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Abstract

Several questions/conjectures in CAT(0) geometry are inspired by analogous theorems that are known to
hold for Riemannian manifolds of nonpositive sectional curvature. This thesis deals with the one which
was settled by Bangert and Schröder in early nineties for real analytic manifolds, [BS]. It is called the flat
closing problem and it predicts a copy of Zm in any discrete group which acts properly and cocompactly
by isometries on a CAT(0) space X containing an isometric copy of Rm. We summarize results from
[CM-ST, CM-DS] about the full isometry group of a proper, cocompact and geodesically complete CAT(0)
space. Then we apply those results to prove the main theorem from [CZ], a very partial answer to the
flat closing conjecture.

Theorem. If a proper CAT(0) space X is a product of m geodesically complete factors, then discrete Γ,
which acts properly and cocompactly on X, contains a copy of Zm.

Even though the theorem above is far from the full generality of the flat closing problem, its proof uses
a deep machinery from the structure theory of the isometry group of the corresponding CAT(0) space.
The proof relies in an essential way to the solution of Hilbert’s fifth problem, see Theorem A.6. This
solution leads to a dichotomy for the isometry group of a nice non Euclidean CAT(0) space – either it is
a Lie group or a totally disconnected locally compact group. Applying this dichotomy to the irreducible
factors from the theorem, we deal with two separated approaches. The first case is covered by older
results from Lie group theory while the second relies to the geometric properties of CAT(0) space with
totally disconnected isometry group, see [CM-ST, §6].

Math. Subj. Class. (2010): 20G07, 22E15, 51F99.
Key words: CAT(0) spaces, isometry group, locally compact groups, flat closing conjecture.





Povzetek

Številna vprašanja v CAT(0) geometriji izvirajo iz izrekov o Riemannovih mnogoterostih nepozitivnih
prereznih ukrivljenosti. V tej disertaciji se ukvarjamo z enim izmed njih, s problemom periodičnih ravnin.
V kontekstu realnih analitičnih mnogoterosti sta ga rešila Bangert in Schröder, [BS]. Problem sprašuje, ali
vedno lahko najdemo kopijo proste abelove grupe Zm v grupi, ki deluje kokompaktno diskretno z izometri-
jami na CAT(0) prostoru X, ki vsebuje izometrično vloženo kopijo Rm. V uvodnih poglavjih povzamemo
dognanja iz del [CM-ST, CM-DS] o celotni grupi izometrij pravega kokompaktnega geodezično polnega
CAT(0) prostora. Nato ta dognanja uporabimo v dokazu glavnega izreka iz [CZ], ki poda delni odgovor
na problem periodičnih ravnin.

Izrek. Naj bo parvi CAT(0) prostor X produkt m geodezično polnih faktorjev. Tedaj poljubna grupa Γ,
ki deluje kokompaktno diskretno z izometrijami na X, vsebuje kopijo Zm.

Čeprav predpostavke zapisanega izreka močno posežejo v splošnost problema periodičnih ravnin, so
za njegov dokaz potrebni globoki izreki iz strukturne teorije grupe izometrij dotičnega CAT(0) prostora.
Za dokaz ključna je rešitev Hilbertovega petega problema, izrek A.6, ki zagotavlja dihotomojo za grupe
izometrij določenih CAT(0) prostorov. Bodisi je grupa izometrij Liejeva bodisi je popolnoma nepovezana
lokalno kompaktna topološka grupa. Glede na to dihotomijo se dokaz izreka razdeli na dva dela. Prvi del
sledi iz znanih izrekov iz teorije Liejevih grup, med tem ko se drugi del sklicuje na geometrijo CAT(0)
prostora s popolnoma nepovezano grupo izometrij, [CM-ST, §6].

Math. Subj. Class. (2010): 20G07, 22E15, 51F99.
Ključne besede: CAT(0) prostori, grupa izometrij, lokalno kompaktne grupe, problem periodičnih
ravnin.
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Chapter 1

Introduction

1.1 About the topic

In the field of mathematics called geometric group theory, we are studying an interplay between a group Γ
and a space X, on which Γ acts by isometries. The existence of such an action implies certain restrictions
on the algebraic structure of Γ and on geometry of X. The restrictions are more stringent if the space X
or/and the action have additional “nice” properties.

