposition 2.9. [35, Trditev 5.1] If n, p ∈ N and n, p ≥ 2, then ϕ(Snp ) = p+ 1.

Suppose F is a nonempty family of connected bipartite graphs, where each member F of
F has at least 3 vertices. Then a k-coloring of a graph G is F-free if G contains no 2-colored
subgraphs isomorphic to any graph F of F . The F-free chromatic number, χF (G), of G is the
minimum integer k, such that there exists an F-free coloring of G with k colors. If F = {P3},
then an F-free coloring of G is equivalent to a 2-distance coloring of G, and similarly if F =

{P4} we get a star coloring. Fu examined the {Pr}-free colorings of Sierpiński graphs in [12].
In particular he determined some of their {Pr}-free chromatic numbers.

Proposition 2.10. [12, Lemma 4.1, Theorem 4.2] If n, p ∈ N and n, p ≥ 2, then

χP3(Snp ) = p+ 1 = χP4(Snp ) .

As a consequence of this result, Fu showed [12, Corollary 4.4] that for every n ≥ 1, p ≥ 2

and for arbitrary 5 ≤ r ≤ pn, the {Pr}-free chromatic number of Sierpiński graphs is bounded
by

p ≤ χPr(Snp ) ≤ p+ 1 .

Xue et al. studied path t-colorings [70] and linear t-colorings [71] on Sierpiński graphs. For
the definition of these colorings we need the concept of linear forests. A linear forest is a graph,
whose connected components are paths. Let c be a mapping from the set of vertices of a graph
G to a set of size t, whose elements we will call colors. Then G[c−1(i)] denotes the subgraph of
G induced by the vertices of color i. The mapping c is called a path t-coloring of G if for each
i, G[c−1(i)] is a linear forest. The vertex linear arboricity, vla(G), of G is the minimum t such
that there exists a path t-coloring of G. The authors of [70] determined the vertex arboricity of
Sierpiński graphs.

Proposition 2.11. [70, Theorem 4.1] If n, p ∈ N and p ≥ 3, then

vla(Sn2 ) = 1 , and vla(Snp ) =
p+ [p odd]

2
.

A linear t-coloring of G is a proper t-coloring such that the graph induced by the vertices of
any two colors is a linear forest. The linear chromatic number, lc(G), of G is the minimum t such
that there exists a linear t-coloring of G. Xue et al. determined the linear chromatic number of
Sierpiński graphs and it equals their chromatic number.

Proposition 2.12. [71, Theorem 3.4] If n, p ∈ N, then

lc(Snp ) = p .
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In the meantime also the edge ranking number was studied on Sierpiński graphs. Let c′ be
a t-edge-coloring of a graph G. We assume that the set of colors is [t]. Then we say that c′ is
an edge t-ranking if for any two edges of the same color, every path between them contains an
intermediate edge with a larger color. The edge ranking number, χ′r(G), is the smallest integer t,
such that there exists an edge t-ranking of G. Lin et al. [50] proved a relation between the edge
ranking number of Sierpiński graphs and the edge ranking number of complete graphs.

Proposition 2.13. [50, Theorem 7] If n, p ∈ N and n, p ≥ 2, then

χ′r(S
n
p ) = n · χ′r(Kp) .

Proposition 2.13 implies the following result.

Corollary 2.14. [50, Corollary 8] If n, p ∈ N and n, p ≥ 2, then

χ′r(S
n
p ) =

n

3
(p2 + g(p)) ,

where g is the Bodlaender function, defined as g(1) = −1 and

g(m) =

{
g
(
m
2

)
, m even,

g
(
m+1
2

)
+ m−1

2 , m odd.

2.3 Codes, domination and L(2,1)-labelings

Several paper about codes and related topics on Sierpiński graphs have been published so
far. Some of them also very recently. To summarize their main results, let us start with some
background about codes.

Let G be a graph and t ∈ N. A set of vertices C ⊆ V (G) is a t-code in G, if for any two
(distinct) vertices u, v of G, dG(u, v) ≥ 2t + 1. The set C is called a t-perfect code, if for any
v ∈ V (G) there is exactly one c ∈ C such that d(c, v) ≤ t. In particular, if C is a 1-perfect code
of G, then NG[C] = V (G). The elements of a code are often called codewords.

A subsetD ⊆ V (G) is dominating, if every vertex in V (G)\D has at least one adjacent vertex
in D, i.e., NG[D] = V (G). The domination number of a graph G, γ(G), is the order of a smallest
dominating set in G.

1-perfect codes of a graph are obviously also dominating sets in it. For this reason they are
sometimes called efficient dominating sets. Thus, if C is a 1-perfect code of G, γ(G) ≤ |C|.
Even more, the following result was independently proven several times (cf. [41, Proposition
2.1] and references therein). We will give a nice short proof.

Proposition 2.15. [25] If C is a 1-perfect code of a graph G, then γ(G) = |C|. In particular, all perfect
codes of G have the same cardinality.
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Proof. Let C = {c1, . . . , c`} be a 1-perfect code of G. Then N [C] = V (G) and this implies
γ(G) ≤ `.

Let D = {d1 . . . , d`′} be a dominating set of G. Then for an arbitrary i ∈ [`] there is a j ∈ [`′],
so that dj ∈ N [ci]. By taking the minimal such j, we get an injective mapping from [`] to [`′].
It is indeed injective, since for arbitrary distinct c, c′ ∈ C, N [c] ∩ N [c′] = ∅. Now, by using the
pigenhole principle, ` ≤ `′. �

Although determining whether a graph has a 1-perfect code or not is NP-complete, Klavžar,
Milutinović and Petr proved [41] that all Sierpiński graphs possess 1-perfect codes. More pre-
cisely, they proved the following theorem.

Theorem 2.16. [41, Theorem 3.6] If n ∈ N0 and p ∈ N, then the graph Snp has a unique 1-perfect code,
if n is even, and there are exactly p 1-perfect codes, if n is odd. Moreover, if n is odd, then each 1-perfect
code is determined by the only extreme vertex it contains.

An example of 1-perfect codes in Sierpiński graphs is given in Figure 2.3 on graphs S2
4 and

S3
3 . The three 1-perfect codes of S3

3 are shown on the right side of the figure in red, blue and
yellow, respectively.
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Figure 2.3: 1-perfect codes of S2
4 (left) and S3

3 (right)

In [41] the authors also gave an algorithm that decides, for a given 1-perfect code C of Snp
and a vertex v of Snp , whether v is a codeword of C, and if not, the algorithm determines the
neighbor vertex of v in C.
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With Theorem 2.16 we are able to determine the domination number of Snp . All that needs
to be done is to count the vertices in (one of) the 1-perfect code(s).

Theorem 2.17. [41, Theorem 3.8] If n ∈ N0 and p ∈ N, then

γ(Snp ) =
pn + p[n even]

p+ 1
.

Very recently Dorbec and Klavžar studied generalized power domination on Sierpiński gra-
phs [9]. The problem of generalized power domination is often called k-power domination and
generalizes both, the concept of domination and the concept of power domination. We want to
determine a subset S of vertices of a graph G, such that starting with X = N [S] and iteratively
adding vertices toX = N [S] which have a neighbor v inX and at most k neighbors of v are not
yet in X , we get X = V (G). The k-power domination number, γP,k(G) of G is the minimum size
of such a subset of vertices S. In [9] the authors determined the k-power domination number
of Sierpiński graphs.

Theorem 2.18. [9, Theorem 3.1] Let n ∈ N0 and p, k ∈ N. Then

γP,k(S
n
p ) =


1 , p ∈ [2] or n ∈ [2]0 or p ≤ k + 1 ,

p− k , n = 2 and p ≥ k + 1 ,

(p− k − 1)pn−2 , otherwise.

The proof of this theorem is not straightforward. It uses for example the fact that Sierpiński
graphs are hamiltonian to prove the upper bound in some cases.

Since there may be many k-power dominating sets in a graphG and not all of them have the
same efficiency, Dorbec and Klavžar introduced the concept of the propagation radius, radP,k(G).
This is a measure of the efficiency of a k-power dominating set and is defined as 1 + a minimum
number of iterations in the process of k-power dominating the graph G, when starting with a
k-power dominating set S, taken over all minimum k-power dominating sets of G.

The propagation radius of Sierpiński graphs was almost completely determined:

Theorem 2.19. [9, Theorem 5.3] Let n, p, k ∈ N and n ≥ 3. Then

radP,k(Snp ) =


3 , p ≥ 2k + 3 ,

4 or 5 , 2k + 2 ≥ p ≥ k + 1 +
√
k + 1 ,

5 , k + 1 +
√
k + 1 > p ≥ k + 2 ,

rad(Snp ) , p ≤ k + 1 .

Another similar concept was studied on Sierpiński graphs in [47]. We call a nonempty set
of vertices S ⊆ V (G) of a graph G a defensive alliance, if for every vertex v ∈ S, |NS [v]| ≥
|NV (G)\S(v)|. A subset S of vertices is called a strong defensive alliance, if for every vertex v ∈ S,
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|NS [v]| > |NV (G)\S(v)|. Further, a strong defensive alliance of G is global, if it forms a domi-
nating set in G. Lin et al. [47] examined the global strong defensive alliance number γd̂(S

n
p ) of

Sierpiński graphs; this is the minimum cardinality of a global strong defensive alliance.

Theorem 2.20. [47, Theorem 3.9] If n ∈ N, n ≥ 2 and p ∈ N, p ≥ 3, then

γd̂(S
n
p ) =

p+ [p odd]

2
· pn−1 .

The proof of the above theorem is constructive. An example of an optimal global strong
defensive alliance can be found in Figure 2.4 for the case S3

4 .
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Figure 2.4: An optimal global strong defensive alliance of S3
4

An L(2, 1)-labeling of a graph G is a labeling of its vertices with labels {0, 1, . . . , λ} such that
vertices at distance two get different labels and the labels of adjacent vertices differ by at least
2. The concept comes from a more general labeling, namely L(`1, . . . , `k)-labeling. This is a
labeling of vertices of G such that the labels of vertices at distance i differ by at least `i. The
maximum label used in an L(`1, . . . , `k)-labeling f is called the span of the labeling f and the
aim is to minimize the span of a labeling. In the case of Sierpiński graphs we will only deal
with L(2, 1)-labelings. A minimum span of an L(2, 1)-labeling of a graph G is denoted by λ(G)
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and is called the λ-number or L(2, 1)-labeling number of G.

An L(2, 1)-labeling of a graph G also gives us a partition of its vertex set V (G) into 1-codes.
Indeed, let f be an L(2, 1)-labeling ofGwith span λ and for each i ∈ [λ+1]0 denote byCi the set
of vertices u with f(u) = i. Then the sets C0, . . . , Cλ form a partition of V (G) and two distinct
vertices in Ci are at distance at least three. In 2005 [17], the authors studied codes of Sierpiński
graphs in order to obtain an L(2, 1)-labeling of Sierpiński graphs. They proved a general result
connecting codes and the λ-number of a graph.

Proposition 2.21. [17, Proposition 1.1] If G is a graph and {C0, . . . , Ck} is a partition of V (G), such
that for each i ∈ [k + 1]0, Ci is a code in G, then λ(G) ≤ 2k.

With this approach they were able to determine the λ-number of Sierpiński graphs.

Theorem 2.22. [17, Theorem 3.2] If n ∈ N0 and p ∈ N, then

λ(Snp ) = 2p .

A special type of L(2, 1)-labelings are equitable L(2, 1)-labelings. An L(2, 1)-labeling is equi-
table, if the orders of its color classes differ by at most one. The equitable L(2, 1)-labeling number,
λe(G), of a graphG is then the smallest integer `, such that there is an equitable L(2, 1)-labeling
ofGwith span `. Fu and Xie [13] determined the equitableL(2, 1)-labeling number of Sierpiński
graphs and it equals their L(2, 1)-labeling (or λ-)number.

Theorem 2.23. [13, Theorem 3.3] If n, p ∈ N, n, p ≥ 2, then

λe(S
n
p ) = 2p .

Another type of codes that were studied on the family of Sierpiński graphs are (a, b)-codes.
First let us define the concept of covering codes. We say that a subset C ⊆ V (G) covers a vertex
u ∈ V (G), if u ∈ C or there exists a neighbor of u in C and a code C is a covering code, if C
covers all the vertices of G.

If G is a graph and a, b ∈ N0, then an (a, b)-code of G is a set C of vertices with the property
that a vertex in C has exactly a neighbors in C and a vertex, which is not in C, has exactly b
neighbors in C. The (a, b)-codes are obviously covering codes of a graph (as soon as a+ b ≥ 1).
Beaudou et al. [4] determined all possible pairs (a, b), for which there exist (a, b)-codes in a
Sierpiński graph Snp . The main result of the paper is

Theorem 2.24. [4, Theorem 1.1] If n ∈ N, n ≥ 2 and p ∈ N, p ≥ 2, then Snp contains an (a, b)-code
if and only if a < p and one of the following statements holds.

(i) a ≥ 1, b = a and p is even;
(ii) a ≥ 2 is even, b = a and p is odd;
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(iii) a = 0 and b = 1 (the case of 1-perfect codes);
(iv) a ≥ 1, b = a+ 1 and n is odd;
(v) a ≥ 1, b = a+ 2, n = 2 and p = 2a+ 1.

From the construction of the proof of the above theorem in [4] it also follows that all existing
(a, b)-codes in graphs Snp are unique up to symmetries.

This concept of codes was further extended. First let us define some properties of codes.
Let G be a graph and C ⊆ V (G) a code. Then

• x covers or dominates a vertex u ∈ V (G), if u ∈ N [x];
• C covers or dominates a vertex u ∈ V (G), if u is dominated by some vertex v ∈ C (i.e.,
u ∈ N [C]);
• C covers or dominates a set S ⊆ V (G), if every vertex of S is dominated by a vertex of C

(i.e., S ⊆ N [C]);
• x separates vertices u and v of G, if x dominates exactly one of the vertices u and v;
• C separates a set S ⊆ V (G), if every pair of vertices u and v of S is separated by at least

one vertex of C (i.e., N [u] ∩ C 6= N [v] ∩ C).

With these terms we can define different codes. We say that C is (in G)

• a total-dominating code if it totally covers all the vertices of G,
• an identifying code if it is a covering code of G that separates all pairs of distinct vertices

of G.
• a locating-dominating code if it is a covering code of G that separates all pairs of distinct

vertices of V (G) \ C.

In [18] Gravier et al. gave the minimum sizes of identifying codes, locating-dominating codes,
and total-dominating codes of Sierpiński graphs.

Theorem 2.25. [18, Theorems 2.1, 3.1, and 4.1] If n ∈ N0 and p ∈ N, then

(i) the minimum cardinality of an identifying code in Snp is

pn−1(p− 1) ,

(ii) the minimum cardinality of a locating-dominating code in Snp is

pn−1(p− 1)

2
, and

(iii) the minimum cardinality of a total-dominating code in Snp is

pn−1 + [n odd] .

A set Q ⊆ V (G) is a hub set of a graph G if, for every pair of vertices u, v ∈ V (G) \ Q,
there exists a u, v-path such that all intermediate vertices on this path are in Q. The hub number,
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h(G), of a graph G is the size of a smallest hub set of G. A hub set Q of G is connected, if Q is
a connected set (i.e., the subgraph of G induced by Q is connected). The connected hub number,
hc(G), of a graphG is the size of a smallest connected hub set ofG. In a similar way we can also
define the connected domination number, γc(G), of a graph G as the size of a smallest connected
dominating set. The concept of hub sets was introduced in 2006 by Walsh [65]. He also showed
that for a graph G, γ(G) ≤ h(G) + 1 and if G is connected, also hc(G) ≤ γc(G) holds. A bit later
in 2008 Grauman et al. [16] combined these properties into the following result.

Theorem 2.26. [16, Theorem 2.1] If G is a connected graph, then

h(G) ≤ hc(G) ≤ γc(G) ≤ h(G) + 1 .

Walsh [65] also showed that the problem to determine whether a given graph G has a hub
set of (a given) size k is NP-hard. Lin et al. [48] determined the hub number of Sierpiński
graphs.

Theorem 2.27. [48, Theorem 9] If n, p ∈ N, then

hc(S
n
p ) = h(Snp ) = 2(pn−1 − 1) .

The proof is constructive. An optimal hub set of a Sierpiński graph Snp which was used for
it is the following:

QSnp = {s0`d, s`0d | d ∈ [n− 1], s ∈ [p]n−d−10 , ` ∈ [p− 1]} .

An example of an optimal hub set of S3
4 is shown in Figure 2.5. Using symmetry we could get

p different optimal hub sets by replacing 0 with any i ∈ [p]0 in the upper set. If i ∈ [p]0 is fixed,
then

Q
(i)
Snp

= {si`d, s`id | d ∈ [n− 1], s ∈ [p]n−d−10 , ` ∈ [p− 1]}

is also an optimal hub set for Snp , and Q(0)
Snp

= QSnp .

2.4 Other properties

In the final section of this chapter we will just briefly summarize the other properties that have
been studied on Sierpiński graphs.

Not many algebraic properties of Sierpiński graphs have been studied so far, although they
have some symmetries. While studying crossing numbers on Sierpiński graphs, Klavžar and
Mohar [42] determined the group of automorphisms for Sierpiński graphs.

Theorem 2.28. [42, Lemma 2.2] If n ∈ N and p ∈ N, then the automorphism group of Snp is isomorphic
to Sym(p), where Aut(Snp ) acts as Sym(p) on the extreme vertices of Snp .
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Figure 2.5: An optimal hub sets of S3
4

In other words, an automorphism of Snp is uniquely determined by the permutation of its
extreme vertices.

In a very recent book on the Tower of Hanoi problem [27] Hinz et al. proved the following
proposition on the clique number of Sierpiński graphs. The proof goes simply by induction.

Proposition 2.29. [27, Theorem 4.3] If n, p ∈ N and p ≥ 3, then the only maximal cliques (with
respect to inclusion) in Snp are the p-cliques sS1

p with s ∈ [p]n−10 and 2-cliques induced by the non-
clique edges. In particular, ω(Snp ) = p.

Hinz et al. determined the connectivity of Sierpiński graphs in their very recent book [27]
on the Tower of Hanoi puzzle and related problems. It equals the connectivity of complete
graphs. This is not surprising – Sierpiński graphs are built in a similar manner as complete
graphs.

Proposition 2.30. [27, Exercise 4.7] If n, p ∈ N, then κ(Snp ) = p− 1.

To see that we need at most p−1 vertices, we can simply delete the neighbors of an extreme
vertex. To see that deleting p− 2 does not suffice, one should use induction.
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In general, for any (connected) graph G it holds that

κ(G) ≤ κ′(G) ≤ δ(G) ,

hence the edge-connectivity is trivial to determine, κ′(Snp ) = p− 1.

The next interesting property which was studied on base-3-Sierpiński graphs is the number
of spanning trees. This field of graph theory is closely related to the analysis of electrical net-
works as well as to statistical physics, in particular to the Potts model. For more information
on these topics see the fundamental article by Kirchhoff [38]2 and a tutorial review on the sta-
tistical properties of the Potts model by Wu [69], respectively. Due to the connection between
spanning trees in graphs and physics, many studies on this subject were done. Teufl and Wag-
ner determined the number of spanning trees of base-3-Sierpiński graphs in 2011 [63]. Their
results were extensively presented in the book [27, p. 101–104] with an additional proof for the
number of spanning trees.

The number of spanning trees in a graph G is denoted by τ(G) and is also called the com-
plexity ofG. The classical way to obtain this number is by computing the Kirchhoff matrix,K(G),
of G according to the Matrix-Tree theorem (see for instance [64, Theorem VI.29]). Let A(G) be
the adjacency matrix ofG andD(G) the diagonal matrix whose diagonal entries are the degrees
of the corresponding vertices. Then

K(G) = D(G)−A(G) .

Next we choose a vertex of G and delete the row and column of K corresponding to it. Denote
the matrix obtained by K−(G). Then

τ(G) = det(K−(G)) .

This procedure is unfortunately not very helpful for Sierpiński graphs, since the matrices are
very large. Therefore an alternative approach has been used for the proof of the next theorem,
see [27, p. 101–104] for more details.

Theorem 2.31. [63, p. 892], [27, Theorem 2.24] If n ∈ N0, then the complexity of Sn3 equals

τ(Sn3 ) = 3
1
4
(3n−1)+ 1

2
n · 5

1
4
(3n−1)− 1

2
n =

(√
3

5

)n (
4
√

15
)3n−1

.

With a similar approach one can also derive a recurrence relation for matchings in Sn3 . Apart
from the asymptotic behavior of the number of matchings in Sn3 determined by Teufl and Wag-
ner [62], its exact value remains unknown.

Donno studied weighted spanning trees on the base-3-Sierpiński graphs with D’Angeli [6,

2Although the article is from 1847, it can be found online in the Wiley Online Library.
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Section 3] and the Tutte polynomial of the same family of graphs with Iacono [8]. We will not
go into details of these results, since they are rather technical.



Chapter 3

Metric properties

Metric properties have been studied quite intensively for Sierpiński graphs so far. One of the
main reasons to study them has already been mentioned in Section 1.3.1 and comes from the
Tower of Hanoi puzzle. In the first section of this chapter we will summarize some important
results known about distances and other metric properties of Sierpiński graphs. Then we will
develop some improvements for distances to almost-extreme vertices. We will also determine
distances of almost-extreme vertices. To conclude this chapter we will determine the metric
dimension of Sierpiński graphs in the final section.

By distance dG(u, v) between two vertices u and v of a graph G, we mean as usual the
length of a shortest u, v-path. A little less known is the term of a distance of a vertex. The (total)
distance dG(u) of a vertex u in G equals the sum of all the distances to u:

dG(u) =
∑

v∈V (G)

dG(u, v) .

The distance of a vertex, for example, plays an important role in mathematical chemistry,
cf. [49], because it is a building block for the extensively investigated Wiener index of a graph.
In section 3.2 we also determine the distance of almost-extreme vertices of Sierpiński graphs.

Let us first list properties of distances in Sierpiński graphs Snp for p = 1 or n = 0, 1. As
already mentioned, S0

p
∼= K1 for any p ∈ N and Sn1

∼= K1 for any n ∈ N0, therefore there is
nothing to say about the distances in the cases n = 0 or p = 1. Since S1

p
∼= Kp for any p ∈ N, it

is also well known that the distance between arbitrary (distinct) vertices of S1
p equals 1 for any

p ≥ 2. Thus we will mainly focus on n, p ≥ 2 in the rest of the chapter.

37
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3.1 Known results

When Klavžar and Milutinović introduced the family of Sierpiński graphs in 1997 [40], they
also presented the following key lemma about the distance in a Sierpiński graph between an
arbitrary vertex and an extreme vertex of the graph.

Lemma 3.1. [40, Lemma 4] If n ∈ N0 and p ∈ N, then for any j ∈ [p]0 and any vertex s = sn . . . s1

of Snp ,

d(s, jn) =
n∑
d=1

[sd 6= j] · 2d−1 .

Moreover, there is exactly one shortest path between s and jn. In particular, for any distinct i, j ∈ [p]0,
d(in, jn) = 2n − 1.

From Lemma 3.1 some important results about distances in Sierpiński graphs can be de-
rived. Let us first list some corollaries that follow immediately from the lemma and were first
observed by Parisse in 2009 [52]. It is straightforward to sum the distances between an arbitrary
fixed vertex and all the extreme vertices.

Corollary 3.2. [52, Proposition 2.5] If n ∈ N0 and p ∈ N, then for any vertex s of Snp ,

p−1∑
i=0

d(s, in) = (p− 1)(2n − 1) .

It was also established that the distance between arbitrary vertices does not depend on a
common prefix.

Corollary 3.3. [52, Corollary 2.2(i)] If n ∈ N0 and p ∈ N, then for arbitrary vertices js and jt of
Sn+1
p ,

dSn+1
p

(js, jt) = dSnp (s, t) .

Finally, the diameter of the family of Sierpiński graphs can be derived from the lemma
above. For a fixed n ∈ N0, the diameter of a Sierpiński graph Snp is equal to the distance
between two arbitrary extreme vertices and is p-independent.

Proposition 3.4. [52, Corollary 2.2(ii)] If n ∈ N0, p ∈ N and p ≥ 2, then the diameter of the Sierpiński
graph Snp equals

diam (Snp ) = 2n − 1 . (3.1)

Now that we know that the shortest paths to extreme vertices are unique we can use this
fact together with the recursive structure of Sierpiński graphs to obtain all possible candidates
for a shortest path between two arbitrary vertices of a Sierpiński graph. There are exactly p− 1

such paths, let us define them explicitly:
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Definition 3.5. Let n, p ∈ N, and let i, j ∈ [p]0 be distinct. Further let s = sis and t = sjt be vertices
of Snp , where s, t ∈ [p]δ−10 and s ∈ [p]n−δ0 for a δ ∈ [n]. Then define

di(sis, sjt) = dj(sis, sjt) = dSδ−1
p

(s, jδ−1) + 1 + dSδ−1
p

(t, iδ−1) ,

∀` ∈ [p]0 \ {i, j} : d`(sis, sjt) = dSδ−1
p

(s, `δ−1) + 1 + 2δ−1 + dSδ−1
p

(t, `δ−1) .

The distances di(sis, sjt) and dj(sis, sjt) are called the direct distances between s and t.

We will usually write just one of the direct distances, since they are the same. The s, t-path
corresponding to the direct distance will be called the direct s, t-path.

First observe that the vertices defined in the above definition both belong to the subgraph
sSδp . For these two vertices distances d`(s, t), ` ∈ [p]0 \ {i, j}, correspond to the path through
the subgraph s`Sδ−1p . It is easy to see that a shortest path between these vertices is one of the
paths corresponding to the distances d` for ` ∈ [p]0. Other possibilities would be to go through
more than just one subgraph isomorphic to Sδ−1p , but then this path would already be longer
than the diameter of the subgraph sSδp . Note also that the shortest path between an arbitrary
vertex s and an extreme vertex jn of Snp is the direct s, jn-path.

In Figure 3.1 we present the graph S4
4 with emphasized paths that correspond to distances

d`(0231, 2301), ` ∈ [4]0. The direct path, i.e., the path corresponding to the direct distance
d0(0231, 2301) = d2(0231, 2301), is drawn in red, the path for d1(0231, 2301) is green, and the
path for d3(0231, 2301) is blue. Obviously the shortest path for these two vertices is the direct
0231, 2301-path and dS4

4
(0231, 2301) = 9.

Theorem 3.6. [40, Theorem 5] Let n ∈ N0 and p ∈ N. If s = sis and t = sjt are vertices of Snp , where
i, j ∈ [p]0, are distinct, δ ∈ [n], s, t ∈ [p]δ−10 , and s ∈ [p]n−δ0 , then

dSnp (sis, sjt) = min
{
d`(sis, sjt) | ` ∈ [p]0

}
(3.2)

The minimum (3.2) can be obtained by at most two of the distances d`, ` ∈ [p]0 \ {i}, i.e.,
there are at most two shortest paths between any two vertices (cf. [40, Theorem 6] or alternative
very recent proof [26, Corollary 1.1]). Moreover, if there are two shortest paths between two
vertices, one of them is the direct path. In [40, Corollary 7] the authors also showed that the
distance between arbitrary vertices of a Sierpiński graph Snp can be computed in O(n) time.

Now we have all the tools we need to prove that the cycle C(n)
ij` is an isometric subgraph

of Snp .

Proposition 3.7. If p ∈ N, p ≥ 3 and n ∈ N, then for any pairwise distinct i, j, ` ∈ [p]0 the cycle C(n)
ij`

is an isometric cycle in Snp .

Proof. Note first that any path kP (n−1)
gh is isometric in Snp for any g, h, k ∈ [p]0, g 6= h, because it

is the shortest path between kgn−1 and khn−1. To show that C(n)
ij` is isometric in Snp , assume the
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2301

0231

Figure 3.1: Distances d`, ` ∈ [4]0 for vertices 0231, 2301 of S4
4

contrary, i.e., we assume that is and jt of C(n)
ij` are such that

d
C

(n)
ij`

(is, jt) > dSnp (is, jt) .

So the shortest is, jt-path is the path corresponding to dk(is, jt), for some k ∈ [p]0 \ {i, j, `}.
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Note that is ∈ iP (n−1)
j` and jt ∈ jP (n−1)

i` and therefore s ∈ {j, `}n−1, t ∈ {i, `}n−1. So we have

dk(is, jt) = dSn−1
p

(s, kn−1) + 1 + 2n−1 + dSn−1
p

(t, kn−1)

= 3 · 2n−1 − 1 >
|C(n)
ij` |
2
≥ di(is, jt) ,

a contradiction. �

For ` ∈ N let us denote the number of non-zero binary digits of ` by q(`). Then we can state
the following result about the number of vertices at distance ` from some fixed extreme vertex.
This result is a consequence of Lemma 3.1 and Proposition 3.4.

Corollary 3.8. [52, Corollary 2.4] If n ∈ N0 and p ∈ N, then for an arbitrary extreme vertex in of Snp
and ` ∈ [2n]0,

|{s ∈ [p]n0 | d(s, in) = `}| = (p− 1)q(`) ,

and
2n−1∑
`=0

(p− 1)q(`) = pn .

In addition to all the results listed above, Parisse [52] also presented some outcomes related
to the eccentricity in the Sierpiński graphs. First, let us recall some theory about these terms.
The eccentricity, εG(v), of a vertex v ∈ V (G) is the maximum distance in graph G between v and
any other vertex u ∈ V (G),

εG(v) = max{dG(u, v) | u ∈ V (G)} .

The diameter of a graph can therefore also be interpreted as the maximum eccentricity in a
graph. The minimum eccentricity in a graph G is the radius of a graph, rad(G). A vertex with
εG(v) = rad(G) is called a central vertex of G and the set of central vertices C(G) = {v ∈
V (G) | εG(v) = rad(G)} is the center of a graph G. The average eccentricity of a graph G is the
arithmetic mean of all eccentricities, that is

ε̄(G) =
1

|G|
∑

v∈V (G)

εG(v) .

Proposition 3.9. [52, Lemma 2.3] If n ∈ N0 and p ∈ N, then for an arbitrary vertex s of Snp ,

εSnp (s) = max{d(s, in) | i ∈ [p]0} .

With the eccentricity of vertices we can determine both, the radius and the center of the
Sierpiński graphs:
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Theorem 3.10. [52, Theorem 3.1] Let n, p ∈ N. The radius of Snp is

rad
(
Snp
)

= b2n−p+1
(
2p−1 − 1

)
c =

{
2n − 1 , n < p ,

2n−p+1
(
2p−1 − 1

)
, n ≥ p .

For n ≥ p let
Cnp =

{
z ∈ [p]n0 | z = zp . . . z2z

n−p+1
1 , {zp, . . . , z1} = [p]0

}
.

The center of Snp is then

C
(
Snp
)

=

{
[p]n0 , n < p ,

Cnp , n ≥ p .

The center has ∣∣C (Snp )∣∣ =

{
pn , n < p ,

p! , n ≥ p

vertices and the graph induced by the center has

∣∣E (C (Snp ))∣∣ =

{
p
2(pn − 1) , n < p ,
p!
2 , n ≥ p

edges. In particular, for n ≥ p > 1, the center of Snp induces a 1-regular graph with p!
2 disconnected

edges, i.e., C(Snp ) induces a subgraph of Snp isomorphic to p!
2K2.

A bit later Hinz and Parisse [31] determined the average eccentricity of Sierpiński graphs.

Theorem 3.11. [31, Corollary 3.5] If n ∈ N0 and p ∈ N, then the average eccentricity of the graph Snp
equals

ε(Snp ) =

(
1−

(
2p

p− 1

)−1)
2n − p− 1

p
−

p−2∑
k=0

(−1)p−k
p− 1− k

2p− k

(
p

k

)(
k

p

)n
.

As one can see from the proof of Theorem 3.11 (see [31]), some results are not easy to prove,
although the structure of the Sierpiński graphs is quite easy to explain. To illustrate this even
further, let us present another fascinating formula - the average distance in Sierpiński graphs,
given by Wiesenberger in his graduation thesis.

Theorem 3.12. [68, Satz 3.1.11] For p ∈ N let

αp = p4 − 12p3 + 56p2 − 104p+ 68 ,

λp,± =
1

2
p2 − p+ 1± 1

2

√
αp ,

γp,± = (p2 + 3p− 2)∓ (p4 + p3 − 30p2 + 58p− 36)
√
αp .
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Then for all n ∈ N0

d(Snp ) =
(p− 1)(2p4 + 6p3 − 17p2 + 26p− 16)

p(2p− 1)(p3 + 4p2 − 4p+ 8)
2n

− p− 2

p
+

p2 + 3p− 6

(2p− 1)(p2 − 7p+ 8)
p−n

− p(p− 1)γp,+
2(p2 − 7p+ 8)(p3 + 4p2 − 4p+ 8)

(
λp,+
p2

)n
− p(p− 1)γp,−

2(p2 − 7p+ 8)(p3 + 4p2 − 4p+ 8)

(
λp,−
p2

)n
.

The formula in Theorem 3.12 is fascinating, because for particular values of p we actually
get perfect squares for αp. For example α2 = 4 and α4 = 36. In such cases the formula from the
theorem for the average distance is simplified at least a little bit. For example, in the mentioned
cases (for p = 2, 4) we have:

d(Sn2 ) =
1

3

(
2n − 2−n

)
d(Sn4 ) =

89

140
2n − 1

2
+

1

4
2−n − 11

14
4−n +

2

5
8−n .

By now we have seen that there are at most two shortest paths between arbitrary two ver-
tices of Snp . Therefore it seems reasonable to examine whether there is one shortest path (and
which one) or there are two shortest paths between given two vertices of Snp . For the puzzle of
the Switching Tower of Hanoi this corresponds to the decision whether the largest disc moves
once or twice or both strategies are optimal. Already in 2006 Romik [57] has developed an
automaton for the classical case, i.e., p = 3, which for given two states returns the answer to
the question on shortest paths. See [27, Figure 2.27] for a nice drawing of Romik’s automaton.
However, the answer to the same question with p > 3 remained unsolved until very recently
when Hinz and Holz auf der Heide [26] generalized the previous automaton. The general
automaton is depicted in Figure 3.2 and will be explained in the following example.

Example 3.13. The input for the automaton are two (arbitrary) vertices is, jt of Sn+1
p for n ∈ N. (For

S0
p
∼= K1 and S1

p
∼= Kp everything about shortest paths is already known.) Without loss of generality

we may assume that i 6= j, since the distance and the shortest paths between is and jt do not depend on
a common prefix.

Vertices are entered into the automaton as pairs (sd, td) one by one with d = n downto 1. The
very first pair fixes all the values i and j in the automaton. For example, in the case of 0s and 1t we
replace any i with 0 and j with 1. Note that all dots in the automaton are arbitrary entries. Further
on, at the starting state 0, k ∈ [p]0 \ {i, j}. After starting with the pair (g, h) = (sn, tn) in state 0,
k ∈ {g, h} \ {i, j}, ` ∈ [p]0 \ {g, h, j}, and m ∈ [p]0 \ {g, h, i}. Depending on the values sn and tn we
move either to state 1, any of the states A and B or we end the procedure in state D. Note that the states
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(j, ·), (·, i), (`,m)

(j, i
)

(k, k)

(k, ·)
, (·, k

), (`
,m)

|{g, h, i, j}| = 4

(i, k), (k, j)(`, k), (k,m
)

(i, j), (j, ·), (·, i)

(k
, k
)

(k
, k
)

(j, ·), (·,
i), (`,m

)

(k, k)
(`, i)

(j,m)

(`, k)

(k,m)
(j, i)

A

B

C

D

E

0

1

Figure 3.2: P2 decision automaton for Snp

D and E are absorbing, meaning that if we come to one of these states, we already know the answer to
the decision whether to move the largest disc once or twice (or there are two shortest paths), although we
have possibly entered less than n pairs of s and t. After leaving the states 0 and 1 (if entered), we either
finish in D or the value of k is fixed and ` ∈ [p]0 \ {j, k}, and m ∈ [p]0 \ {i, k}. The value k gives us the
second candidate for a shortest path between is and jt, namely the path corresponding to the distance
dk. How to interpret the states 1, A, B, C, D, and E when these are the endstate of the automaton is
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explained in Table 3.1.

1, A, D the largest disc moves once,
i.e., the unique shortest path is the direct path

B both strategies are optimal,
i.e., there are two shortest paths, the direct path and
the path corresponding to dk

C, E the largest disc moves twice,
i.e., the unique shortest path is the path corresponding to dk

Table 3.1: Meanings of the states 1, A, B, C, D, and E

To get a better perception of the automaton, let us run it in S4
4 for is = 023 and it = 1320. We

insert i = 0, j = 1, g = 2, and h = 3 to the state 0. This way we move to state 1 with the next pair
(2, 2), so we get k = 2 and move to B. After inserting the last pair (2, 0) we stay at B and can thus
conclude that both, the direct path and the path through the subgraph 2S3

4 , are shortest 023, 1320-paths
(cf. Proposition 3.25).

Let now is = 023 and it = 133. Then we insert all the pairs and end in state 1. If this happens, then
no k is fixed for another candidate for a shortest path and obviously the direct path is the shortest path.

3.2 Almost-extreme vertices

Beside the initial cases we mentioned at the beginning of this chapter, it is also easy to deter-
mine the distance between arbitrary vertices of Sn2 , for any n ∈ N. Recall that Sn2 ∼= P2n so
shortest paths are unique and the distance between arbitrary vertices 0s and 1t of Sn+1

p can be
computed using Lemma 3.1. We are also able to determine an explicit formula for it

dSn+1
2

(0s, 1t) = 1 +
n∑
d=1

(1− sd + td)2
d−1 = 2n +

n∑
d=1

(td − sd)2d−1 .

Although the structure of Sierpiński graphs is easily understandable and Theorem 3.6 pro-
vides us with an approach to determine the distance between two arbitrary vertices of Snp , the
distance is in general equal to the minimum of p (not necessarily different) values. We want
to find an easier or a more effective way to compute these distances. An explicit formula for
computing distances to extreme vertices already exists, and the neighbors of extreme vertices
are quite similar to them. The similarity between these two types of vertices was the key start-
ing point for finding the explicit formula for distances to outer almost-extreme vertices. The
results presented in the sequel are taken mainly from the article [45].

From Corollary 3.3 we know that the distance between arbitrary vertices does not depend
on a common prefix. Therefore we will consider only distances between an outer almost-
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extreme vertex of a subgraph jSnp and an arbitrary vertex of a subgraph iSnp , for i 6= j.

Proposition 3.14. If n, p ∈ N and jnk is an outer almost-extreme vertex of Sn+1
p , then for i ∈ [p]0\{j}

the distance between an arbitrary vertex is of Sn+1
p and jnk equals

dSn+1
p

(is, jnk) = d(s, jn) + 2n − [i = k] .

Proof. Let n ∈ N. Using Theorem 3.6 we have

di(is, j
nk) = dj(is, j

nk) = d(s, jn) + 1 + d(jn−1k, in)

= d(s, jn) + 2n − [i = k]

Our goal is to show that the minimum (3.2) for the almost-extreme vertex jnk is achieved at
di(is, j

nk). For an arbitrary ` ∈ [p]0 \ {j}, we have

d`(is, j
nk) = d(s, `n) + 1 + 2n + d(jn−1k, `n)

j 6=`
= d(s, `n) + 2n+1 − [k = `]

≥ d(s, jn) + 2n − [i = k] (3.3)

= di(is, j
nk) .

(Note that by the definition of almost-extreme vertices j 6= k, therefore (3.3) holds for ` = k as
well.) �

Corollary 3.15. If n, p ∈ N and i, j ∈ [p]0 are distinct, then there are two shortest paths between an
arbitrary vertex is of Sn+1

p and an outer almost-extreme vertex jnk of Sn+1
p if and only if s = kn.

Proof. Equality in (3.3) holds if and only if i 6= k = `, d(s, jn) = 2n − 1, and d(s, `n) = 0. This is
only in the case if is = ikn, i 6= k. �

This result was further improved by Xue et al. [72]. They determined all the vertices with
two shortest paths to an outer almost-extreme vertex, not just those that are not in the same
subgraph isomorphic to Snp as the almost-extreme vertex of Sn+1

p under consideration. This can
also be obtained by Corollary 3.15 by applying it recursively.