As evident from [Bri], the theory of non-positively curved spaces plays a special role in this area.
The generalization of the concept of (sectional) curvature from manifolds to geodesic metric spaces is
attributed to A. D. Aleksandrov, E. Cartan and V. A. Toponogov. They introduced their generalizations
of sectional curvature already in the twenties of the previous century. The theory culminated in early
eighties of the previous century when Mikhail Gromov reproved many difficult results from the theory of
non-positively curved manifolds using only the metric condition of curvature. He introduced the notation
CAT(κ); letters C, A and T stand in honor of Cartan, Aleksandrov and Toponogov and the real-valued
parameter κ gives an upper bound on the curvature.

A special emphasis goes to CAT(0) spaces. This is a class of geodesic metric spaces in which triangles
are no “fatter” than Euclidean ones. To be more precise, a geodesic metric space (X, d) is a CAT(0)
space if for every triple of points x0, x1, x2 ∈ X and any point p on an arbitrary geodesic segment between
x1 in x2 the following holds. If x̄0, x̄1, x̄2 are points in the Euclidean plane R2 with d(xi, xj) = ∥x̄i − x̄j∥
for all i, j = 0, 1, 2 and p̄ is a point on the segment between x̄1 and x̄2 with d(x1, p) = ∥x̄1 − p̄∥, then
d(p, x0) ≤ ∥p̄− x̄0∥. Similarly, CAT(κ) is defined as the class of spaces where no triangle is fatter than the
corresponding comparison triangle in Mκ, the two-dimensional simply connected manifold of constant
Gaussian curvature κ. For positive κ, we have to take care of diameters of triangles in X which we like to
compare, sinceMκ has bounded diameter for positive κ (Mκ>0 is a sphere {(x, y, z) ∈ R3|x2+y2+z2 = 1

κ}
with induced length metric from R3). But in geometric group theory, CAT(κ) spaces for non-positive κ,
which we will also refer to as non-positively curved spaces, enjoy much more attention than for positive κ.
One of the main directions in research is to what extent properties of CAT(κ) spaces, for strictly negative
κ (also called negatively curved spaces), hold also for CAT(0) spaces. Observe that since triangles in Mκ

are “thiner” than those in Mκ′ for κ < κ′, every CAT(κ) space is also CAT(κ′). Presence of flats (i.e.
isometrically embedded copies of Rn for n > 1) in CAT(0) spaces is the basic thing making CAT(0) spaces
different from negatively curved ones. Hence, the class of CAT(0) spaces contains much more interesting
examples as the family of negatively curved spaces, but the price is that less is known for CAT(0) spaces
which are not CAT(κ) for some strictly negative κ, see §1.3 below.

Because the class of all CAT(0) spaces is very large and hence there are lots of groups acting on them,
we often impose additional conditions on the group actions and CAT(0) spaces. Let G act on a CAT(0)
space X. First of all, we assume that X is a proper space, i.e. every ball in X has compact closure.
Next, we do not wish the group to be too large (or the action to be too degenerate) hence we assume
that the action is proper. This means that for every ball B in X, there is not too many elements g ∈ G
such that gB intersects B. In the case of discrete group G, not too many means finite number. This
generalizes to (non-discrete) topological groups, where not too many means that the set of such elements
has compact closure in G. We can pass by that problem if we take G to be a subgroup of Iso(X), where
the later is equipped with compact open topology, Definition A.1.
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Final restriction is that X has some level of homogeneity, or equivalently, that the group G is large
enough. There are several notions of this property:

(i) G acts minimally if there is no proper closed nonempty convex G-invariant subsets in X;

(ii) G has full limit set which means that for every geodesic ray (isometric embedding) r : [0,∞) → X,
there is a sequence (gn)n∈N ⊆ G such that geodesic segments [r(0), gnr(0)] converge uniformly on
compact sets to r;

(iii) G acts cocompactly, i.e. there is a compact K ⊆ X such that G-translates of K cover X;

(iv) G satisfies duality condition which means that for every geodesic line (isometric embedding)
ℓ : R → X, there is a sequence (gn)n∈N ⊆ G such that geodesic segments [ℓ(0), gnℓ(0)] converge
uniformly on compact sets to ℓ|[0,∞) and [g−1

n ℓ(0), ℓ(0)] converge uniformly on compact sets to
ℓ|(−∞,0].

The most popular from the list above is cocompactness. A proper and cocompact action of a discrete
group is also called a geometric action, while a group acting in that way is called a CAT(0) group.

A geometric action of a group Γ on a space X is denoted Γ
geo
y X.

We will discuss the duality condition later in §1.4 and compare it with an analogue notion in hyperbolic
spaces. Concerning the full limit set, in §2.5 we give an example of a weaker conclusion about a geometry
of a proper CAT(0) space assuming only full limit set instead of cocompactness. Our example answers
the question [CM-DS, Question 7.1].

1.2 Main examples

The situation described above is a direct generalization of compact manifolds of non-positive sectional
curvatures. Indeed, if we take such manifold M and denote Γ := π1(M), then Γ acts geometrically (by

deck transformations) on the universal covering space M̃ , which is CAT(0). That was the starting point
of Gromov’s revolution.

Among the other manifolds of non-positive sectional curvature, symmetric spaces are of special
interest. See [Ebe] for smooth (differential-geometric) approach and [BH, Chapter II, §10] for CAT(0)
approach. Symmetric spaces appear in many different ways in mathematics. The name “symmetric”
describes one possible definition. For any given point x on the Riemannian manifold M , there is a well-
defined map Sx : M → M sending c(t) to c(−t) for each geodesic c with c(0) = x. If the symmetries Sx

are Riemannian isometries the manifold M is called symmetric. If we assume that such a manifold M has
no compact factors, then M is non-positively curved and hence CAT(0). If we prohibit also the Euclidean
factor, then M is said to be a symmetric space of non-compact type and (the identity component of) its
isometry group is a semi-simple Lie group with trivial center and no compact factors.

That property leads to the next possible definition. Let G be a center-free semi-simple Lie group
without compact factors and let K denote a maximal compact subgroup of G. Then M := G/K, endowed
with a G-invariant Riemannian metric, is a symmetric space of non-compact type. The main example
which we have in mind is G = PSL(n,R) and K = SO(n). In fact if M is any symmetric manifold of
non-compact type there exists a diffeomorphism onto a totally geodesic submanifold of PSL(n,R)/SO(n)
for some n. The pull-back metric on M obtained by means of the embedding coincides with the original
metric on M up to a constant multiple on each irreducible de Rham factor. See Appendix B for further
discussion.

The last description of a symmetric space generalizes further in the following way. Take any field
with discrete valuation, see [Bro, Chapter V, §8] for definition or imagine the special linear group over
p-adics, SL(n,Qp), as a basic example. Then repeat the construction as above. In that case, SL(n,Zp)
is a maximal compact subgroup and we can associate (in a canonical way) a simplicial structure on the
quotient ∆p(n) := SL(n,Qp)/SL(n,Zp). Equipping each of the simplices with Euclidean metric (i.e.
take any m-simplex to be isometric to the standard one) and the whole simplicial complex with induced
path metric turns ∆p(n) into a CAT(0) space, called Euclidean building. Euclidean buildings can be
threaded as discrete analogues (because of their combinatorial/simplicial structure) of symmetric spaces.

Symmetric spaces and Euclidean buildings are of special interest from the viewpoint of the theory
of locally compact groups, since their isometry groups are two extremities – Lie group in the first case
and a totally disconnected locally compact topological group in the second. Under the appropriate



1.3 Non-positive vs. negative curvature 3

assumptions on a CAT(0) space, those two cases together with an obvious example of the Euclidean
space cover everything from the viewpoint of isometry group, see Theorem 3.1.