Proposition 3.16. [72, Theorem 3.3], [26, Proposition 2.3] If n, p ∈ N and jnk is an outer almost-
extreme vertex of Sn+1

p , then there are two shortest paths between an arbitrary vertex s of Sn+1
p and jnk

if and only if s = jn−mikm with m ∈ [n] and i ∈ [p]0 \ {j, k}.

Figure 3.3 shows the graph S3
5 with emphasized vertices (red) for which there are two short-

est paths to the almost-extreme vertex 002 (gray). Xue et al. also determined the distance be-
tween an outer almost-extreme vertex and a vertex with two shortest paths to it.
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002

012

032

042

122

322

422

Figure 3.3: Vertices with two shortest paths to 002 in the Sierpiński graph S3
5

Proposition 3.17. [72, Corollary 3.4] If n, p ∈ N and jnk is an outer almost-extreme vertex of Sn+1
p ,

then the distance between jnk and the vertex jn−mikm with m ∈ [n], i ∈ [p]0 \ {j, k} of Sn+1
p can be

expressed as
dSn+1

p
(jnk, jn−mikm) = 2m+1 − 1 .

Remark 3.18. Although we defined almost-extreme vertices for n ∈ N, Proposition 3.14 holds also for
n = 0. In that case we have S1

p
∼= Kp, where every vertex is extreme and the distance is

dS1
p
(i, k) = [i 6= k] = 1− [i = k] ,

as stated in the proposition.
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With Proposition 3.14 we can determine the distance of an outer almost-extreme vertex of a
Sierpiński graph. To do so, we require the distance of extreme vertices. Since Sierpiński graphs
possess certain symmetry properties (see Theorem 2.28) and automorphisms are distance pre-
serving, it is obvious that all the extreme vertices have the same distance.

Lemma 3.19. [52, p. 7], [68, Satz 3.1.10], [45, Lemma 8] If n, p ∈ N, then for any i ∈ [p]0,

dSnp (in) = pn−1(p− 1) (2n − 1) .

Proof. Let d ∈ [n] and i ∈ [p]0. Then there are pn−1(p− 1) vertices s = sn . . . s1 with sd 6= i and
hence Lemma 3.1 implies

∑
s∈[p]n

d(s, in) =
∑
s∈[p]n

n∑
d=1

[sd 6= i] · 2d−1

=
n∑
d=1

 ∑
s∈[p]n

[sd 6= i]

 · 2d−1
= pn−1(p− 1)

n∑
d=1

2d−1 = pn−1(p− 1) (2n − 1) ,

which completes the proof. �

Now we are ready to prove the distance of the outer almost-extreme vertices. By the sym-
metry of Sierpiński graphs it is again obvious that all the outer almost-extreme vertices have
the same distance.

Theorem 3.20. If n ∈ N0 and p ∈ N, then for any distinct j, k ∈ [p]0,

dSn+1
p

(jnk) =
p− 1

p
(2p)n+1 −

(
1 +

1

p(p− 1)

)
pn+1 +

p

p− 1
.

Proof. We proceed by induction on n ∈ N0. For n = 0, we have

dS1
p
(k) = p− 1 =

p− 1

p
2p− p− 1

p− 1
+

p

p− 1
.

Let now n ∈ N0, then
dSn+1

p
(jnk) =

∑
i∈[p]0

∑
s∈[p]n0

dSn+1
p

(is, jnk) .

By Corollary 3.3 and Proposition 3.14 we have

dSn+1
p

(is, jnk) =


dSnp (s, jn−1k) , i = j ,

dSnp (s, jn) + 2n − 1 , i = k ,

dSnp (s, jn) + 2n , i ∈ [p]0 \ {j, k} .
(3.4)
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Therefore we split the sum above into three sums:

dSn+1
p

(jnk)
(3.4)
=

∑
s∈[p]n0

d(s, jn−1k) +
∑

s∈[p]n0

(
dSn

p
(s, jn) + 2n − 1

)
+ (p− 2)

∑
s∈[p]n0

(
dSn

p
(s, jn) + 2n

)
3.19
= dSn

p
(jn−1k) + pn−1(p− 1)2(2n − 1) + pn(2n − 1) + (p− 2)(2p)n

= dSn
p

(jn−1k) +
(2p− 1)(p− 1)

p
(2p)n −

(
1 +

(p− 1)2

p

)
pn .

Using induction hypothesis we get the desired result. �

Remark 3.21. The expression of Theorem 3.20 can be further transformed as follows:

dSn+1
p

(jnk) =
p− 1

p
(2p)n+1 −

(
1 +

1

p(p− 1)

)
pn+1 +

p

p− 1

= pn(p− 1)2n+1 − pn(p− 1) + pn(p− 1)− pn+1 − pn

p− 1
+

p

p− 1

= pn(p− 1)(2n+1 − 1)− p · p
n − 1

p− 1

= dSn+1
p

(jn+1)−
n∑
`=1

p` .

This is an alternative way to calculate dSn+1
p

(jnk). It can be interpreted as dSn+1
p

(jn+1) minus the
additional step to all the vertices reachable directly from jnk. There are p + p2 + p3 + · · · + pn such
vertices.

Another type of vertices in Sierpiński graphs that are similar to extreme vertices are inner
almost-extreme vertices. In the rest of this section we will develop analogue results as we have
just proved for outer almost-extreme vertices. As before, we consider the distance between
an inner almost-extreme vertex of a subgraph jSnp and an arbitrary vertex of a subgraph iSnp ,
where i 6= j. In order to express a formula for this distance we need the concept of direct and
special vertices.

Definition 3.22. Let n, p ∈ N and let jkn be an inner almost-extreme vertex of Sn+1
p . A vertex s of

Sn+1
p is direct with respect to jkn, if one of the following statements hold:

(i) s ∈ kSnp ,
(ii) there exists a δ ∈ [n+ 1] such that s = sjs with s ∈ ([p]0 \ {j, k})n+1−δ and s ∈ [p]δ−10 , or

(iii) s ∈
(
[p]0 \ {j, k}

)n+1.

In other words, if s is direct with respect to jkn then sd = k holds only if d = n+ 1 or there
is a δ ∈ [n+ 1] \ [d] with sδ = j. Obviously, in Sn+1

p there are

1

2

(
(p+ 2)pn + (p− 2)n+1

)
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direct vertices with respect to jkn. The choice for their name becomes apparent because of the
following proposition. Recall that the direct path between two vertices is and jt of Sn+1

p is the
path corresponding to the direct distance di(is, jt) (cf. Definition 3.5).

Proposition 3.23. If n, p ∈ N and jkn is an inner almost-extreme vertex of Sn+1
p , then the direct path

between an arbitrary vertex is and jkn is the (only) shortest path if and only if the vertex is is direct
with respect to jkn.

Proof. For i = j this is trivial, since dSn+1
p

(js, jkn) = dSnp (s, jk). The corresponding shortest
path is direct for these two vertices and unique by Lemma 3.1. On the other hand, the vertex
js is also direct with respect to jkn, since coordinate j appears before any k.

If i = k, then the length of the direct path is dk(ks, jkn) = dSnp (s, jn) + 1, which is strictly
smaller than the length of any of the paths d`(ks, jkn) = dSnp (s, `n) + 2n+1, ` ∈ [p]0 \ {j, k}.

So let now j 6= i 6= k. To prove the assertion, we have to see that for any ` ∈ [p]0 \ {i, j}

di(is, jk
n) < d`(is, jk

n) .

Let first ` 6= k. Then

d`(is, jk
n) = dSnp (s, `n) + 1 + 2n + dSnp (kn, `n)

= dSnp (s, `n) + 2n+1 > 2n+1 − 1 = diam(Sn+1
p ) ,

so d`(is, jkn) is not a shortest is, jkn-path. For ` = k,

dk(is, jk
n) = dSnp (s, kn) + 1 + 2n + dSnp (kn, kn) = dSnp (s, kn) + 2n + 1 ,

while on the other hand
di(is, jk

n) = dSnp (s, jn) + 2n .

Thus let us consider

dSnp (s, kn) + 1− dSnp (s, jn) = 1 +
n∑
d=1

([sd 6= k]− [sd 6= j])2d−1 . (3.5)

Note that σd := ([sd 6= k]− [sd 6= j]) = ([sd = j]− [sd = k]) ∈ {−1, 0, 1}, in particular

σd =


−1 , sd = k ,

0 , sd ∈ [p]0 \ {j, k} ,
1 , sd = j .

Now the expression in (3.5) is greater than 0 if σd = 0 for all d ∈ [n] or if for the first time σd 6= 0,
it is positive (i.e., σd = 1). But this is equivalent to is being direct with respect to jkn. �
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Definition 3.24. Let n, p ∈ N and let jkn be an inner almost-extreme vertex of Sn+1
p . A vertex s

of Sn+1
p is special with respect to jkn, if there exists a δ ∈ [n], such that s = skjδ−1 with s ∈

([p]0 \ {j, k})n+1−δ.

By the above definition there are

p− 2

p− 3

(
(p− 2)n − 1

)
special vertices with respect to jkn in Sn+1

p . Again, the name for the special vertices was chosen
because of the next result.

Proposition 3.25. If n, p ∈ N and jkn is an inner almost-extreme vertex of Sn+1
p , then there are two

shortest paths between an arbitrary vertex s of Sn+1
p and jkn if and only if the vertex s is special with

respect to jkn.

Proof. Let s = is and consider first the case i = k. Then we already know by Proposition 3.23
that there is only one shortest path from ks to jkn. Similarly, if i = j, then jkn is an extreme
vertex in jSnp and by Lemma 3.1 shortest paths to extreme vertices are unique.

Therefore let i ∈ [p]0 \ {j, k}. To prove the proposition, we have to show that di(is, jkn) =

dk(is, jk
n) is equivalent to is being special with respect to jkn. So let us determine when

dk(is, jk
n)− di(is, jkn) = 1 +

n∑
d=1

([sd 6= k]− [sd 6= j])2d−1 = 0 . (3.6)

Note again σd := ([sd 6= k] − [sd 6= j]) = ([sd = j] − [sd = k]). Recall from the proof of the
previous proposition that

σd =


−1 , sd = k ,

0 , sd ∈ [p]0 \ {j, k} ,
1 , sd = j .

If σd 6= 0 for some d ∈ [n], let δ be the largest such index. Then (3.6) holds if and only if
σδ = −1 and for all d ∈ [δ − 1], σd = 1. But if σd = 0 for all d ∈ [n], then (3.6) cannot hold. In
other words, (3.6) holds if and only if the vertex is is of the form iskjδ−1 for some δ ∈ [n] and
is ∈

(
[p]0 \ {j, k}

)n+1−δ. This is equivalent to the vertex is being special with respect to jkn. �

Now we can state the following proposition, an analogue to Proposition 3.14 but for inner
almost-extreme vertices.
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Proposition 3.26. If n, p ∈ N and jkn is an inner almost-extreme vertex of Sn+1
p , then for any i ∈ [p]0

with i 6= j, the distance between an arbitrary vertex is of Sn+1
p and jkn can be expressed as follows

dSn+1
p

(is, jkn) =

{
d(s, jn) + 2n − [i = k](2n − 1), if is is direct for jkn ,
d(s, kn) + 2n + 1, otherwise .

Proof. For i 6= j we have

di(is, jk
n) = dSnp (s, jn) + 1 + dSnp (in, kn) = d(s, jn) + 2n − [i = k](2n − 1)

and for ` ∈ [p] \ {i, j},
d`(is, jk

n) = d(s, `n) + 1 + 2n + d(`n, kn) . (3.7)

The expression in (3.7) is strictly larger than di(is, jkn), if ` 6= k. So we may assume that i 6= k

and the distances dk(is, jkn) and di(is, jkn) are the only two possible lengths of a shortest path
between is and jkn. Now the assertion follows by Propositions 3.23 and 3.25. �

Note that in the above proposition any special vertex with respect to jkn could also be in the
first line of the formula, since there are two shortest paths for these vertices and each shortest
path corresponds to one line of the equation.

An example of direct and special vertices is illustrated in Figure 3.4 on the graph S3
6 for the

almost-extreme vertex 144. All vertices circled green are direct for 144 and thus belong to the
first line of the formula in Proposition 3.25, for all the others we use the second line. Orange
vertices are special for 144, so for these vertices both lines of the equation in Proposition 3.25
hold.

Based on Corollary 3.3, Lemma 3.19, and Proposition 3.26, the distance of the inner almost-
extreme vertices reads as follows.

Theorem 3.27. If n ∈ N0 and p ∈ N, then for any distinct j, k ∈ [p]0,

dSn+1
p

(jkn) =
p2 − 2

p(p+ 2)
(2p)n+1 − p− 2

2p
pn+1 − p

2(p+ 2)
(p− 2)n+1 .

Proof. Let us calculate

dSn+1
p

(jkn) =
∑

is∈[p]n+1
0

dSn+1
p

(is, jkn)

=
∑
s∈[p]n0

dSnp (s, kn) +
∑
s∈[p]n0

(
dSnp (s, jn) + 1

)
+ (p− 2)

∑
s∈[p]n0

dSn+1
p

(is, jkn) . (3.8)
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S3
6

000

111
144

222 333

444

555

Figure 3.4: Direct and special vertices with respect to 144 in S3
6

For fixed i ∈ [p]0 \ {j, k} define

ρ(is) := dk(is, jk
n)− dj(is, jkn) = 1 +

n∑
d=1

σd · 2d−1 ,

where σd = ([sd = j]− [sd = k]). Now, if the vertex is is direct with respect to jkn, then we have
two options. Either s ∈

(
[p]0 \ {j, k}

)n, in this case ρ(is) = 1; or s = sjs, s ∈
(
[p]0 \ {j, k}

)n−δ,
s ∈ [p]δ−10 , for δ ∈ [n], and then ρ(is) = 1 + 2δ−1 +

δ−1∑
d=1

σd · 2d−1. For i ∈ [p]0 \ {j, k} define

Pi :=
∑
s∈[p]n0

dSn+1
p

(is, jkn) =
∑
s∈[p]n0

dk(is, jk
n)−

∑
is direct

ρ(is) .
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Then

Pi =
∑
s∈[p]n0

(
dSnp (s, kn) + 1 + 2n

)

−

(p− 2)n +

n∑
δ=1

(p− 2)n−δ ·
∑

s∈[p]δ−1
0

(
1 + 2δ−1 +

δ−1∑
d=1

σd · 2d−1
)

= dSnp (kn) + (1 + 2n)pn − (p− 2)n −
n∑
δ=1

(p− 2)n−δpδ−1(1 + 2δ−1)

= dSnp (kn) + (2p)n + pn − (p− 2)n − (p− 2)(pn+1 + 2pn(2n + 1)− (p+ 4)(p− 2)n)

2(p+ 2)
.

Note that Pi is i-independent, thus inserting the outcome into (3.8) we get

dSn+1
p

(jkn) = dSnp (kn) + dSnp (jn) + pn + (p− 2) · Pi ,

which gives us the desired result. �

As we have already seen in Section 1.2, for n = 2, both kinds of almost-extreme vertices
coincide and their total distances must be equal. Indeed, for n = 2, Theorems 3.20 and 3.27
both give the value dS2

p
(jk) = p(3p−4). Similarly as before with outer almost-extreme vertices,

the expression of the distance of an inner almost-extreme vertex can be rewritten as follows:

dSn+1
p

(jkn) =
1

2
pn(p− 2)(2n+1 − 1) +

p

2

n∑
`=0

(2p)n−`(p− 2)` .

In this case, however, we have no interpretation for this formula such as in Remark 3.21.

Xue et al. also studied the distances and shortest paths for the inner almost-extreme vertices.
Their result about vertices with two shortest paths to an inner almost-extreme vertex of Sn+1

p

is equivalent to Proposition 3.25 (cf. [72, Theorem 3.3]). Like for the outer almost-extreme
vertices, they determined a similar result about distances between special vertices and inner
almost-extreme vertices.

Proposition 3.28. [72, Corollary 3.2] If n, p ∈ N and jkn is an inner almost-extreme vertex of Sn+1
p ,

then the distance between jkn and the vertex s = skjδ−1 with δ ∈ [n], s ∈ ([p]0 \ {j, k})n+1−δ of Sn+1
p

can be expressed as
dSn+1

p
(jkn, skjδ−1) = 2n+1 − 2δ−1 .

Let us conclude with a listing of the distances of extreme and almost-extreme vertices for
the classical case, i.e., when p = 3. In this case Sn3 is isomorphic to the Hanoi graph Hn

3 with
extreme vertices mapped onto perfect ones and almost-extreme vertices being transformed into
vertices of the same form. By Lemma 3.19 and Theorems 3.20 and 3.27 we get:
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Corollary 3.29. If n ∈ N0 and p ∈ N, then for i, j, k ∈ [p], j 6= k,

dSn3 (in) =
2

3
3n(2n − 1) = dHn

3
(in) ,

dSn+1
3

(jnk) =
2

3
· 6n+1 − 7

6
· 3n+1 +

3

2
= dHn+1

3
(jnk) ,

dSn+1
3

(jkn) =
7

15
· 6n+1 − 1

6
· 3n+1 − 3

10
= dHn+1

3
(jkn) .

3.3 Metric dimension

The concept of metric dimension of a graph was independently introduced by Harary and
Melter in 1974 [22] and by Slater in 1975 [59]. A few years ago Bailey and Cameron published
a semi-survey paper [2], which is a great source on historical developments, connections of
this dimension to other invariants and a long list of references on this topic. Another survey
source for the metric dimension is [14]. In this final section of the chapter on metric properties
of Sierpiński graphs we will determine the metric dimension of Snp .

Definition 3.30. Let G be a graph and k ∈ N. A subset R = {u1, . . . , uk} ⊆ V (G) is a resolving set
(for G) if for any two distinct vertices x, y ∈ V (G)(

d(x, u1), . . . , d(x, uk)
)
6=
(
d(y, u1), . . . , d(y, uk)

)
.

The metric dimension of G, µ(G), is the minimal size of a resolving set.

In other words, the set R ⊆ V (G) is resolving if each vertex of G is uniquely determined by
the distances to the vertices of R. This way any two distinct vertices x, y ∈ V (G) are resolved
by some vertex of R, which means that there exists a vertex ui ∈ R such that d(x, ui) 6= d(y, ui).

Returning to Sierpiński graphs, since S0
p
∼= Sn1

∼= K1 it is obvious that µ(Snp ) = 0 for n = 0 or
p = 1. To determine the metric dimension of other Sierpiński graphs, let us construct resolving
sets in these graphs. Let n, p ∈ N and ` ≤ p. Then denote the set of (the first) ` extreme vertices
of Snp by

Rn` := {in | i ∈ [`]0} .

By Theorem 2.28 on symmetry of Sierpiński graphs the set Rn` could be replaced by any set of
` extreme vertices of Snp .

It is easy to see that the set Rnp forms a resolving set for the graph Snp . Assume the opposite,
i.e., that for some distinct vertices s, t of Snp(

d(s, 0n), . . . , d(s, (p− 1)n)
)

=
(
d(t, 0n), . . . , d(t, (p− 1)n)

)
.

Then d(s, snd ) = d(t, snd ), for every d ∈ [n], and thus Lemma 3.1 implies sd = td for every d ∈ [n],
which means s = t, a contradiction. The set remains resolving even if we remove a vertex:



56 Metric properties

Lemma 3.31. If n, p ∈ N, then Rnp−1 is a resolving set of Snp .

Proof. For p = 1, Rnp−1 = {0n} = V (Sn1 ), so Rn0 definitely forms a resolving set for Sn1 . Let
now p ≥ 2 and let s and t be vertices of Snp with d(s, in) = d(t, in) for all i ∈ [p − 1]0. Then
by Corollary 3.2, d(s, (p − 1)n) = d(t, (p − 1)n) holds as well. But then by Lemma 3.1 s = t, a
contradiction. �

To obtain the metric dimension of Sierpiński graphs we also require the following immedi-
ate consequence of Proposition 3.14:

Corollary 3.32. If n ∈ N0 and p ∈ N, then for any pairwise distinct i, j, k ∈ [p]0 and s ∈ [p]n0 ,

dSn+1
p

(is, jnk) = dSn+1
p

(is, jn+1) .

By combining these results we are able to determine the metric dimension of Snp . It it equal
to the metric dimension of a complete graph Kp. This is not surprising, since Kp is the main
building block for the construction of Snp .

Theorem 3.33. If n ∈ N0 and p ∈ N, then

µ(Sn+1
p ) = p− 1 .

Moreover, if R is a minimum resolving set, then |R ∩ V (jSnp )| ≤ 1 holds for any j ∈ [p]0.

Proof. Let R ⊂ V (Sn+1
p ) and assume that R ∩ jSnp = ∅ = R ∩ kSnp for distinct j, k ∈ [p]0.

Corollary 3.32 implies that for each r ∈ R we have d(r, jnk) = d(r, jn+1). This means R can
not be a resolving set for Sn+1

p and each resolving set must contain at least one element of
at least p − 1 subgraphs isomorphic to Snp . So each resolving set must contain at least p − 1

elements. Since by Lemma 3.31 any p− 1 extreme vertices form a resolving set, we deduce that
µ(Sn+1

p ) = p − 1 and, with recourse to the pigeonhole principle, that no jSnp can contain more
than one element of a minimal resolving set. �

The first assertion of Theorem 3.33 has been found independently and at the same time by
Aline Parreau [54, Théorème 3.6].



Chapter 4

Embeddings

Before we start with particular embeddings of Sierpiński graphs, we will explain some basic
theory about embeddings of graphs. The theory presented in the sequel is mainly adapted
from the books [33] and [21]. Some of the embeddings considered later will be into Cartesian
product graphs. The Cartesian product of graphs G and H , G�H , is a graph defined with

V (G�H) = V (G)× V (H) ,

E(G�H) = {{(g, h), (g′, h′)} | g = g′, {h, h′} ∈ E(H) or {g, g′} ∈ E(G), h = h′} .

Special representatives of Cartesian product graphs are Hamming graphs. They are defined as
Cartesian products of complete graphs. An equivalent definition of Hamming graphs is the
following. Let r` ≥ 2, ` ∈ [n], be given integers. Then a Hamming graph G is the graph
whose vertex set is [r1] × [r2] × · · · × [rn], and two vertices are adjacent if the corresponding
n-tuples differ in precisely one coordinate. With the notation of Cartesian products this means
G = Kr1 �Kr2 � · · · �Krn . The number of factors in a Hamming graph is the dimension of the
Hamming graph. If all the factors in a Hamming graph are of order p, we denote it by Kn

p .

In our case an embedding of a graph G into a graph H will be an injective homomorphism,
i.e., an injective mapping f : V (G) → V (H), such that if {u, v} is an edge in G, {f(u), f(v)} is
also an edge in H . An image f(G) of G under the embedding f will be a graph with V (f(G)) =

f(V (G)) and E(f(G)) = {{f(u), f(v)} | {u, v} ∈ E(G)}. Note that not every edge of H with
endvertices in f(V (G)) is necessarily in f(G). In particular we will consider isometric and
induced embeddings. As usual, isometric means distance preserving, formally:

Definition 4.1. Let G and H be graphs. An embedding f : V (G) → V (H) is isometric if for every
pair of vertices u, v ∈ V (G)

dH(f(u), f(v)) = dG(u, v) .

A weaker condition is if the embedding is induced:

57
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Definition 4.2. Let G and H be graphs. An embedding f : V (G) → V (H) is induced if f(G) is an
induced subgraph of H .

Note that every isometric embedding is also induced, since every isometric subgraph of a graph
is also an induced subgraph. But an induced embedding is not necessarily isometric, see for
example Figure 4.1, where an induced embedding of P3 into C5 is shown but P3 is not an
isometric subgraph of C5.

Figure 4.1: Embedding of P3 into C5

While dealing with embeddings, we will often use quotient graphs. For a quotient graph
we require a partition of either the vertex set or the edge set of a graph. The definition is similar
in both cases, but for our purposes we will define it with a partition of the edge set.

Definition 4.3. Let G be a graph and let F = {F1, . . . , Fr} be a partition of its edge set. Then for
i ∈ [r] the quotient graph G/Fi is the graph whose vertices are the connected components of G \ Fi,
where two components Ci and Cj are connected (in G/Fi) if there is an edge in G that connects a vertex
of Ci with a vertex of Cj .

When embedding into Cartesian product graphs, we are usually interested in having no
unused factors or vertices. Therefore we define an irredundant embedding.

Definition 4.4. Let G be a graph and H =
k
�
i=1
Hi be a Cartesian product graph. An embedding

f : V (G)→ V (H) is irredundant if

(i) |V (Hi)| ≥ 2 for every i ∈ [k], and

(ii) every vertex h ∈
k⋃
i=1
V (Hi) occurs as a coordinate in the image of some vertex g ∈ G.

If f is an irredundant embedding, we say that the image of G under f is an irredundant subgraph in

H =
k
�
i=1
Hi.

In the rest of the chapter we will first discuss embeddings of Sierpiński graphs into Hanoi
graphs [28], then we will give the canonical metric representation [44] of Sierpiński graphs and
finally we will study their Hamming dimension [44]. Recall from Section 1.2 that for n = 0
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a Sierpiński graph S0
p
∼= K1 for any p ∈ N. When it comes to embeddings we are mainly

interested in getting more information about the structure of a graph. Since there is not much
information to obtain about the structure of a one-vertex graph, we will exclude the case n = 0

from this chapter entirely.

4.1 Embeddings into Hanoi graphs

Hanoi and Sierpiński graphs are defined on the same vertex set. From Section 1.3.1 we already
know that Hn

3
∼= Sn3 , therefore we were wondering whether we can generalize this relation to

any p ∈ N. We will see that although the Hanoi graph Hn
p has significantly more edges than

the Sierpiński graph Snp , as soon as p > 3, we are not always able to embed Snp into Hn
p as

a spanning subgraph. The reason for this is that the edge of Snp between any two subgraphs
isomorphic to Sn−1p is unique, and any two such edges are non-adjacent.

Theorem 4.5. If n, p ∈ N, then Snp can be embedded into Hn
p if and only if p is odd or n = 1.

Proof. The case n = 1 is clear, because S1
p
∼= Kp

∼= H1
p . The same applies to p = 1 since

Sn1
∼= K1

∼= Hn
1 . Moreover, for n ≥ 2, we have ‖Sn2 ‖ = 2n− 1 > 2n−1 = ‖Hn

2 ‖, so that Sn2 cannot
be embedded into Hn

2 . (In fact, Hn
2 is a spanning subgraph of Sn2 .)

In the rest of the proof we will first show that it is not possible to embed Snp into Hn
p for any

even p and afterwards we will describe an embedding of Snp into Hn
p for any odd p.

So let first p ≥ 4 be even and n = 2. Assume that there is an embedding α : S2
p → H2

p . By
Lemma 1.12, the p-cliques of S2

p are mapped onto the p-cliques of H2
p . The remaining edges of

S2
p , these are exactly the edges e(2)ij , i, j ∈ [p]0, i 6= j, have to be mapped by α to edges in H2

p

corresponding to moves of disc 2. There are
(
p
2

)
edges e(n)ij of S2

p and they are pairwise non-
adjacent. On the other hand, edges in H2

p corresponding to moves of disc 2 induce p cliques of

order p−1. Among the edges of these cliques, we can select at most p
⌊
p−1
2

⌋
independent ones.

Since p is even, p
⌊
p−1
2

⌋
< p p−12 =

(
p
2

)
. We conclude that S2

p cannot be embedded into H2
p .

We will now reduce the more general case for even p and n ≥ 3 to the case just dealt with.
Let α′ be an embedding of Snp into Hn

p . The key idea is to consider the image α′(0n−2S2
p). Since

non-extreme vertices of Snp are of degree p, they cannot be mapped by α′ to perfect vertices.
Hence, the p extreme vertices of Snp are mapped to p perfect vertices of Hn

p so that α′(0n) = jn

for some j. Using Lemma 1.12 again, α′(0n−1S1
p) = jn−1H1

p . Moreover, the subgraph 0n−2S2
p of

Snp contains p − 1 p-cliques that are at distance 1 from the clique 0n−1S1
p . All the other cliques

of Snp are at distance more than 1 from 0n−1S1
p . Similarly, the subgraph jn−2H2

p of Hn
p contains

p p-cliques that are pairwise at distance 1. Every other p-clique of Hn
p is at distance at least

two from jn−1H1
p . (Indeed, suppose another clique which is not in jn−2H2

p , say jn−3iH2
p , i 6= j,

would be connected to a vertex jn−1k of jn−1H1
p . Then the vertex of jn−3iH2

p would have the
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form jn−3ijk, but then we get a contradiction by Definition 1.11.) Therefore, α′(0n−2S2
p) =

jn−2H2
p . Hence α′ would embed 0n−2S2

p
∼= S2

p into jn−2H2
p
∼= H2

p , a possibility which we
already excluded.

Suppose next that p ≥ 3 is odd. We will show by induction on n that there is an embedding
of Snp into Hn

p . The case n = 1 was already considered at the beginning of the proof and is
trivial. By the degree condition, any such embedding must map extreme vertices of Snp onto
perfect vertices of Hn

p . For n ≥ 1 let ιn be an embedding from Snp into Hn
p . Since an arbitrary

permutation of the perfect states of Hn
p extends to an automorphism of Hn

p (cf. [53]), we may
without loss of generality assume that ιn(kn) = kn for all k ∈ [p]0. We construct the mapping
ιn+1 : V (Sn+1

p )→ V (Hn+1
p ) in the following way. For k ∈ [p]0 let πk be the permutation on [p]0

defined by

∀ i ∈ [p]0 : πk(i) =
1

2
(k(p+ 1)− i(p− 1)) mod p .

It has precisely one fixed point, namely k. Next, let πnk denote the bijection on [p]n0 with
πnk (sn . . . s1) = πk(sn) . . . πk(s1). Define

∀ k ∈ [p]0 ∀ s ∈ [p]n0 : ιn+1(ks) = kπnk (ιn(s)) .

This obviously constitutes a bijection with

ιn+1(k
n+1) = kπnk (ιn(kn)) = kπnk (kn) = kn+1 .

This construction is illustrated in Figure 4.2 for the case of S2
5 and H2

5 .
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5 into H2
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It remains to show that {ιn+1(ij
n), ιn+1(ji

n)} ∈ E(Hn+1
p ) for distinct i, j ∈ [p]0. We have

ιn+1(ij
n) = iπni (ιn(jn)) = iπi(j)

n and similarly ιn+1(ji
n) = jπj(i)

n. Moreover,

i 6= πi(j) =
1

2
(ip+ i− jp+ j) mod p =

1

2
(jp+ j − ip+ i) mod p = πj(i) 6= j ,

and so the two vertices are adjacent in Hn
p . �

As observed in [33, Section 2.2], Hanoi graphsHn
p are spanning subgraphs ofKn

p . Therefore,
we get

Corollary 4.6. If p ∈ N is odd, then for any n ∈ N0, Snp is a spanning subgraph of the Hamming graph
Kn
p .

Although Corollary 4.6 holds only for odd values of p, we believe it could be generalized
to arbitrary p. We will explain more details about the possibilities of this extension in the final
chapter, where we discuss some open problems.

4.2 Canonical metric representation

The classical theory due to Graham and Winkler [15] asserts that there is precisely one iso-
metric embedding of a graph into Cartesian product graphs that is irredundant and has the
largest number of factors. It is called the canonical metric representation. Let us start with a brief
overview of the theory required to describe the embedding. For more details see [21, Chapters
11 and 13] and [33, Chapter 14].

Definition 4.7. Let G be a graph and let e = uv and f = xy be edges of G. The edges e and f are in
relation Θ (in G) if and only if

d(u, x) + d(v, y) 6= d(u, y) + d(v, x) .

Relation Θ is reflexive and symmetric, but not transitive in general. In order to get an
equivalence relation we build the transitive closure Θ∗ of the relation Θ. Its equivalence classes
form a partition of the edge set of G. We will denote it by E = {E1, . . . , Eρ}. Other properties
of relations Θ and Θ∗, which we will be using, are gathered in the subsequent lemma.

Lemma 4.8. [21, 33] Let G be a graph. Then:

(i) No two distinct edges on a shortest path in G are in relation Θ.
(ii) If P is a walk connecting the endpoints of an edge e in G, then P contains an edge f 6= e with

eΘf .
(iii) Two adjacent edges of G are in relation Θ if and only if they belong to a common triangle.
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(iv) If C is an isometric cycle in G, then two edges e and f on cycle C are in relation Θ if and only if
they are antipodal edges1 of C.

(v) No two edges from different 2-connected components of G are in relation Θ.

We will also need the following modification of Lemma 4.8(v).

Lemma 4.9. IfH is an isometric subgraph of a graphG, and e and f are edges from different 2-connected
components of H , then e is not in relation Θ with f in G.

Proof. Let e = uv and f = xy be edges from different 2-connected components of H . By
Lemma 4.8(v), e and f are not in relation Θ in H , that is,

dH(u, x) + dH(v, y) = dH(u, y) + dH(v, x) .

Since H is an isometric subgraph of G, it follows that

dG(u, x) + dG(v, y) = dG(u, y) + dG(v, x) ,

hence e and f are not in relation Θ in G. �

Note that we cannot conclude in Lemma 4.9 that e and f are not in relation Θ∗ in G. For
instance, consider P3 as a subgraph of K2,3 shown in Figure 4.3. It is easy to see that all the
edges of K2,3 form a single Θ∗-class (Lemma 4.8(iv)). P3 is an isometric subgraph of K2,3 yet
its edges are in relation Θ∗. Similarly, we also cannot assume that the properties in Lemma 4.8
hold for Θ∗.

Figure 4.3: P3 as an isometric subgraph of K2,3

By now, we have familiarized ourselves well with the relation Θ∗. Next we would like
to derive an embedding from it. We call the embedding canonical, due to its definition. To
define the canonical embedding with respect to a partition F = {F1, . . . , Fr} of the set E(G),
we also require the concept of the natural projections. These are projections obtained from F =

1If a cycle has odd length, then every edge has two antipodal edges; for example, in a triangle any two edges are
antipodal to the third one.
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{F1, . . . , Fr} in the following way

fi : V (G)→ V (G/Fi) ,

where G/Fi is the quotient graph with respect to Fi and a vertex v is mapped to the connected
component of G− Fi that contains v.

Definition 4.10. Let G be a graph and let F = {F1, . . . , Fr} be a partition of its edge set. Further, let
f1, . . . , fr be the natural projections derived from F . The canonical embedding of G (with respect to
F) is the mapping

f : V (G)→ V (G/F1)� · · · �V (G/Fr) ,

with
f(v) = (f1(v), . . . , fr(v)) .

In the case when a partition of the edge set of a graph G consists of the Θ∗-classes of G, the
canonical embedding is called canonical metric representation of G. We denote the embedding by
α and the natural projections by αi:

α : V (G)→ V (G/E1)� · · · �V (G/Eρ) ,

α(v) = (α1(v), . . . , αρ(v)) .

We say that the canonical metric representation is trivial if G contains only one Θ∗-class. It is
also isometric, see for instance [15, Theorem 1].

It follows immediately from Lemma 4.8 that S1
p has a trivial canonical metric representation

for any p ∈ N, as Sn1 does for any n ∈ N. Since Sn2 = P2n , every edge of Sn2 represents its own
Θ∗-class. So for any i ∈ [2n − 1], Sn2 /Fi = K2. The canonical metric representation of Sn2 is
therefore an isometric embedding into the hypercube Q2n−1.

The next observation is crucial to determine most of the Θ∗-classes of the rest of the Sier-
piński graphs.

Lemma 4.11. If n, p ∈ N and n ≥ 2, p ≥ 3, then for any pairwise distinct i, j, ` ∈ [p]0,

e
(n)
ij Θ `e

(n−1)
ij .

Proof. The edge e(n)ij is the antipodal edge of the edge `e(n−1)ij in C
(n)
ij` . By Proposition 3.7 the

cycle C(n)
ij` is isometric in Snp , so the assertion follows by Lemma 4.8(iv). �

Keep in mind that Lemma 4.11 holds for all p ≥ 3 and is thus the main reason why most of
the Sierpiński graphs have a trivial canonical metric representation.

Proposition 4.12. If p ∈ N, p ≥ 4, then for any n ∈ N the canonical isometric representation of Snp is
trivial.
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Proof. For a fixed p ≥ 4 we proceed by induction on n ∈ N. S1
p is isomorphic to Kp, hence

the assertion clearly holds in this case. Let n > 1. Then for any i ∈ [p]0, the subgraph iSn−1p

contains a single Θ∗-class by the induction hypothesis applied to iSn−1p (which is isomorphic
to Sn−1p ). Let j ∈ [p]0 \ {i} be fixed. Then by Lemma 4.11 e(n)ij is in relation Θ with the edge

`e
(n−1)
ij , for any ` ∈ [p]0 \ {i, j}. Thus e(n)ij is in the same Θ∗-class as `Sn−1p . Finally, symmetry

of Sierpiński graphs (Theorem 2.28) asserts that the canonical isometric representation of Snp is
trivial. �

Thus our only hope for a non-trivial canonical metric representation remains the case Sn3 .
For some initial base-3-Sierpiński graphs it is easy to determine Θ∗-classes, as it can be seen in
Figure 4.4.

Figure 4.4: Θ∗-classes of S2
3 (left) and S3

3 (right)

Similarly we can determine the structure of Θ∗-classes of Sn3 for larger values of n. First note
that for any n ∈ N there is only one cycle C(n)

ij` in Sn3 , namely C(n)
012, and recall that T = [3]0. By

Lemma 4.8 all edges in a triangle sS1
3 , s ∈ Tn−1, of Sn3 are in one Θ∗-class. Using Lemma 4.11,

we can conclude that for {i, j, `} = T , the edges of in−1S1
3 and all the edges ime(n−m)

j` , m ∈
[n − 1]0, are in one Θ∗-class. Our goal is to show, that such a Θ∗- class does not contain any
other edge. But first let us prove an observation on Θ∗- classes of Sn3 .

Proposition 4.13. If n ∈ N, then for any Θ∗-class F of Sn3 and any distinct i, j ∈ T , |P (n)
ij ∩ F | ≥ 1.

Proof. We proceed by induction on n. The statement is clearly true for n = 1, since S1
3 = K3

and it has only one Θ∗-class. Let n > 1 and let F be an arbitrary Θ∗-class of Sn3 . If |F ∩ iSn−13 | ≥
1, then by the induction hypothesis (applied to iSn−13 ), F intersects shortest paths iP (n−1)

ij ,

iP
(n−1)
ik , and iP (n−1)

jk for {i, j, k} = T . Let e be in iP (n−1)
j,k ∩ F . If the antipodal edge of e on C(n)

012

is e(n)jk , we are done since e(n)jk is on P
(n)
j,k . Otherwise, the antipodal edge of e on C

(n)
012 is either
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on jP
(n−1)
ik or kP (n−1)

ij . In this case we use induction and symmetry of the Sierpiński graphs

(Theorem 2.28) until we reach one of the paths P (n)
ij , P (n)

ik , and P (n)
jk . �

In other words, every Θ∗-class is present on any of the paths P (n)
ij . To describe Θ∗-classes of

Sn3 explicitly, let T = {i, j, `} and set

Fni :=
{
{in, in−1j}, {in, in−1`}

}
∪
{
in−me

(m)
j` |m ∈ [n]

}
,

F̃n := E(Sn3 ) \ (Fn0 ∪ Fn1 ∪ Fn2 ) .

In Figure 4.4, Θ∗-classes F 2
0 and F 3

0 are drawn in red, F 2
1 and F 3

1 in blue, and F 2
2 and F 3

2 in
green. Note that F̃ 2 = ∅ and F̃ 3 is drawn with dotted gray lines. An example of a quotient
graph Sn3 /F̃n is shown in Figure 4.5 for n = 4.

03{0, 1, 2}

02{1, 2}

0{1, 2}{0, 1} {0, 2}

1{0, 2} 2{0, 1}

12{0, 2} 22{0, 1}

13{0, 1, 2} 23{0, 1, 2}{1, 2}

Figure 4.5: The quotient graph S4
3/F̃

4

Now we are ready to prove that these sets are the only Θ∗-classes of Sn3 .
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Theorem 4.14. If n ∈ N and n ≥ 2, then the Θ∗-classes of Sn3 are Fn0 , Fn1 , Fn2 , and F̃n.

Proof. It is straightforward to check the result for n = 2, where F̃3 = ∅. In this case we have
three Θ∗-classes, which are also shown in Figure 4.4.