The third family of basic examples of CAT(0) spaces is the family of CAT(0) cube complexes.
Cube complex is a CW complexes with all the cells isometric to Euclidean cubes [0, 1]n with injective
characteristic maps, equipped with shortest-path distance. Cube complexes enjoy large attention because
one can locally check CAT(0) condition in purely combinatorial terms, see the theorem of Gromov, [BH,
Theorem II.5.20]. Thank to the Cartan-Hadamard theorem, [BH, Theorem II.4.1], their universal covering
spaces are CAT(0). Because of that reason, they are the main source for modeling concrete CAT(0) groups
(fundamental groups of compact locally CAT(0) spaces) with interesting properties. Furthermore, the
additional combinatorial structure of CAT(0) cube complexes reflects in several properties which are
known to hold for CAT(0) cube complexes, but are still unknown for general CAT(0) spaces. An example
is the rank rigidity conjecture, see [CS] and §1.4 below.

Finally, let us just mention that there are also several constructions for building new CAT(0) spaces
from existing ones. We can for example take a product of several CAT(0) spaces and equip it with
ℓ2-metric. There are also several constructions of gluing, see [BH, Chapter II, §11] for definitions and
connection with group-theoretic operations such as the product with amalgamation and HNN extension.
One example of building a CAT(0) space with selected properties is discussed in §2.5.

1.3 Non-positive vs. negative curvature

Beside CAT(κ) spaces, Gromov defined also δ-hyperbolic spaces (here δ is some non-negative parame-
ter). This is another – coarser – notion of (strictly) negative curvature in geodesic metric spaces. We say
that a geodesic triangle △x0x1x2 (a union of three geodesics γi,j between xi and xj , i, j = 0, 1, 2, i ̸= j)
is δ-thin if for every index i the geodesic γ(i−1),(i+1) lies in the δ-neighborhood of the union γi,i+1 ∪γi−1,i

(the indices are understood modulo 3). The geodesic metric space X is δ-hyperbolic if every triangle in
X is δ-thin. When we do not care about the value of δ, we just say that X is a hyperbolic space.

A calculation in the hyperbolic plane H2 shows that CAT(κ) spaces, for κ < 0, are hyperbolic (because
triangles in CAT(κ) spaces are thiner than triangles in an appropriately rescaled hyperbolic plane Mκ).

A finitely presented group is called a hyperbolic group if its Cayley graph with word-metric is
hyperbolic, or equivalently, if it acts properly and cocompactly by isometries on some hyperbolic space.
Note that for strictly negative κ, CAT(κ) groups (i.e. groups acting geometrically on some CAT(κ) space)
are hyperbolic, but the converse is unknown. It is known that every hyperbolic group can act geometrically
on a contractible polyhedral complex by isometries (but this complex may not carry negatively/non-
positively curved metric). Anyway, hyperbolic groups are known to enjoy most important (structural,
algorithmic, geometric ...) properties of CAT(−1) groups. Hence hyperbolic group is an appropriate
notion of negative curvature in group theory.

An interesting question is about the boundary value κ = 0 – when a CAT(0) group Γ is hyperbolic. It
follows from the definition that Γ is hyperbolic if and only if the space X on which it acts geometrically
is hyperbolic. On the level of geometry, it is easily describable by the following theorem.

Theorem 1.1 ([BH, Theorem II.9.33]). A CAT(0) space X admitting some geometric group action
is hyperbolic if and only if X has no isometrically embedded copies of the Euclidean plane R2.

On the level of (algebraic) group theory, there is still no sufficient condition for a CAT(0) group Γ to
be hyperbolic. An obvious necessary condition is that Γ does not contain a copy of Z2, which is explained
by the flat torus theorem, Theorem 2.2. In this thesis we address the flat closing conjecture which says
that the absence of Z2 in Γ is also sufficient for hyperbolicity. Precisely, we prove (under some technical
assumption on the proper CAT(0) space X) the following theorem.

Theorem 1.2 ([CZ, Corollary 1]). If X is a product of m factors, then Γ, acting geometrically on X,
contains a copy of Zm.