Let i ∈ T and consider Fni . Recall that iSn−13 is an isometric subgraph of Sn3 , therefore by
Lemma 4.9 and by induction hypothesis it follows that {in, in−1j}, {in, in−1`} ∈ Fni , as well as
in−me

(m)
j` ∈ F

n
i for m ∈ [n − 1] and {i, j, `} = T . Moreover, Lemma 4.11 asserts e(n)j` Θie

(n−1)
j` .

Hence the edges of Fni belong to a common Θ∗-class.

It remains to show that no two edges from different sets Fn0 , Fn1 , Fn2 , and F̃n are in relation
Θ and that in F̃n any two edges are in relation Θ∗.

For the first assertion, by symmetry (Theorem 2.28) it suffices to prove that no edge of Fn0 is
in relation Θ with any other edge. There are three connected components of Sn3 \Fn0 . One is the
extreme vertex 0n and the other two symmetrical components we will denote by G1 and G2,
where 1n ∈ G1 and 2n ∈ G2. An example for the connected components of the graph Sn3 \ Fn0
is drawn in Figure 4.6 for n = 3. Using symmetry again, it suffices to prove that no edge of Fn0
is in relation Θ with an edge of G1.

G1 G2

03

022

021

211

Figure 4.6: The graph S3
3 \ F 3

0 with subgraphs G1 and G2

Note first that G1 is isometric in Sn3 . Moreover, the graph induced by V (G1) and vertices 0n

and 0n−12 is also isometric in Sn3 . Then Lemma 4.9 implies that edges {0n, 0n−11}, {0n, 0n−12},
and {0n−11, 0n−12} are not in relation Θ with any edge in G1. Let m ∈ [n− 1]0 and consider the
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subgraph of Sn3 induced by V (G1) and 0m21n−m−1 (see Figure 4.6 for n = 3). We infer again
that this subgraph is isometric, hence by applying Lemma 4.9 we conclude that {0n−11, 0n−12}
is in relation Θ with no edge of G1. This completes the proof that no two edges from different
sets Fn0 , Fn1 , Fn2 , and F̃n are in relation Θ.

It remains to prove that any two edges of F̃n are in relation Θ∗. If n = 3, it is straightfor-
ward to check that {001, 010}Θ{211, 210}Θ{011, 012}. By symmetry and transitivity the result
follows. Let n ≥ 4. Then because C(n)

012 is isometric in Sn3 (Proposition 3.7),

{01n−1, 01n−22}Θ{210n−2, 210n−31}

as well as
{01n−22, 01n−321}Θ{210n−31, 210n−410} .

Now we apply induction, symmetry, and transitivity of Θ∗ to conclude that F̃n is indeed a Θ∗-
class. �

For any i ∈ T we get Sn3 /F
n
i
∼= K3, while Sn3 /F̃n is obtained from Sn3 by contracting each

edge in Fn0 ∪Fn1 ∪Fn2 . See Figure 4.5 for S4
3/F̃

4. The vertices are labeled in a similar manner as
in Sierpiński triangle graphs STnp . For example, by contracting the edges of the triangle 03S1

3

we get the vertex 03{0, 1, 2} and by contracting the edge {0122, 0212}we get the vertex 0{1, 2}.

Note that |Fni | = n+ 2, and thus∣∣F̃n∣∣ =
p

2
(pn − 1)− 3n− 6 .

The three Θ∗-classes Fni of Sn3 give us small quotient graphs, but the fourth quotient graph has
roughly the same number of vertices as Sn3 . Although we found an explicit canonical metric
representation of Sierpiński graphs, it does not help us, for example, to determine the Wiener
index of a graph. The latter can be computed quite easily with the canonical metric represen-
tation of a graph, if the corresponding quotient graphs are (much) smaller than the original
graph, cf. [33, Chapter 14]. We will therefore study induced embeddings of Sierpiński graphs
into Hamming graphs in the following section.

4.3 Hamming dimension

Since isometric embeddings of Sierpiński graphs from the previous section did not provide us
with much new information about the structure of Sierpiński graphs, we now introduce the
Hamming dimension of a graph and later study it on Sierpiński graphs.

Definition 4.15. Let G be a graph. The Hamming dimension, Hdim(G), of G is the largest dimen-
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sion of a Hamming graph into which G embeds as an irredundant induced subgraph. If G is not an
induced subgraph of any Hamming graph we set Hdim(G) =∞.

Clearly, Hdim(G) = 1 if and only if G is a complete graph. To picture the Hamming dimen-
sion better, let us list further examples for some other known families of graphs. For a path on
n vertices, Hdim(Pn) = n − 1. Another nice example are star graphs where Hdim(K1,n) =

n. But there are also graphs for which there is no irredundant embedding into Hamming
graphs. Such graphs are for example the wheels Wn and “almost complete graphs” K−n , so
Hdim(Wn) = Hdim(K−n ) =∞.

To determine the Hamming dimension of a graph, the theory of induced embeddings into
Hamming graphs, which was developed in [43], is very useful. Let G be a graph and let F =

{F1, F2, . . . , Fρ} be a partition of E(G). Such a partition naturally yields the corresponding
labeling (of the edge set) L : E(G) → {1, 2, . . . , ρ} by setting L(e) = i for e ∈ Fi. We say that a
labeling is nontrivial if ρ > 1. Further, we introduce two conditions for a labeling:

Condition A. An edge labeling of a graph G fulfills Condition A, if for any triangle of G, its edges have
the same label.

Condition B. An edge labeling of a graph G fulfills Condition B, if for any vertices u and v of G at
distance at least two, there exist different labels i and j which both appear on any induced u, v-path. (An
induced path in our case is an induced subgraph X of G isomorphic to a path graph.)

Conditions A and B are helpful tools for studying Hamming dimension because of the fol-
lowing result of Klavžar and Peterin [43] (expressed in the terms of the Hamming dimension):

Theorem 4.16. [43, Theorem 3.3] If G is a connected graph, then Hdim(G) <∞ if and only if there
exists a labeling of edges of G that fulfills Conditions A and B.

The proof of Theorem 4.16 provides us with an approach on getting an induced embedding
of a graph G into a Hamming graph when we have a labeling of G that satisfies Conditions
A and B. We form a partition F = {F1, . . . , Fρ} of the set E(G), where Fi is the set of edges
with label i ∈ [ρ]. For each partition set Fi we form the quotient graph G/Fi, and denote by
ψi : V (G)→ V (G/Fi) the natural projection (i.e., ψi maps u ∈ V (G) to the component of G \Fi
to which it belongs). Then

ψ = (ψ1, . . . , ψp) : V (G)→ V (G/F1� · · · �G/Fρ) (4.1)

is an induced embedding of G. Moreover, by adding edges to each factor G/Fi to make it
complete, the embedding ψ is still induced. So ψ is actually an induced embedding of G into
a Hamming graph. In addition, ψ(G) is an irredundant subgraph of G/F1� · · · �G/Fρ and
thus also an irredundant subgraph of a ρ-dimensional Hamming graph.

The following additional properties of a labeling that fulfills Condition B will be helpful.
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Lemma 4.17. [43, Lemmas 3.1 and 3.2] If G is a graph with a labeling of its edges that fulfills Condi-
tion B, then

(i) in an induced cycle of length at least 3, every label must appear at least twice, and
(ii) if every induced path between two vertices contains two distinct labels i and j, then every path

between these two vertices contains these two labels.

In addition, it is easy to see that if a maximal part of an induced cycle C is labeled alterna-
tively with labels i and j, then i and j must also exist on the other part of C. In particular, if we
have the sequence iji on C, then i appears at least once more on C.

Every Snp can be embedded in a Hamming graph with two factors with the following label-
ing.

Definition 4.18. Let n, p ∈ N, p ≥ 3 and let a, b ∈ N0 be distinct. To obtain the (a|b)-labeling of Snp
we label its every clique edge with label a and its every non-clique edge with b.

Clearly, an (a|b)-labeling fulfills Condition A, since all the edges of a complete subgraph are
labeled with a. Moreover, by the construction of Sierpiński graphs, no two non-clique edges
are adjacent, thus Condition B holds as well. This tells us that

2 ≤ Hdim(Snp ) <∞ , (4.2)

therefore it makes sense to study the Hamming dimension of Sierpiński graphs.

4.3.1 Embeddings into products of Sierpiński triangle graphs

By defining a special labeling of Sierpiński graphs, the Sierpiński triangle labeling, we can embed
these graphs into Cartesian products of Sierpiński triangle graphs. The labeling is defined as
follows:

Definition 4.19. Let n, p ∈ N and p ≥ 3. The Sierpiński triangle labeling of Snp is defined induc-
tively. We label the edges of S1

p with label 1. Assuming Sn−1p has already been labeled, we label every
subgraph iSn−1p , i ∈ [p]0, of Snp in the same manner as Sn−1p . Finally, we label the remaining edges e(n)ij

with label n.

By the above definition it is obvious that the Sierpiński triangle labeling of Snp uses n labels.
An example is presented in Figure 4.7 on S4

3 . By applying the Sierpiński triangle labeling to the
graph S2

p we get the (1|2)-labeling (defined in Definition 4.18 for a = 1 and b = 2). This can also
be seen in Figure 4.7 by looking at any subgraph isomorphic to S2

3 , for example 02S2
3 .

Lemma 4.20. If n, p ∈ N and p ≥ 3, then the Sierpiński triangle labeling of Snp fulfills Conditions A
and B.



70 Embeddings

4

4

4

3

3

3

1

1 1

2

2

2

1

1 1

2

2

2
1

1 1

2

2

2

3

3

3

1

1 1

2

2

2

1

1 1

2

2

2
1

1 1

2

2

2

3

3

3

1

1 1

2

2

2

1

1 1

2

2

2
1

1 1

2

2

2

Figure 4.7: The Sierpiński triangle labeling of S4
3

Proof. Let p ≥ 3 be a fixed integer. By Proposition 2.29 the only maximal cliques (with respect to
inclusion) in Snp are K2 and Kp

∼= S1
p , so the triangles occur only in subgraphs sS1

p , s ∈ [p]n−10 of
Snp . These subgraphs are by Definition 4.19 labeled with the same label, therefore the Sierpiński
triangle labeling fulfills Condition A.

To show that the labeling also fulfills Condition B, we take two non-adjacent vertices u, v of
Snp and a shortest u, v-path P . Note first that on any path in Snp of length at least two there is
an edge with label 1, and even more, every other label on an induced path in Snp of length at
least two is also 1. Denote the largest label on P by `. Then ` > 1, otherwise u and v would be
adjacent. By the construction of Sierpiński triangle labeling, vertices u and v lie in a common
subgraph sS`p, s ∈ [p]n−`0 of Snp , but in different subgraphs of sS`p that are isomorphic to S`−1p .
Therefore any induced u, v-path must also contain label `, so the labeling fulfills Condition B.
�

Combining the theory of induced embeddings discussed before with the Sierpiński triangle
labeling, we can embed a Sierpiński graph Snp into a product of Sierpiński triangle graphs.

Theorem 4.21. If n, p ∈ N and p ≥ 3, then there exists an induced embedding

Snp → STn−1p �STn−2p � · · · �ST 0
p .
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Proof. Let p ≥ 3 be a fixed integer. Since by Lemma 4.20 the Sierpiński triangle labeling of
Snp fulfills Conditions A and B, it remains to show that this labeling leads to the above-stated
embedding. Let Fi, i ∈ [n]0, be the set of edges of Snp labeled with n− i in the Sierpiński triangle
labeling of Snp . We are going to prove that for any n ≥ 1 and for any i ∈ [n]0, Snp /Fi ∼= ST ip.

We proceed by induction on n. For n = 1, S1
p
∼= Kp and all of its edges are labeled with

1. Hence S1
p/F0

∼= Kp
∼= ST 0

p . Suppose that the assertion of the theorem holds for n ≥ 1, and
consider Sn+1

p . Since F0 = {e(n+1)
ij | i, j ∈ [p]0, i 6= j} we infer that Sn+1

p /F0
∼= Kp

∼= ST 0
p . Next

let i ≥ 1. Then each edge of Fi lies in some subgraph jSnp , j ∈ [p]0. Let jFi be the restriction
of Fi to jSnp , and note that by Definition 4.19 jFi coincides with Fi−1 in Snp . Hence, by the
induction hypothesis, it follows that jSnp /jFi ∼= ST i−1p . But then Sn+1

p /Fi ∼= ST ip by the way the
Sierpiński triangle graphs are constructed (see for instance Definition 1.5). �

This gives us another lower bound on Hdim(Snp ), namely Hdim(Snp ) ≥ n, which is much
better than (4.2). For p = 3 we will improve it even further in the next subsection.

4.3.2 A lower bound on Hdim(Sn3 )

In this subsection we derive a better lower bound for the Hamming dimension of base-3-
Sierpiński graphs. To do this, we introduce a labeling with a very large number of labels.
Because of the way we define the labeling, we also think it has a maximal possible number of
labels among all labelings of Sn3 that fulfill Conditions A and B, yet we are still not able to find
an appropriate proof for this.

In a way similar to the construction of the Sierpiński triangle labeling, we build a labeling
of Snp with a large number of labels. It is done inductively, so we take a labeling of Sn−1p with as
many different labels as possible and label each subgraph iSn−1p , i ∈ T with the same pattern
as Sn−13 , but so that for any distinct i, j ∈ T , iSn−13 and jSn−13 use different labels. No matter
how we label the edges e(n)ij , by Lemma 4.17 (for n ≥ 3) this labeling does not fulfill Condition

B, because on the cycle C(n)
ij` some labels appear only once. Therefore we need to merge these

labels. More precisely, we have to merge labels that appear only once on the path 0P
(n−1)
12 , only

once on 1P
(n−1)
02 , and only once on 2P

(n−1)
01 with the exception of 0e

(n−1)
12 , 1e

(n−1)
02 , and 2e

(n−1)
01 ,

respectively. For a proper description of merging we require the notation of oriented (sub)paths.
If we say that a path P (n)

ij in Sn3 is oriented, we mean it has a beginning, in this case the extreme
vertex in, and an ending, jn.

Definition 4.22. Let n ∈ N and n ≥ 2. The merging labeling of Sn3 is defined inductively. For n = 2

and {i, j, k} = T we label every edge of the triangle iS1
3 and the edge e(2)jk with label i. Assuming Sn−13

has already been labeled with the merging labeling, we label every subgraph iSn−13 with the same pattern
as Sn−13 , but so that for any distinct i, j ∈ T , iSn−13 and jSn−13 use different labels. In addition, we
label the edges e(n)01 , e(n)12 , and e(n)02 with the same labels as 2e

(n−1)
01 , 0e

(n−1)
12 , and 1e

(n−1)
02 , respectively.
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Consider the pairs of oriented subpaths of C(n)
012:

[01P
(n−2)
12 , 21P

(n−2)
10 ];

[02P
(n−2)
12 , 12P

(n−2)
02 ]; and

[20P
(n−2)
01 , 10P

(n−2)
02 ].

Now traverse 01P
(n−2)
12 and 21P

(n−2)
10 in parallel. As soon as a label `0 appears on 01P

(n−2)
12 that appears

only once on 0P
(n−1)
12 , merge it with the corresponding label `2 of 21P

(n−2)
10 . (Note that `2 also appears

only once on 2P
(n−1)
10 by construction and symmetry.) More precisely, merging means we replace every

such label `2 in Sn3 with `0. Do the same procedure for the remaining two pairs of paths.

It is easy to see that the merging labeling of S2
3 coincides with its Θ∗- classes. Indeed, they

both induce the same partition of the edge set of S2
3 . Another example of a merging labeling

is shown in Figure 4.8 for S3
3 . Here labels 3 and 5 are merged into 3, labels 6 and 8 into 6, and

labels 2 and 9 into 2. In the right copy of S3
3 we replace label 7 with label 5, since it was not

used in the middle copy of S3
3 . Doing so it becomes obvious that the merging labeling of S3

3

uses 6 labels. Note that the label in a triangle refers to all three edges of the triangle.

1
3 2

2 3
7 41

6 8
5 4 7 9

4 5 9 7
6 1 8

1
3 2

2 3
7 41

6 6
3 4 7 2

4 3 2 7
6 1 6

1
3 2

2 3
5 41

6 6
3 4 5 2

4 3 2 5
6 1 6

Figure 4.8: A pre-merging (left) and merging labelings of S3
3 (middle, right)

Proposition 4.23. If n ∈ N and n ≥ 2, then a merging labeling of Sn3 fulfills Conditions A and B.

Proof. Edges that form a triangle are labeled with the same label, hence Condition A is fulfilled.
Condition B is fulfilled on S2

3 , cf. 0S2
3 in Figure 4.8. Let now n > 2 and let u, v be vertices of Sn3

with d(u, v) ≥ 2. Let d be the smallest index such that both u and v are in sSn−d3 , s ∈ T d. Then
d < n− 1, since d(u, v) ≥ 2. Let u ∈ siSn−d−13 , v ∈ sjSn−d−13 , and let {i, j, k} = T .

Let P be a shortest u, v-path. Suppose first that P contains the edges se(n−d)ik and se
(n−d)
jk .

Then the labels of these two edges are on any induced u, v-path because of the way the merging
labeling is constructed. In the other case, P contains a unique edge of the form e = se

(n−d)
h1h2

,

namely the edge se(n−d)ij . By the same argument its label appears on every induced u, v-path.
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Since d(u, v) ≥ 2, the edge e has at least one adjacent edge on P , say f . We may assume
without loss of generality that f ∈ sjSn−d−13 . Then the label of f appears also on the triangle of
skSn−d−13 that is incident with the edge se(n−d)ik . Again by construction, the label of f appears
on any induced u, v-path. So we found two labels that appear on any induced u, v-path, and
the proof is hereby complete. �

Obviously a merging labeling of Snp uses many more labels than both of the labelings we
have defined before (see Definitions 4.18 and 4.19). This induces smaller factors of the Ham-
ming graphs into which we embed. For example, consider the graph S3

3 and the Sierpiński
triangle labeling (cf. subgraph 0S3

3 in Figure 4.7) and its merging labeling from Figure 4.8. The
first one gives us an induced embedding intoK15�K6�K3, while the merging labeling yields
an induced embedding into K6

3 .

Before we continue, we present a more elaborated merging labeling of S5
3 in Figure 4.9.

We will refer to this labeling in the subsequent arguments. Note that in 02S3
3 we use labels 1

to 6, which is a labeling obtained from the right labeling from Figure 4.8 by replacing label 7
with label 5. Note also that the labeling of the upper subgraph 0S4

3 coincides with the merging
labeling of S4

3 .

Lemma 4.24. If n ∈ N, n ≥ 2 and Sn3 is labeled with a merging labeling, then every label of a non-clique
edge in P (n)

ij \ {e
(n)
ij }, where i, j ∈ T are distinct, appears exactly twice on P (n)

ij \ {e
(n)
ij }.

Proof. There is nothing to be proved for n = 2. By Theorem 2.28 we may restrict ourselves to
P

(n)
12 . Note that the labels of the edges 1e

(n−1)
12 and 2e

(n−1)
12 are merged in Sn3 and have thus the

same label. Hence every label of a non-clique edge of P (n)
12 other than the label of e(n)12 appears

at least twice on P (n)
12 by induction.

It remains to prove that no non-clique edge appears more than twice. This clearly holds for
n = 3, 4, cf. Figures 4.8 and 4.9. Let now n ≥ 5. Note first that the assertion holds for the label
of 1e

(n−1)
12 and 2e

(n−1)
12 . Indeed, their labels were unique on 1P

(n−1)
12 and 2P

(n−1)
12 , respectively,

and were subsequently merged in the last step of the construction of the merging labeling. The
label of the edges 12e

(n−2)
12 and 12e

(n−2)
12 (which is the same) appears only once on 1P

(n−1)
02 and

is also merged in the last step of merging in Sn3 . But this label appears on 12P
(n−2)
02 and is

merged with a label from 02P
(n−1)
12 . In other words, this label does not appear in 2Sn−13 and

consequently not on 2P
(n−1)
12 . By symmetry, the assertion also holds for the label of 21e

(n−2)
12

and 22e
(n−2)
12 .

Next we show that the label ` of the non-clique edges 13e
(n−3)
12 and 122e

(n−3)
12 appears twice

on 1P
(n−1)
02 and is not merged in the last step of merging in Sn3 . Clearly ` appears once on

122P
(n−3)
02 (on the edge incident with 1220n−3) and was in 1Sn−13 merged with the label of the

edge in 102P
(n−3)
12 incident with 1021n−3. This label is present in 10Sn−23 also on the edges

102e
(n−3)
02 and 102e

(n−3)
02 , which are both in 1P

(n−1)
02 .
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1
3 2

2 3
5 41

6 6
3 4 5 2

4 3 2 5
8 6 1 6 7

11 11
9 10 12 9

9 910 12
11 115 7 8 4

2 2 3 3
9 7 5 10 12 4 8 9

7 9 5 4 9 810 12
22 132 11 2 1 3 11 3

14 14
18 15 27 25

15 18 25 27

14 1417 21 26 17

16 16 16 16
18 21 17 15 27 17 26 25

21 27 25 2618 15 17 17
8 13 22 716 14 16 16 14 16

4 4 5 5
19 20 12 19 24 10 23 24

19 19 12 1020 24 24 23

4 4 5 517 13 8 21 26 7 22 17

15 15 18 18 25 25 27 27

19 13 17 20 12 21 8 19 24 7 26 10 23 17 22 24

8 713 19 17 12 19 10 1720 21 24 26 23 24 22

15 4 15 14 18 4 18 1 25 5 25 14 27 5 27

Figure 4.9: A merging labeling of S5
3

Similarly, the label `′ of the edges 121e
(n−3)
12 and 122e

(n−3)
12 appears twice on 1P

(n−1)
02 and is

not merged in Sn3 . Clearly `′ appears once on 1P
(n−1)
02 , since it is in the triangle 1220n−4S1

3 (in
122Sn−33 ). But `′ is also in the triangle 1210n−4S1

3 (in 121Sn−33 ). Hence it was merged in 1Sn−13

with the label of the triangle 1012n−4S1
3 (in 101Sn−33 ). But this was again merged in 10Sn−23

with the label of the triangle 1002n−4S1
3 , which lies on 1P

(n−1)
02 . So `′ appears twice on 1P

(n−1)
02

and is thus not merged in the last step of merging in Sn3 .

For the labels of P (n)
12 in 2Sn−13 we proceed analogously, since they are symmetric to the
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edges in the previous two paragraphs. Finally, for all the other non-clique edges of P (n)
12 the

assertion follows by induction, so the proof is complete. �

Since merging labeling fulfills Conditions A and B, we are now able to determine some
exact values of the Hamming dimension of base-3-Sierpiński graphs.

Proposition 4.25. Hdim(S2
3) = 3, Hdim(S3

3) = 6.

Proof. Merging labeling uses 3 and 6 labels for S2
3 and S3

3 , respectively. Thus

Hdim(S2
3) ≥ 3 , Hdim(S3

3) ≥ 6 .

The cycles C(2)
012 and C(3)

012 are isometric by Proposition 3.7 and therefore also induced in S2
3 and

S3
3 , respectively. By Lemma 4.17(i), every label on an induced cycle must appear at least twice

and since the length of C(2)
012 is 6 and the length of C(3)

012 is 12,

Hdim(S2
3) ≤ 3 , Hdim(S3

3) ≤ 6 ,

so the proposition is proved. �

To determine a better lower bound on Hdim(Sn3 ) we calculate the number of labels of a
merging labeling of Sn3 . Let bn be the number of labels different from 1 that appear on P

(n)
12

exactly once. In other words, bn is the number of labels of 0Sn3 that will be merged with some
other label in Sn+1

3 . (By construction of the merging labeling label 1 will not be merged, since
it appears on edges 0e

(n−1)
12 and e(n)12 .) Hence

bn = 2bn−1 − 2cn , (4.3)

where cn represents the number of labels that appear twice on P
(n)
12 for the first time. To de-

termine cn, Lemma 4.24 implies that we only need to find clique edges whose labels appear
twice on P (n)

12 for the first time and, moreover, one edge must be in 1Sn−13 and the second one
in 2Sn−13 . By the way merging is defined this can only happen if the first edge is in 122Sn−33 and
its label appears on both 122P

(n−2)
12 and 12P

(n−2)
02 exactly once. The label of such an edge is then

merged with the label of some edge in 102Sn−33 that again appears on 10P
(n−2)
12 and 10P

(n−2)
02

exactly once. The edge in 10P
(n−2)
02 is then on C(n)

012 and its label is merged with the label of an
edge in 201Sn−33 that appears on 20P

(n−2)
12 and 20P

(n−2)
12 exactly once by symmetry. Finally, this

was merged with a label in 221Sn−33 that again appears only once on 22P
(n−2)
12 and 22P

(n−2)
12 .

Looking at Figure 4.9 we infer that c4 = 1 (label 9) and c5 = 1 (label 17).

To determine cn completely we need to observe clique edges on 122P
(n−3)
12 . For this sake we

define even and odd clique edges of P (n)
12 . Let T1, T2, . . . , T2n−1 be consecutive triangles with

edges in P
(n)
12 , for example T1 = 1n−1S1

3 and T2n−1 = 2n−1S1
3 . (In Figure 4.9, triangle T1 is

labeled with 13, and T16 with 22.) Then we say that a clique edge e ∈ Ti ∩ P (n)
12 is even if i is
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even; otherwise e is odd. Note that the label of an odd clique edge from 122P
(n−3)
12 appears twice

on 12P
(n−2)
02 . Hence it appears twice on 1C

(n−1)
012 and is not merged at this step. For this reason

we only need to consider even clique edges from 122P
(n−3)
12 . We will show by induction that

cn = n− 4 for n ≥ 5. For n = 5 there is only one such label, namely label 17 (cf. Figure 4.9). For
n > 5 every even clique edge of 1222P

(n−4)
12 in Sn3 has this property as well as the even clique

edge of T3·2n−5 . Hence cn = n− 4 for n ≥ 5.

By inserting the obtained outcome for cn into (4.3) we get

bn = 2bn−1 − 2n+ 8 for n ≥ 6 , and b5 = 10 ,

which yields
bn = 2n−3 + 2n− 4, n ≥ 5 .

Actually, this formula holds also for n = 4.

Let finally an, for n ≥ 4, be the number of labels in a merging labeling of Sn3 . Then

an = 3an−1 −
3

2
bn−1

= 3an−1 −
3

2
(2n−4 + 2n− 6) , a4 = 12 ,

since we merge six parts into three in pairs.

Clearly Hdim(Sn3 ) ≥ an, so the solution of the recurrence gives us:

Theorem 4.26. If n ∈ N and n ≥ 4, then

Hdim(Sn3 ) ≥ 7

4
· 3n−3 + 3 · 2n−4 +

3

2
n− 9

4
.

4.3.3 An upper bound on Hdim(Snp )

Finally, let us prove an upper bound on the Hamming dimension of Snp (for p ≥ 3). We first
establish an exact value for n = 2.

Proposition 4.27. If p ∈ N and p ≥ 4, Hdim(S2
p) = 2.

Proof. Let p ∈ N, p ≥ 4. We claim that the (1|2)-labeling of S2
p yields the unique induced

embedding of S2
p into a Hamming graph and this would imply Hdim(S2

p) = 2.

Since S2
p is not a complete graph we need at least two labels. By Condition A, all edges of

iS1
p , i ∈ [p]0, must receive the same label. By Condition B, every edge e(2)ij , for j 6= i, must have

a different label from the labels of iS1
p and jS1

p . If all subgraphs isomorphic to S1
p have the same

label, then all the non-clique edges of any cycle C(2)
ijk must have the same label, for otherwise

one label appears only once on C(2)
ijk . Since i, j, and k are arbitrary (but pairwise distinct), we

obtain the (1|2)-labeling.
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Suppose next that two subgraphs isomorphic to S1
p are labeled with 1 and that among the

others there is at least one labeled with 2. We may choose the notation so that 0S1
p and 1S1

p have
label 1 and 2S1

p label 2. Then by Condition B the edges e(2)01 , e(2)02 , and e
(2)
12 cannot have label 1.

Moreover, e(2)02 and e(2)12 cannot have label 2 for the same reason. But then e(2)01 must have label 2,
for otherwise we have a contradiction with Condition B in C(2)

012. Now consider vertices 02 and
12 to find the final contradiction with Condition B.

Assume finally that all the iS1
p , i ∈ [p]0, have different labels, say iS1

p has label i. To satisfy
Condition B, the edge e(2)01 of C(2)

012 must have label 2, e(2)02 label 1, and e
(2)
12 label 0. By the same

argument applied to C(2)
013, the edge e(2)01 must have label 3, a final contradiction. �

We are able to derive an upper bound on Hdim(Snp ) simply by using the recursive construc-
tion of Sierpiński graphs. It is obvious that

Hdim(Snp ) ≤ p ·Hdim(Sn−1p ) , n ≥ 3 .

With the initial conditions from Propositions 4.25 and 4.27, we get

Hdim(Snp ) ≤ 2 · pn−2, and Hdim(Sn3 ) ≤ 3n−1 .

But with a bit more work we can further improve this upper bound:

Theorem 4.28.

(i) Hdim(Sn3 ) ≤ 5 · 3n−3 + 1 (n ≥ 3) .

(ii) Hdim(Snp ) ≤ 2

p− 1
pn−2 +

2p− 4

p− 1
(p ≥ 4 and n ≥ 2) .

Proof. Labels that appear in more than one subgraph iSn−1p , i ∈ [p]0, of Snp will be called common
labels.

For a fixed p and n ≥ 3 let us examine a labeling of Snp that fulfills Conditions A and B
and uses Hdim(Snp ) labels. We know that such a labeling exists, for instance, the (1|2)-labeling
fulfills the Conditions. Further on, iSn−1p , i ∈ [p]0, is isomorphic to Sn−1p , so the fixed labeling
has at most Hdim(Sn−1p ) different labels in each such subgraph. In addition, by Condition B,
there must be at least two labels in each iSn−1p that appear also in Snp \ iSn−1p . To see this,
consider two inner almost-extreme vertices ijn−1 and ikn−1 for pairwise distinct i, j, k ∈ [p]0

and the two induced ijn−1, ikn−1-paths in C
(n)
ijk . Then two labels of iP (n−1)

jk must also appear

on the other induced ijn−1, ikn−1-path (in C(n)
ijk ). Consequently we get

Hdim(Snp ) ≤ p(Hdim(Sn−1p )− 2) + αn ,

where αn denotes the maximum number of common labels in the labeling under consideration.
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Setting
an = p(an−1 − 2) + αn ,

we have Hdim(Snp ) ≤ an for the same initial conditions. By Propositions 4.25 and 4.27, the
initial conditions are Hdim(S3

3) = 6 and Hdim(S2
p) = 2, for p ≥ 4.

We now derive αn. Consider iSn−1p and C
(n)
ijk . As before, take the inner almost-extreme

vertices ijn−1 and ikn−1 for pairwise distinct i, j, k ∈ [p]0. Applying Condition B to the cycle
Cijk shows that we need (at least) two labels of iSn−1p on the other part of C(n)

ijk . Hence for
every i ∈ [p]0 there are at most an−1 − 2 labels that appear only in iSn−1p . First we assume that
the maximum number of labels is attained when we have an−1 − 2 different labels in every
iSn−1p . Moreover, these two labels cannot be on e(n)ij or e(n)ik , for otherwise we can include these

two edges and consider the vertices jin−1 and kin−1. Thus we have 6 positions on C
(n)
ijk for

new labels in iSn−1p (new in the sense that the labels did not appear in iSn−1p before merging),
jSn−1p , and kSn−1p , and additional 3 edges e(n)ij , e(n)ik and e

(n)
jk – altogether 9 positions. By the

above argument, each position in iSn−1p , jSn−1p , and kSn−1p can contain more than one edge
but all such edges can be viewed just as one. But then in C

(n)
ijk we may have at most 4 =

⌊
9
2

⌋
common labels.

Suppose now that we can use 5 common labels. First we consider a longer path Pijk be-
tween ikn−1 and jkn−1 in Cijk for arbitrary pairwise distinct i, j, k ∈ [p]0. If every Cijk contains
at most two common labels, then Pijk clearly contains both labels. But then Pij` = Pijk for
every ` /∈ {i, j, k} and every Cij` contains these two labels. This is a contradiction since we
have used 5 common labels. Next suppose that every Cijk contains at most 3 common labels. If
Pikj contains only two of these labels, then both Pijk and Pjki contain all three of them. Again
Pij` = Pijk for every ` /∈ {i, j, k} and every Cij` contains these three labels – a contradiction.
Next suppose that Cijk contains 4 common labels. If Pijk contains only three common labels,
we have only four positions in Cijk − Pijk and one label, say 4, is present only on Cijk \ Pijk.
By the above, both e

(n)
ik and e

(n)
jk must have label 4. The label of e(n)ij , say 3, must be in pSn−1p

together with a common label 2. Label 2 must also be in one of iSn−1p or jSn−1p . We may assume
that it is in iSn−1p (together with label 1). Hence Pikj contains 4 common labels. If label 5 exists
in `Sn−1p , ` /∈ {i, j, k}, then Cik` contains 5 common labels which is not possible.

Let e(n)h` have label 5. If h ∈ {i, k} (or by symmetry ` ∈ {i, k}) then Cik` (or Cikh) contains
5 common labels again. If finally h, ` /∈ {i, j, k}, either e(n)hi or e(n)`i has label 5, which is not
possible. Thus αn ≤ 4, hence

an ≤ p(an−1 − 2) + 4 , a3 = 4 .

Solving the recurrence yields the result. �
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A direct consequence of the above theorem gives us another exact value on Hamming di-
mension.

Corollary 4.29. If p ∈ N and p ≥ 4, then Hdim(S3
p) = 4.

Proof. By Theorem 4.28, Hdim(S3
p) ≤ 4. A 4-labeling of S3

p that satisfies Conditions A and B
can be constructed as follows. Use the (1|2)-, (2|3)-, (3|4)-, and (4|1)-labelings on 0S2

p , 1S2
p , 2S2

p ,
and 3S2

p , respectively. Label the edges e(3)01 , e(3)12 , e(3)23 , and e
(3)
03 with 4, 1, 2, and 3, respectively.

Next, we may choose labels 2 or 4 for the edge e(3)02 and labels 1 or 3 for the edge e(3)13 . Finally, for
every i ∈ [p]0 \ [4]0 use the (1|3)-labeling on iS2

p , label edges e(3)i0 and e(3)i1 with 4, edges e(3)i2 and
e
(3)
i3 with 2, and all the other edges e(3)ij , j ∈ [p]0 \ [4]0, i 6= j, with 2. For this labeling, Condition

A clearly holds. Moreover, a direct check of labels on cycles C(3)
ijk shows that Condition B is

fulfilled as well. �

Note that in Theorem 4.28 equality holds for S2
p and S3

p , p ≥ 4. The upper bound (ii) is also
exact for S4

4 . Indeed, the bound is 12 and two different appropriate labelings of S4
4 are shown

in Figure 4.10.

We have already proven that Hdim(S3
p) = 4 for p ≥ 4. Actually, we are able to find an

induced embedding of S3
p , p ≥ 4, into the 2-, 3-, or 4-dimensional Hamming graphs.

Proposition 4.30. If p ∈ N and p ≥ 4, then there exists an induced embedding of S3
p into a Hamming

graph with τ factors if and only if 2 ≤ τ ≤ 4.

This is clear because the (1|2)-labeling and the Sierpiński triangle labeling of S3
p give in-

duced embeddings into a Hamming graph with 2 and 3 factors, respectively. While the (1|2)-
labeling of S3

p is unique, the 4-labeling from the proof of Theorem 4.28 is not. Namely, if we
change the labeling (2|3) of 1S2

p into (3|2) (e(3)13 must have label 1 in this case), we obtain a
labeling that still satisfies Conditions A and B, but gives a different embedding.
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4(4) 12(12) 7(9)

1(1) 1(1) 1(1) 1(1) 1(3) 1(3) 1(3) 1(3)

3 (3) 2 (2) 8 (10) 11 (11)

1(1) 1(1) 1(1) 1(1) 1(3) 1(3) 1(3) 1(3)

4(4) 3(3) 11(11) 7(9)
4 (4) 2 (2) 8 (10) 7 (9)

1(1) 1(1) 3(3) 3(3) 11(11) 11(11) 1(3) 1(3)

2 (2) 2 (2) 8 (10) 8 (10)

1(1) 1(1) 3(3) 3(3) 11(11) 11(11) 1(3) 1(3)

2(2) 8(10)12(1) 3(3)
12 (11) 11 (1)

9(6) 6(8)

1(12) 1(12) 11(1) 11(1) 11(12) 11(12) 3(11) 3(11)

9 (6) 9 (6) 6 (8) 6 (8)

1(12) 1(12) 11(1) 11(1) 11(12) 11(12) 3(11) 3(11)

11(1) 10(5) 11(7) 5(12)
10 (5) 9 (6) 6 (8) 5 (7)

1(12) 1(12) 1(12) 1(12) 3(11) 3(11) 3(11) 3(11)

11 (1) 9 (6) 6 (8) 11 (12)

1(12) 1(12) 1(12) 1(12) 3(11) 3(11) 3(11) 3(11)

10(5) 11(3) 5(7)

Figure 4.10: Two labelings of S4
4



Chapter 5

Future research topics

During our research we came across some problems that remain to be solved. The most inter-
esting we will present in this chapter.

In Section 3.3 we determined the metric dimension of Sierpiński graphs. Later on we stud-
ied some other dimensions related to metric properties. Among them was the Wiener dimen-
sion of a graph, introduced in [1]. Suppose that {dG(u) | u ∈ V (G)} = {δ1, . . . , δk}. Then the
Wiener dimension, dimW (G), of G is k. In other words, the Wiener dimension of G is the num-
ber of different (total) distances of vertices of G. For some initial cases of Sierpiński graphs one
may easily derive their Wiener dimensions with the help of a computer. The obtained values
are presented in the table below.

p \ n 2 3 4 5 6 7 8 9 10

2 2 4 8 16 32 64 128 256 512
3 2 4 13 40 120 356 1084 3268 9832
4 2 5 15 50 187 715 2793 ? ?
5 2 5 15 52 201 854 ? ? ?
6 2 5 15 52 203 ? ? ? ?
7 2 5 15 52 203 ? ? ? ?

These results suggest the following proposition.

Proposition 5.1. If n, p ∈ N and p ≥ 2, then

dimW (S2
p) = 2 and dimW (Sn2 ) = 2n−1 .

Theorem 2.28 applied to n = 2 implies that the vertices of S2
p form only two orbits: one

consists of all extreme vertices and the other one of all almost-extreme vertices. This gives us
an upper bound dimW (S2

p) ≤ 2 for p ≥ 2. It is also not hard to see that d(i2) 6= d(ij) for i 6= j.
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Indeed,
dS2

p
(ij) = (p− 1) + (2p− 1) + (p− 2) · (2p+ dS1

p
(i)) = p(3p− 4) ,

and
dS2

p
(i2) = (p− 1) + (p− 1) · (2p+ dS1

p
(i)) = p(3p− 3) < p(3p− 4) = dS2

p
(ij) .

So the first assertion of Proposition 5.1 holds. The second assertion follows directly from the
fact that Sn2 ∼= P2n .

However, the problem to determine the Wiener dimension of a general Sierpiński graph Snp
still remains open:

Problem 5.2. Let n, p ∈ N and n, p ≥ 3. Determine the Wiener dimension of the Sierpiński graph Snp .

In Section 4.1 we have considered embeddings of Sierpiński graphs into Hanoi graphs. We
concluded the section with Corollary 4.6, which says that for all odd values of p, Sierpiński
graphs Snp are spanning subgraphs of the Cartesian product of complete graphs Kn

p . Since
this was a direct consequence of Theorem 4.5, we did not consider the cases when p is even.
However, this result can probably be proven for any value of p. Consider for example the case
p ≥ 2 and n = 2. Then the embedding is given by

ι2 : S2
p → K2

p , ι2(ij) = i(i+ j) ∈ [p]20 .

According to this we state the following conjecture:

Conjecture 5.3. If p ∈ N, then for any n ∈ N0, Snp is a spanning subgraph of the Hamming graph Kn
p .

While studying the Hamming dimension of Sierpiński graphs, we wanted to improve the
lower bound Hdim(Snp ) ≥ n for arbitrary p, but the construction of the merging labeling (Sec-
tion 4.3.2) was developed only for p = 3. It would be interesting to do something similar for
arbitrary p and generalize this approach.