The reason why we would like to have a good criterion for distinguishing hyperbolic groups among
CAT(0) groups is that hyperbolic groups have “better properties” than general CAT(0) groups. For
example, hyperbolic groups are biautomatic (unknown for CAT(0)), they have well defined boundary
at infinity (see §2.1 for definition) (CAT(0) groups do not), they satisfy linear isoperimetric inequality
(CAT(0) satisfy quadratic), Dehn functions for their finitely presented subgroups are polynomial (may
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be exponential for CAT(0)), and several other things. We refer the reader to [Bri] for detailed discussion
on the topic.

The Tits alternative is also the property that holds for hyperbolic groups. In CAT(0) context, it is
only known for CAT(0) cubical groups and for the classical examples mentioned above (from the work of
Tits, where he proved that finitely generated subgroups of linear groups satisfy Tits alternative).

The spirit of hyperbolicity in non-hyperbolic CAT(0) groups is given by rank one isometries. The
behavior of CAT(0) groups containing isometry of rank one is somewhere between hyperbolic and general
CAT(0) groups. Recall that an axial isometry is an isometry having an axis, i.e. isometric embedded copy
of R on which it acts by a nonzero translation (Definition 2.4). A rank one isometry can be described
as an axial isometry α such that none of the axis of α lies in a half plane (isometric embedded copy
of R × [0,∞) with Euclidean metric). Roughly, a rank one isometry is an isometry with non-Euclidean
behavior around its axis. See [Bal, BB] for precise definition.

1.4 Hic abundant leones1

As it is evident from the previous sections, there are two main sources for building the theory of CAT(0)
spaces (admitting some geometric group action or satisfying some other regularity properties). First
option is to try to generalize known results from the theory of Riemannian manifolds of non-positive
sectional curvature to the context of CAT(0) spaces (in other words – to reprove some Riemannian
theory with weaker machinery, as was Gromov’s insight). The second approach is to deduce to what
extent properties of hyperbolic groups also hold for CAT(0) groups, or at least for CAT(0) groups with
rank one isometries.

The most important structural conjecture about a nice CAT(0) space, the rank rigidity conjecture,
comes from the world of manifolds where it was settled by W. Ballmann. We refer the reader to [Bal,
Chapter IV] for the proof in manifold case and discussion on the problem in CAT(0) context. The
rank rigidity conjecture predicts that a “nice” CAT(0) space X is one of the main examples from above
– symmetric space, Euclidean building or a product of at least two CAT(0) spaces – or otherwise it
possesses a rank one isometry. Hence irreducible de Rham factors are either quite well understood
(symmetric spaces, Euclidean buildings) or they behave (in a way) similar to hyperbolic spaces and
hence we also have better information than in general.

As an example of the hyperbolic behavior of a CAT(0) group containing a rank one isometry we
should mention the dynamic of the induced group action on the visual boundary of the space (see §2.1
for definition; in the case of CAT(0) manifold, the visual boundary is just a sphere). Because of that, the
following question (open in general) has an affirmative answer for CAT(0) groups containing isometry of
rank one.

Question 1.3. Let Γ
geo
y X. Does Γ satisfy the duality condition?

This question is motivated from the hyperbolic world and is related to the extreme behavior of the
action of a hyperbolic group on its boundary, called convergence action or South-Nord dynamics, see
[Bow].

Another evident hyperbolic property of rank one isometries is about their axis. If you fix constants
a, b ∈ [1,∞) and start traveling between two points x and y on some axis of rank one isometry α such that
the length of your path does not exceed ad(x, y)+ b, then the whole your path stays c = c(a, b, α) close to
the axis of α (note that c does not depend on d(x, y)). This is of course not the case in the Euclidean plane
with α a translation, an shown by an example of a semi-circle with endpoints on the axis of translation.
This “hyperbolic property” is the key property for solving (or deducing bounds for algorithms for) word
problems in hyperbolic groups. From geometric point of view, the described property is related to the
divergence of geodesics. Given two isometric embeddings r, r′ : [0,∞) → X with r(0) = r′(0) = x0, the
divergence measures the asymptotic behavior (t → ∞) of how far is from r(t) to r′(t) outside the ball of
radius t around x0. But the reader can measure that for t large enough, this already exceeds the scope
of the thesis, see Figure 1.1.