Another interesting topic which arose when we were working on the classification of Sier-
piński-type graphs is regularization of Sierpiński triangle graphs. All but extreme vertices
have degree 2p − 2, the extreme vertices however are of degree p − 1. Thus a regularization
with an additional one-vertex graph (see Definition 1.7 for the corresponding regularization of
Snp ) would not make sense, but an analogue to Definition 1.9 would give us another family of
Sierpiński-like graphs. It would be interesting to investigate this family of graphs since some
other ideas related to Sierpiński and Sierpiński triangle graphs might come forward.
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graphs, Discrete Math. Theoret. Comput. Sci. 12 (2010) 63–74.

[5] P. CULL, L. MERRILL T. VAN, A Tale of Two Puzzles: Towers of Hanoi and Spin-Out, J. Inf. Process. 21

(2013) 378-392.

[6] D. D’ANGELI, A. DONNO, Weighted spanning trees on some self-similar graphs, Electron. J. Combin.

18 (2011) 191–236.

[7] G. DELLA VECCHIA, C. SANGES, A recursively scalable network VLSI implementation, Future Gener-

ation Comput. Syst. 4 (1988) 235–243.

[8] A. DONNO, D. IACONO, The Tutte polynomial of the Sierpiński and Hanoi graphs, Adv. Geom. 13 (2013)
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[9] P. DORBEC, S. KLAVŽAR, Generalized power domination: propagation radius and Sierpiński graphs, Acta
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[12] H.-Y. FU, {Pr}-free colorings of Sierpiński-like graphs, Ars Combin. 105 (2012) 513–524.

[13] H.-Y. FU, D. XIE, Equitable L(2, 1)-labelings of Sierpiński graphs, Australas. J. Combin. 46 (2010) 147–
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[18] S. GRAVIER, M. KOVŠE, M. MOLLARD, J. MONCEL, A. PARREAU, New results on variants of covering
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[61] A. M. TEGUIA, A. P. GODBOLE, Sierpiński gasket graphs and some of their properties, Australas. J.

Combin. 35 (2006) 181–192.

[62] E. TEUFL, S. WAGNER, Enumeration of matchings in families of self-similar graphs, Discrete Appl.

Math. 158 (2010) 1524–1535.

[63] E. TEUFL, S. WAGNER, Resistance scaling and the number of spannning trees in self-similar lattices, J.

Stat. Phys. 142 (2011) 879–897.

[64] W. T. TUTTE, Graph Theory, Cambridge University Press, Cambridge, 2001.



BIBLIOGRAPHY 87

[65] M. WALSH, The hub number of a graph, Int. J. Math. Comput. Sci. 1 (2006) 117–124.

[66] E. WEAVER, Gray codess and puzzles on iterated complete graphs, manuscript, Oregon State University,

2005.

[67] D. B. WEST, Introduction to Graph Theory, Second Edition, Prentice Hall, Inc., Upper Saddle

River, NJ, 2001.

[68] H. L. WIESENBERGER, Stochastische Eigenschaften von Hanoi- und Sierpiński-Graphen, Diploma The-
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Daljši slovenski povzetek

Grafi tipa Sierpińskega igrajo pomembno vlogo v teoriji grafov kot tudi v drugih vejah mate-
matike. Vsekakor niso pomembni samo v matematiki, saj se pojavljajo tudi v fiziki, psihologiji
in verjetno še kje. Vpeljala sta jih Klavžar in Milutinović leta 1997 [40] iz dveh razlogov. Prvi
so bile študije topoloških Lipscombovih prostorov (ki so lepo prikazane v [51]), drugi igra
Hanojskega stolpa. Slednji je za nas še najbolj zanimiv, saj graf Sierpińskega Snp predstavlja
različico prvotne igre Hanojskega stolpa, imenovano zamenjevalni Hanojski stolp.

Igra Hanojskega stolpa je sestavljena iz treh palic in n diskov, ki so po velikosti urejeni na
eni izmed palic. Cilj igre je prestaviti stolp diskov iz ene palice na drugo, tako da pri tem
upoštevamo božansko pravilo, ki zapoveduje, da ne smemo postaviti večjega diska na manjši
disk. Večji izziv predstavlja razširitev igre na p palic. Prvič se takšna razširitev originalnega
problema pojavi že leta 1908 v Dudeneyjevi knjigi [10], bolj podrobno pa sta se problema lotila
Frame [11] in Stewart [60], ki sta leta 1941 vsak zase objavila domnevni optimalni rešitvi za
najmanjše število potez. Optimalnost njunih rešitev, znana pod imenom Frame-Stewartova do-
mneva, še dandanes ni dokazana.

Pri zamenjevalnem Hanojskem stolpu imamo na voljo p palic in n diskov. Božansko pravilo
priredimo tako, da lahko v eni potezi premaknemo najmanjši disk ali pa, če imamo na vrhu ene
izmed palic sestavljen podstolp najmanjših δ − 1 diskov (torej diskov 1, . . . , δ − 1), zamenjamo
disk δ, ki leži na neki drugi palici, s celotnim podstolpom diskov 1, . . . , δ − 1.

Ravno ta povezava oziroma podobnost grafov Sierpińskega z igro Hanojskega stolpa je
eden poglavitnih razlogov, zakaj preučujemo njihove metrične lastnosti. To pa niso edine la-
stnosti, ki so jih preučevali na grafih Sierpińskega. Znanih je mnogo rezultatov, ki smo jih
povzeli v poglavju 2 in jih sedaj ne bomo posebej obravnavali.

V nadaljevanju se bomo najprej osredotočili na klasifikacijo grafov tipa Sierpińskega. Nato
si bomo ogledali nove rezultate o razdaljah v grafih Sierpińskega in zatem še njihove vložitve
v različne grafe. Za konec bomo predstavili zanimiv odprt problem, na katerega smo naleteli
med raziskovanjem različnih dimenzij grafov Sierpińskega.
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Uvod in klasifikacija

V tej doktorski disertaciji predpostavljamo, da so vsi grafi enostavni in povezani. Množico
prvih n naravnih števil, {1, . . . , n}, označujemo z [n] in podobno [n]0 := {0, . . . , n − 1}. Kadar
je n = 2 oziroma n = 3, govorimo o binarnih oziroma ternarnih številih. Te množice označimo
z B := [2]0 = {0, 1} in s T := [3]0 = {0, 1, 2}. Iversonov oklepaj predstavlja pretvorbo logičnih
vrednosti v vrednosti 0 ali 1, in sicer

[X] =

{
1 , če je X resnična izjava,
0 , če X ni resnična izjava.

Graf Sierpińskega Snp je graf na množici vozlišč [p]n0 = {0, . . . , p − 1}n, kjer sta vozlišči s =

sn . . . s1 in t = tn . . . t1 sosednji, če sta oblike s = ssδt
δ−1
δ , t = stδs

δ−1
δ za δ ∈ [n], s ∈ [p]n−δ0 in

sδ 6= tδ. Povezava {ssδtδ−1δ , stδs
δ−1
δ } predstavlja potezo pri zamenjevalnem Hanojskem stolpu.

Zamenjamo namreč disk δ, ki je na palici sδ, s podstolpom diskov 1, . . . , δ − 1, ki so na tδ.

Vozlišča oblike i . . . i = in imenujemo ekstremna vozlišča grafa Snp . Kasneje bomo videli, da
je pot med poljubnima ekstremnima vozliščema in in jn enolična, označimo jo s P (n)

ij . Struk-
turo grafov Sierpińskega lahko opišemo tudi rekurzivno. Začnemo z enim vozliščem (= S0

p ),
naredimo p kopij, ki jih povežemo v polni graf. To lahko ponovimo, ko gradimo graf Snp , le da
v tem primeru vzamemo p kopij grafa Sn−1p . Tako lahko množico povezav grafov Sierpińskega
zapišemo tudi rekurzivno:

E(S0
p) = ∅ ,

E(Snp ) = {{is, it} | i ∈ [p]0 , {s, t} ∈ E(Sn−1p )} ∪

{{ijn−1, jin−1} | i, j ∈ [p]0 , i 6= j} , n ∈ N .

Podgraf grafa Snp , katerega vozlišča imajo skupno predpono s ∈ [p]n−δ0 , δ ∈ [n+ 1]0, je izomor-
fen grafu Sδp in ga označimo z sSδp . Povezava med podgrafoma iSn−1p in jSn−1p je enolična
in jo označujemo z e(n)ij . Njeni krajišči sta vozlišči ijn−1 in jin−1. Vsa takšna vozlišča imenu-
jemo notranja skoraj ekstremna vozlišča. Analogno vpeljemo zunanja skoraj ekstremna vozlišča kot
sosednja vozlišča ekstremnih vozlišč. Primer teh vozlišč si lahko ogledamo na sliki 1.2, kjer so
ekstremna vozlišča grafa S3

5 obarvana sivo, zunanja skoraj ekstremna vozlišča rdeče in notranja
skoraj ekstremna vozlišča zeleno.

Pri vložitvah, ki jih bomo obravnavali kasneje, se bomo pogosto sklicevali na izometrične
cikleCij`, kjer so i, j, ` ∈ [p]0 paroma disjunktni. Ti cikli so sestavljeni iz poti iPj`, jPi` in `Pij ter
povezav e(n)ij , e(n)j` in e

(n)
i` . Potrebovali bomo še razdelitev povezav v grafu Sierpińskega. Vse

povezave, ki so vsebovane v eni izmed p-klik sS1
p , bomo imenovali klične povezave, preostale pa

neklične povezave. Za p = 2 so sicer vse povezave vsebovane v 2-klikah, ampak niso vse 2-klike
oblike sS1

2 .
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Eden pomembnejših rezultatov doktorske disertacije je klasifikacija grafov tipa Sierpińskega,
ki je prikazana na diagramu spodaj. Na vrhu diagrama lahko najdemo družine grafov Hanoj-
skega stolpa Hn

3 , grafov Sierpińskega Sn3 in grafov trikotnikov Sierpińskega STn3 . Ti predsta-
vljajo izvor (splošnih) grafov Sierpińskega, ki jih najdemo v sredini diagrama. Spodnja vrsta
diagrama predstavlja grafe, ki so podobni grafom Sierpińskega in jih izpeljemo iz njih kot re-
gularizacije (grafi +Snp in ++Snp ) ali pa so bili neodvisno vpeljani (grafiH(n) inWK(p, n)). Grafi
++STnp , ki se nahajajo skrajno desno spodaj v diagramu, še niso bili vpeljani in so ena izmed
motivacij za prihodnje raziskovanje. Grafe trikotnikov Sierpińskega lahko regulariziramo na
podoben način kot grafe Sierpińskega. Zanimivo bi bilo pogledati nekatere lastnosti teh grafov.

Grafi Sierpińskega Sn3
Grafi Hanojskega

stolpa Hn
3

Grafi trikotnikov
Sierpińskega STn3

Grafi Sierpińskega Snp

(Posplošeni)
grafi trikotnikov

Sierpińskega STnp

Grafi +Snp Grafi ++Snp

Grafi
++STnp , . . .

WK-rekurzivna
omrežja WK(p, n)

Grafi Schreierja H(n)

Metrične lastnosti

Oglejmo si nekatere osnovne definicije, potrebne za obravnavo metričnih lastnosti, in že znane
rezultate s tega področja za grafe Sierpińskega.

Razdalja med dvema vozliščema u in v grafaG je dolžina najkrajše u, v-poti in jo označujemo
z dG(u, v). Manj znana je (celotna) razdalja vozlišča u grafa G, ki je definirana kot vsota vseh
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razdalj do u:
dG(u) =

∑
v∈V (G)

dG(u, v) .

Za začetne primere grafov Sierpińskega ni težko določiti razdalje med poljubnima vo-
zliščema, saj so izomorfni polnim grafom. Že leta 1997, ko sta Klavžar in Milutinović vpeljala
družino grafov Sierpińskega [40], sta obravnavala razdalje v teh grafih. Podala sta ključno lemo
z eksplicitno formulo za izračun razdalje od poljubnega do ekstremnega vozlišča v grafu Snp :

Lema 1. [Lemma 3.1] Če je n ∈ N0 in p ∈ N, potem za poljuben j ∈ [p]0 in poljubno vozlišče
s = sn . . . s1 grafa Snp velja

d(s, jn) =
n∑
d=1

[sd 6= j] · 2d−1,

najkrajša pot med s in jn pa je enolična. V posebnem primeru, razdalja med poljubnima različnima
ekstremnima vozliščema in in jn znaša 2n − 1.

Ena izmed posledic leme 1 je določitev premera grafov Snp , kar je dokazal Parisse v svojem
članku o metričnih lastnostih grafov Sierpińskega [52].

Trditev 2. [Proposition 3.4] Če sta n ∈ N0, p ∈ N in p ≥ 2, potem je premer grafa Snp enak 2n − 1.

Prav tako iz leme 1 sledi, da razdalja med poljubnima vozliščema grafa Sierpińskega ni
odvisna od skupne predpone teh vozlišč. Natančneje:

Posledica 3. [Corollary 3.3] Če je n ∈ N0 in p ∈ N, potem za poljubni vozlišči js in jt grafa Sn+1
p

velja
dSn+1

p
(js, jt) = dSnp (s, t) .

Sedaj ko vemo, da so najkrajše poti do ekstremnih vozlišč enolične, lahko uporabimo to
dejstvo skupaj z rekurzivno strukturo grafov Sierpińskega za iskanje vseh možnih kandidatk
za najkrajšo pot med poljubnima vozliščema grafa Snp . Obstaja natanko p−1 takšnih kandidatk:

Definicija 4. Naj bosta n, p ∈ N in naj bosta i, j ∈ [p]0 različna. Nadalje naj bosta s = sis in t = sjt

vozlišči grafa Snp , za kateri sta s, t ∈ [p]δ−10 in je s ∈ [p]n−δ0 za δ ∈ [n]. Potem definiramo

di(sis, sjt) = dj(sis, sjt) = dSn−1
p

(s, jδ−1) + 1 + dSn−1
p

(t, iδ−1) ,

∀` ∈ [p]0 \ {i, j} : d`(sis, sjt) = dSn−1
p

(s, `δ−1) + 1 + 2δ−1 + dSn−1
p

(t, `δ−1) .

Razdalji di(sis, sjt) in dj(sis, sjt) imenujemo direktni razdalji med s in t.

Navadno bomo uporabljali in navajali le eno od obeh direktnih razdalj, saj sta enaki. Direk-
tni razdalji pripadajočo s, t-pot imenujemo direktna s, t-pot. Očitno je najkrajša pot med poljub-
nim in ekstremnim vozliščem vedno direktna. Na sliki 3.1 si lahko ogledamo graf S4

4 , v katerega
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smo vrisali poti, ki ustrezajo razdaljam d`(0231, 2301) za ` ∈ [4]0. Direktna pot, t. j. pot, ki pri-
pada razdalji d0(0231, 2301) = d2(0231, 2301), je obarvana rdeče, pot za d1(0231, 2301) zeleno
in pot za d3(0231, 2301) modro. Očitno je najkrajša pot med vozliščema 0231 in 2301 direktna
pot in dS4

4
(0231, 2301) = 9.

Z zgornjo definicijo lahko navedemo rezultat za razdaljo med poljubnima vozliščema grafa
Sierpińskega.

Izrek 5. [Theorem 3.6] Naj bosta n ∈ N0 in p ∈ N. Če sta s = sis in t = sjt vozlišči grafa Snp , kjer
sta i, j ∈ [p]0 različna ter δ ∈ [n], s, t ∈ [p]δ−10 in s ∈ [p]n−δ0 , potem velja

dSnp (sis, sjt) = min
{
d`(sis, sjt) | ` ∈ [p]0

}
. (5.1)

Minimum (5.1) je lahko dosežen kvečjemu pri dveh razdaljah d`, ` ∈ [p]0 \ {i}, kar pomeni,
da sta med poljubnima vozliščema grafa Sierpińskega kvečjemu dve najkrajši poti, (glej [40,
Theorem 6] ali alternativni nedavni dokaz tega dejstva [26, Corollary 1.1]). Nadalje velja še, da
če imamo dve najkrajši poti med vozliščema, potem je ena izmed njiju direktna pot.

Poglavitni problem splošne formule za razdaljo med poljubnima vozliščema grafa Snp je, da
je enaka minimumu p − 1 vrednosti. Zato težimo k temu, da bi razdaljo izrazili z eksplicitno
formulo. Glede na to, da imamo eksplicitno formulo za razdaljo do ekstremnih vozlišč, smo se
lotili raziskovanja razdalj do skoraj ekstremnih vozlišč in izpeljali naslednjo formulo za zunanja
skoraj ekstremna vozlišča.

Trditev 6. [Proposition 3.14] Če sta n, p ∈ N in je jnk zunanje skoraj ekstremno vozlišče grafa Sn+1
p ,

potem lahko za poljuben i ∈ [p]0 \{j} razdaljo med poljubnim vozliščem is grafa Sn+1
p in vozliščem jnk

zapišemo kot
dSn+1

p
(is, jnk) = d(s, jn) + 2n − [i = k] .

S pomočjo dokaza te trditve lahko določimo tudi vsa tista vozlišča grafa Sn+1
p , ki imajo dve

najkrajši poti do zunanjega skoraj ekstremnega vozlišča jkn:

Trditev 7. [Proposition 3.16] Če sta n, p ∈ N in je jnk zunanje skoraj ekstremno vozlišče grafa Sn+1
p ,

potem obstajata dve najkrajši poti med poljubnim vozliščem s grafa Sn+1
p in vozliščem jnk natanko

tedaj, ko je s = jn−mikm za m ∈ [n] in i ∈ [p]0 \ {j, k}.

S pomočjo razdalje do zunanjih skoraj ekstremnih vozlišč grafa Snp (trditev 6) lahko izraču-
namo tudi razdaljo zunanjega skoraj ekstremnega vozlišča.

Izrek 8. [Theorem 3.20] Če sta n ∈ N0 in p ∈ N, potem za različna j, k ∈ [p]0, velja

dSn+1
p

(jnk) =
p− 1

p
(2p)n+1 −

(
1 +

1

p(p− 1)

)
pn+1 +

p

p− 1
.

Za dokaz tega izreka potrebujemo tudi razdalje ekstremnih vozlišč:
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Lema 9. [Lemma 3.19] Če sta n, p ∈ N, potem za poljuben i ∈ [p]0, velja

dSnp (in) = pn−1(p− 1) (2n − 1) .

Podobne rezultate, kot smo jih dokazali za zunanja skoraj ekstremna vozlišča, smo izpeljali
tudi za notranja skoraj ekstremna vozlišča. Dokazi so tukaj težavnejši, saj se ta vozlišča nahajajo
precej globlje v grafih kot zunanja skoraj ekstremna vozlišča. Slednja so sosednja ekstremnim
vozliščem, ki se nahajajo na skrajnem robu grafov Sierpińskega. Kljub temu nam je uspelo
izračunati razdaljo od poljubnega do notranjega skoraj ekstremnega vozlišča.

Da bi izrazili to razdaljo z eksplicitno formulo, potrebujemo definiciji za direktna in posebna
vozlišča. Vozlišče s je direktno za notranje skoraj ekstremno vozlišče jkn (v Sn+1

p ), če velja:
sd = k velja natanko tedaj, ko je d = n + 1, ali ko obstaja δ ∈ [n + 1] \ [d], tako da velja
sδ = j. Podobno je vozlišče s posebno za jkn (v Sn+1

p ), če obstaja tak δ ∈ [n], da je s = skjδ−1,
s ∈ ([p]0 \ {j, k})n+1−δ. Na sliki 3.4 so označena posebna (oranžna) in direktna (zelena) vozlišča
grafa S3

6 za vozlišče 144. Imena teh vozlišč smo izbrali zato, ker so direktna vozlišča za jnk
natanko tista vozlišča, za katera je direktna pot enolična najkrajša pot do jnk. Podobno so
posebna vozlišča za jnk natanko tista vozlišča, ki imajo dve najkrajši poti do jnk. Sedaj lahko
navedemo naslednji rezultat o razdalji do notranjega skoraj ekstremnega vozlišča.

Trditev 10. [Proposition 3.26] Če sta n, p ∈ N in je jkn notranje skoraj ekstremno vozlišče grafa Sn+1
p ,

potem lahko za poljuben i ∈ [p]0 \{j} razdaljo med poljubnim vozliščem is grafa Sn+1
p in vozliščem jkn

zapišemo kot

dSn+1
p

(is, jkn) =

{
d(s, jn) + 2n − [i = k](2n − 1), če je is direktno za jkn ,
d(s, kn) + 2n + 1, sicer .

S pomočjo tega rezultata lahko podobno kot prej izpeljemo razdaljo notranjega skoraj eks-
tremnega vozlišča.

Izrek 11. [Theorem 3.27] Če sta n ∈ N0 in p ∈ N, potem za poljubna različna j, k ∈ [p]0 velja

dSn+1
p

(jkn) =
p2 − 2

p(p+ 2)
(2p)n+1 − p− 2

2p
pn+1 − p

2(p+ 2)
(p− 2)n+1 .

K osnovnim metričnim lastnostim sodi tudi metrična dimenzija grafa. Ta je bila vpeljana
v letih 1974–1975. Neodvisno so jo vpeljali Harary in Melter [22] ter Slater [59]. Pred nekaj
leti sta Bailey in Cameron objavila članek [2], kjer lahko najdemo podrobno zgodovino razvoja
metrične dimenzije, prav tako pa tudi povezave te dimenzije z drugimi grafovskimi invarian-
tami. Drugi izčrpen pregledni članek na to temo sta napisala Goddard in Oellermann [14].

Preden se lotimo metrične dimenzije grafov Sierpińskega, si oglejmo potrebne osnovne
definicije. Podmnožica vozlišč R = {u1, . . . , uk} ⊆ V (G), k ∈ N, je resolventna množica (grafa
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G), če za poljubni različni vozlišči x, y grafa G velja(
d(x, u1), . . . , d(x, uk)

)
6=
(
d(y, u1), . . . , d(y, uk)

)
.

Metrična dimenzija grafaG, µ(G), je velikost najmanjše resolventne množice. Za grafe Sierpińskega
smo dokazali naslednji izrek.

Izrek 12. [Theorem 3.33] Če sta n ∈ N0 in p ∈ N, potem je

µ(Sn+1
p ) = p− 1 .

Še več, če je R najmanjša resolventna množica, potem za poljuben j ∈ [p]0 velja |R ∩ V (jSnp )| ≤ 1.

Drugi del izreka z drugimi besedami pove, da je v vsakem podgrafu jSnp grafa Sn+1
p kveč-

jemu eno vozlišče neke minimalne resolventne množice.

Dokaz tega izreka poteka konstruktivno. Najprej pokažemo, da je množica ekstremnih
vozlišč grafa Sn+1

p resolventna. Zatem dokažemo, da ta množica ostane resolventna tudi, če iz
nje odstranimo poljubno ekstremno vozlišče. Torej je množica

Rn+1
p−1 := {in+1 | i ∈ [p− 1]0}

resolventna za graf Sn+1
p . Za ugotovitev, da je Rn+1

p−1 tudi minimalna resolventna množica,
potrebujemo še direktno posledico trditve 6:

Posledica 13. [Corollary 3.32] Če sta n ∈ N0 in p ∈ N, potem za poljubne paroma disjunktne i, j, k ∈
[p]0 in za s ∈ [p]n0 velja

dSn+1
p

(is, jnk) = dSn+1
p

(is, jn+1) .

Vložitve

Pri obravnavanju vložitev bomo potrebovali nekatere definicije. Teoretično ozadje vložitev
lahko najdemo v knjigah [33] in [21]. Pogosto bomo obravnavali vložitve v grafovske produkte.
Kartezični produkt grafov G in H , G�H , je graf, definiran kot

V (G�H) = V (G)× V (H) ,

E(G�H) = {{(g, h), (g′, h′)} | g = g′, {h, h′} ∈ E(H) ali {g, g′} ∈ E(G), h = h′} .

Hammingovi grafi so definirani kot kartezični produkti polnih grafov. Hammingov graf z n

faktorji, izomorfnimi polnemu grafu Kp, označujemo s Kn
p . Vložitev grafa G v graf H je injek-

tivni homomorfizem, t. j. injektivna preslikava f : V (G) → V (H), za katero velja: če je {u, v}
povezava grafa G, potem je {f(u), f(v)} prav tako povezava grafa H . Slika f(G) grafa G glede
na vložitev f je graf, definiran kot V (f(G)) = f(V (G)) in E(f(G)) = {{f(u), f(v)} | {u, v} ∈
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E(G)}. Pripomnimo, da ni nujno vsaka praslika povezave grafaH s krajišči v množici f(V (G))

tudi povezava v f(G). Izometrična vložitev je vložitev, ki ohranja razdalje. Vložitev G →
H je inducirana, če je slika grafa G induciran podgraf grafa H . Očitno je vsaka izometrična
vložitev tudi inducirana, obrat ne velja. Na primer P3 je induciran podgraf grafa C5, ampak ni
izometričen v C5 (glej sliko 4.1).

Oglejmo si še definicijo kvocientnega grafa. Naj bo F = {F1, . . . , Fr} particija množice
povezav grafa G. Potem je kvocientni graf G/Fi, i ∈ [r], graf, katerega množica vozlišč so
povezane komponente grafa G \ Fi, kjer sta komponenti Ci in Cj sosednji (v G/Fi), če obstaja
povezava v grafu G, ki ima eno krajišče v Ci in drugo v Cj .

Vložitev grafa G v kartezični produkt grafov H =
k
�
i=1
Hi je neredundantna, če nima nobenih

odvečnih vozlišč in neuporabljenih faktorjev. To pomeni, da se vsako vozlišče faktorjev karte-
zičnega produkta pojavi kot koordinata v sliki vsaj enega vozlišča grafa G in v vsakem faktorju
imamo vsaj dve vozlišči. V tem primeru rečemo, da je G neredundantni podgraf grafa H .

Najprej si oglejmo vložitve grafov Sierpińskega v grafe Hanojskega stolpa. Vemo, da velja
Sn3
∼= Hn

3 , zato smo se vprašali, ali je mogoče posplošiti ta rezultat. Glede na grafe Snp imajo
grafi Hn

p za p > 3 precej več povezav med podgrafi, izomorfnimi Hn−1
p , zato izomorfizem teh

grafov ni več mogoč. Ker so definirani na isti množici vozlišč, smo se vprašali, ali so grafi
Sierpińskega podgrafi grafov Hanojskega stolpa. Tudi to ni vedno res:

Izrek 14. [Theorem 4.5] Če sta n, p ∈ N, potem lahko graf Snp vložimo v graf Hn
p natanko tedaj, ko je

p liho število ali n = 1.

Oglejmo si sedaj izometrične vložitve grafov Sierpińskega v kartezične produkte grafov.
Klasična teorija Grahama in Winklerja [15] pravi, da je takšna neredundantna vložitev poljub-
nega grafa G enolična, če zahtevamo, da ima kartezični produkt največje možno število fak-
torjev. Imenujemo jo kanonična metrična reprezentacija grafa G. Za opis vložitve potrebujemo
relacijo Θ: dve povezavi e = uv in f = xy grafa G sta v relaciji Θ natanko tedaj, ko velja

d(u, x) + d(v, y) 6= d(u, y) + d(v, x) .

Relacija Θ je refleksivna in simetrična, ne pa nujno tranzitivna. Da bi dobili ekvivalenčno
relacijo, tvorimo tranzitivno ovojnico relacije Θ in jo označimo s Θ∗. Particijo, ki jo dobimo
ob delovanju relacije Θ∗ na množico povezav grafa G, označimo z E = {E1, . . . , Eρ}. Potem
definiramo kanonično metrično reprezentacijo grafa G kot vložitev

α : V (G)→ V (G/E1)� · · · �V (G/Eρ) ,

α(v) = (α1(v), . . . , αρ(v)) ,

kjer je αi : V (G)→ V (G/Ei) naravna projekcija, ki preslika v ∈ V (G) v povezano komponento
grafa G/Ei, v kateri se v nahaja. Kanonična metrična reprezentacija je trivialna, če je ρ = 1. To
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pomeni, da povezave grafa G tvorijo en sam Θ∗-razred in imajo posledično tudi en sam faktor
v vložitvi.

Za večino grafov Sierpińskega je kanonična metrična reprezentacija trivialna:

Trditev 15. [Proposition 4.12] Če je p ∈ N in p ≥ 4, potem je za poljuben n ∈ N kanonična metrična
reprezentacija grafa Snp trivialna.

Preostaneta nam samo dve možnosti za netrivialno kanonično metrično reprezentacijo,
namreč p = 2 in p = 3. Graf Sn2 je izomorfen poti na 2n vozliščih. Za poti (in splošneje drevesa)
je znano, da vsaka povezava tvori svoj Θ∗-razred. Torej je kanonična metrična reprezentacija
grafa Sn2 izometrična vložitev v kocko Q2n−1. Za p = 3 definirajmo

Fni :=
{
{in, in−1j}, {in, in−1`}

}
∪
{
in−me

(m)
j` |m ∈ [n]

}
,

F̃n := E(Sn3 ) \ (Fn0 ∪ Fn1 ∪ Fn2 ) ,

kjer je {i, j, `} = T . Potem velja

Izrek 16. [Theorem 4.14] Če je n ∈ N in n ≥ 2, potem so Θ∗-razredi grafa Sn3 naslednji: Fn0 , Fn1 , Fn2
in F̃n.

Na sliki 4.4 so predstavljeni Θ∗-razredi grafov S2
3 in S3

3 , slika 4.5 pa prikazuje kvocientni
graf S4

3/F̃
4.

Čeprav ima graf Sn3 netrivialno kanonično metrično reprezentacijo, nam le-ta ne pomaga
veliko. Ima namreč samo štiri Θ∗-razrede, od katerih je F̃n skoraj tako velik kot graf Sn3 . To
je razlog za preučevanje (preostalih) induciranih vložitev grafov Sierpińskega. V ta namen
vpeljemo novo dimenzijo, imenovano Hammingova dimenzija, ki je največje število faktorjev
Hammingovega grafa, v katerega neredundantno in inducirano vložimo neki graf.

Definicija 17. Naj bo G graf. Hammingova dimenzija, Hdim(G), grafa G je maksimalna dimen-
zija Hammingovega grafa, v katerega vložimo G kot neredundanten induciran podgraf. Če graf G ni
induciran podgraf nobenega Hammingovega grafa, potem je Hdim(G) =∞.

Očitno je Hdim(G) = 1 natanko tedaj, ko je G poln graf. Da bi si lažje predstavljali Ham-
mingovo dimenzijo, si jo oglejmo na nekaterih znanih družinah grafov. Za pot na n vozliščih
je Hdim(Pn) = n− 1. Naslednji lep primer so zvezde, kjer velja Hdim(K1,n) = n. Vseh grafov
ne moremo inducirano vložiti v Hammingov graf. Dve takšni družini grafov so kolesa Wn in
“skoraj polni grafi” K−n . Za te grafe je Hdim(Wn) = Hdim(K−n ) =∞.

Za določanje oziroma ocenjevanje Hammingove dimenzije nekega grafa je zelo uporabna
teorija, ki sta jo Klavžar in Peterin razvila o induciranih podgrafih Hammingovih grafov [43].
V ta namen vpeljemo dva pogoja za označitve povezav:
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Pogoj A. Označitev (povezav) grafa G zadošča pogoju A, če za poljuben trikotnik grafa G velja, da
imajo njegove povezave isto oznako.

Pogoj B. Označitev (povezav) grafa G zadošča pogoju B, če za poljubni nesosednji vozlišči u in v grafa
G velja, da obstajata dve različni oznaki i in j, ki se pojavita na vsaki inducirani u, v-poti.

Pogoja A in B sta uporabni orodji za preučevanje Hammingove dimenzije, saj sta avtorja
v [43] dokazala naslednji izrek, ki ga bomo izrazili s Hammingovo dimenzijo.

Izrek 18. [Theorem 4.16] Če je G povezan graf, potem je Hdim(G) < ∞ natanko tedaj, ko obstaja
označitev povezav grafa G, ki zadošča pogojema A in B.

Dokaz izreka je konstruktiven. Zaenkrat omenimo samo to: če imamo označitev povezav
grafa G z ` različnimi oznakami, ki zadošča pogojema A in B, potem nam ta porodi vložitev
grafa G v Hammingov graf dimenzije `.

Graf Snp lahko vložimo v Hammingov graf dveh dimenzij s pomočjo (1|2)-označitve: vse
klične povezave grafa Snp označimo z 1, neklične pa z 2. Očitno takšna označitev zadošča
pogoju A, saj so vsi polni grafi označeni z 1. Pogoj B za to označitev pa sledi iz konstruk-
cije grafov Sierpińskega, saj poljubni dve neklični povezavi nista incidenčni. S tem dobimo
prve meje za Hammingovo dimenzijo grafov Snp

2 ≤ Hdim(Snp ) <∞ . (5.2)

To oceno bomo v nadaljevanju poskusili izboljšati.

Za začetek definirajmo še eno označitev. Označitev trikotnikov Sierpińskega grafa Snp kon-
struiramo induktivno. Povezave grafa S1

p označimo z 1. Sedaj predpostavimo, da je Sn−1p že
označen, in označimo povezave vsakega podgrafa iSn−1p , i ∈ [p]0, grafa Snp enako kot Sn−1p .
Preostalim povezavam e

(n)
ij damo oznako n. Velja naslednja lema.

Lema 19. [Lemma 4.20] Če sta n, p ∈ N in je p ≥ 3, potem označitev trikotnikov Sierpińskega grafa
Snp izpolnjuje pogoja A in B.

Primer te označitve lahko vidimo na sliki 4.7. S pomočjo te označitve lahko tudi opišemo
inducirano vložitev grafov Sierpińskega v kartezični produkt grafov trikotnikov Sierpińskega.

Izrek 20. [Theorem 4.21] Če sta n, p ∈ N in je p ≥ 3, potem obstaja inducirana vložitev

Snp → STn−1p �STn−2p � · · · �ST 0
p .

Očitno označitev trikotnikov Sierpińskega porabi n oznak, kar prejšnjo spodnjo mejo (5.2)
za Hammingovo dimenzijo precej izboljša. Za n = 3 bomo s posebno označitvijo to mejo
še izboljšali. Konstruiramo jo tako, da porabi čim več oznak, vendar pa kljub temu zadošča
pogojema A in B.
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Podobno kot pri označitvi trikotnikov Sierpińskega tudi združevalno označitev definiramo in-
duktivno. Za S2

3 uporabimo (1|2) označitev. Sedaj predpostavimo, da je graf Sn−13 že označen z
združevalno označitvijo. Potem vsak podgraf iSn−13 označimo na enak način kot Sn−13 , vendar
tako, da za poljubna različna i, j ∈ T iSn−13 in jSn−13 dobita popolnoma različne oznake. Pre-
ostalim povezavam e

(n)
01 , e(n)12 in e(n)02 dodelimo enake oznake, kot jih imajo njim nasproti ležeči

trikotniki 2e
(n−1)
01 , 0e

(n−1)
12 in 1e

(n−1)
02 . Na tem mestu naj pripomnimo, da takšna označitev ne bi

zadoščala pogoju B, saj se nekatere oznake na ciklu C(n)
012 pojavijo samo enkrat. Zato si oglejmo

naslednje usmerjene poti1 na ciklu C(n)
012:

[01P
(n−2)
12 , 21P

(n−2)
10 ];

[02P
(n−2)
12 , 12P

(n−2)
02 ];

[20P
(n−2)
01 , 10P

(n−2)
02 ].

Potujemo hkrati po poteh 01P
(n−2)
12 in 21P

(n−2)
10 . Brž ko na poti 01P

(n−2)
12 naletimo na oznako `0,

ki se pojavi samo enkrat na celotni poti 0P
(n−1)
12 , jo združimo s pripadajočo oznako `2 na poti

21P
(n−2)
10 . (Zaradi konstrukcije označitve in grafov Sierpińskega se oznaka `2 prav tako samo

enkrat pojavi na poti 2P
(n−1)
10 .) Združevanje oznak v tem primeru pomeni, da zamenjamo

vsakršno pojavitev oznake `2 v grafu Sn3 z oznako `0. Isti postopek naredimo za preostala dva
para poti.

S pomočjo združevalne označitve dobimo naslednjo spodnjo mejo za Hdim(Sn3 ):

Izrek 21. [Theorem 4.26] Če je n ∈ N in n ≥ 4, potem velja

Hdim(Sn3 ) ≥ 7

4
· 3n−3 + 3 · 2n−4 +

3

2
n− 9

4
.

Seveda moramo za uporabo združevalne označitve najprej dokazati, da zadošča pogojema
A in B. Dokaz ni trivialen in ga bomo tukaj izpustili. Prav tako bomo izpustili podrobnosti
izračuna števila oznak v združevalni označitvi Sn3 . Poteka namreč tako, da preštejemo, koliko
oznak združimo v posameznem koraku konstrukcije označitve.

S pomočjo združevalne označitve lahko določimo še naslednje natančne vrednosti Ham-
mingove dimenzije:

Trditev 22. [Proposition 4.25] Hdim(S2
3) = 3 in Hdim(S3

3) = 6.

Za konec omenimo še zgornjo mejo ter nekatere natančne vrednosti Hammingove dimen-
zije za poljuben p.

1Usmerjena pot je pot, ki ima začetno in končno vozlišče ter je vrstni red pomemben.
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Izrek 23. [Theorem 4.28]

(i) Hdim(Sn3 ) ≤ 5 · 3n−3 + 1 (n ≥ 3) .

(ii) Hdim(Snp ) ≤ 2

p− 1
pn−2 +

2p− 4

p− 1
(p ≥ 4 in n ≥ 2) .

Izrek dokažemo tako, da preštejemo, najmanj koliko oznak moramo združiti. S pomočjo te
meje pa lahko določimo še naslednje vrednosti Hammingove dimenzije za n = 2 in n = 3.

Trditev 24. [Proposition 4.27] Če je p ∈ N in p ≥ 4, potem velja

(i) Hdim(S2
p) = 2 .

(ii) Hdim(S3
p) = 4 .

Na sliki 4.10 sta predstavljeni dve optimalni označitvi, ki zadoščata pogojema A in B ter
porabita 12 oznak, kar je tudi zgornja meja po izreku 23.

Motivacija za nadaljnje delo

Doktorsko disertacijo smo zaključili z nekaj vprašanji, ki so med raziskovanjem ostala neod-
govorjena. Tu omenimo le zanimiv problem.

Med preučevanjem metrične dimenzije smo pomislili, da bi raziskali še Wienerjevo dimen-
zijo grafov Sierpińskega. Wienerjeva dimenzija, dimW (G), grafa G je vpeljana kot število raz-
ličnih (celotnih) razdalj v grafu G [1]. Torej, če je {dG(u) | u ∈ V (G)} = {δ1, . . . , δk}, potem je
Wienerjeva dimenzija grafaG enaka k. Za nekatere začetne grafe Sierpińskega ni težko določiti
Wienerjeve dimenzije (s pomočjo računalnika):

p \ n 2 3 4 5 6 7 8 9 10

2 2 4 8 16 32 64 128 256 512
3 2 4 13 40 120 356 1084 3268 9832
4 2 5 15 50 187 715 2793 ? ?
5 2 5 15 52 201 854 ? ? ?
6 2 5 15 52 203 ? ? ? ?
7 2 5 15 52 203 ? ? ? ?

Ti rezultati porodijo naslednjo trditev:

Trditev 25. [Proposition 5.1] Če sta n, p ∈ N in p ≥ 2, potem velja

dimW (S2
p) = 2 in dimW (Sn2 ) = 2n−1 .
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Izrek 2.28 za n = 2 pove, da imamo v grafu S2
p samo dve orbiti vozlišč. Eno orbito

tvorijo ekstremna vozlišča, drugo pa skoraj ekstremna vozlišča. S tem dobimo zgornjo mejo
dimW (S2

p) ≤ 2 za p ≥ 2. Razdalje ekstremnih in skoraj ekstremnih vozlišč so enake

dS2
p
(ij) = (p− 1) + (2p− 1) + (p− 2) · (2p+ dS1

p
(i)) = p(3p− 4) ,

dS2
p
(i2) = (p− 1) + (p− 1) · (2p+ dS1

p
(i)) = p(3p− 3) < p(3p− 4) = dS2

p
(ij) .

Prva enakost trditve torej velja. Druga enakost sledi iz dejstva Sn2 ∼= P2n .

Čeprav smo določili Wienerjeve dimenzije nekaterih grafov Sierpińskega, v splošnem ta
dimenzija še vedno prestavlja odprt problem.

Problem 26. Naj bosta n, p ∈ N in n, p ≥ 3. Določi Wienerjevo dimenzijo grafa Snp .
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