1See [Bri, p. 963, Figure 1] for explanation.
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b

x0

B(x0, 10)

B(x0, 20)

Figure 1.1: Far from x0 is already outside the thesis.
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Chapter 2

CAT(0) geometry

Let us recall the definition of a CAT(0) space.
Let (X, d) be a geodesic metric space, i.e. for every pair of points x0, x1 ∈ X, there is a (continuous)

map γ : I = [0, 1] → X with γ(i) = xi for i = 0, 1 and d(γ(t), γ(s)) = |t− s|d(x0, x1). Image of such map
will be denoted by [x0, x1] and called a geodesic segment (or just a geodesic). Note that the symbol
[x0, x1] is in general not well defined since geodesic between two points need not be unique, remember
an example of a round sphere with x0 = North pole and x1 = South pole. A (geodesic) triangle in a
geodesic metric space X is a choice of three points x0, x1, x2 and some geodesics between them. Abusing
the notation again, we denote the triangle as △x0x1x2 = [x0, x1] ∪ [x1, x2] ∪ [x2, x0]. By the triangle
inequality for metric d, there always exist points x̄0, x̄1, x̄2 ∈ R2 such that ∥x̄i − x̄j∥ = d(xi, xj) for all
pairs i, j = 0, 1, 2, where ∥ · ∥ denotes the Euclidean 2-norm. We call the triangle △x̄0x̄1x̄2 (which is
unique since R2 is uniquely geodesic metric space) the comparison triangle for △x0x1x2. For every
z ∈ [xi, xj ] ⊆ △x0x1x2, there is a unique point, called the comparison point z̄ ∈ [x̄i, x̄j ] such that
d(xi, z) = ∥x̄i− z̄∥. We say that the triangle △x0x1x2 satisfies CAT(0) inequality if for every pair of
points z, w ∈ △x0x1x2, the inequality d(z, w) ≤ ∥z̄ − w̄∥ holds. We say that a geodesic metric space
X satisfies CAT(0) inequality if every triangle in X satisfy CAT(0) inequality.

In what follows, we define and describe terms that are involved in almost every nontrivial proof of a
theorem about CAT(0) geometry or some related topic. We also collect some basic results on CAT(0)
geometry and hyperbolicity that are needed later on and/or enlighten a problem of the flat closing
conjecture we are dealing with in the core.

2.1 Boundary at infinity

To every geodesic metric space, we can associate another topological (or metric) space, called the bound-
ary at infinity. It usually turns out that we can deduce more properties of geometry of a CAT(0) space
or of a group acting on it by observing also the extended action on its boundary at infinity. In this
section, we will describe two most important ways of constructing a boundary (or rather the structure –
topology or metric – on it).

A geodesic line (ray, respectively) in a geodesic metric space is an isometric embedding ℓ : R → X
(r : [0,∞) → X, respectively). We can define a boundary at infinity (also called a visual boundary)
of X, denoted ∂X, as a quotient of the set of all geodesic rays modulo the following equivalence relation:
two rays r, r′ are equivalent if t 7→ d(r(t), r′(t)) is a bounded function from [0,∞) to itself. (In terms
of Definition 3.10, this condition is equivalent to saying that images of r and r′ are at finite Hausdorff
distance.) We denote r(∞), or sometimes [r], the equivalence class determined by the ray r. Usually,
when we do not like to specify the representative r for a point at infinity, we will denote it by some Greek
letter.

When X is a proper CAT(0) space, we have for every point ξ ∈ ∂X and every x ∈ X a geodesic ray
r such that r(0) = x and r(∞) = ξ. To see this, pick some ray q, representing ξ. By CAT(0) inequality
and compactness of balls in X, we can deduce that geodesic segments ([x, q(n)])n∈N converge uniformly
on compact sets to some geodesic ray r. By construction, r(0) = x and r(∞) = q(∞). Invoking CAT(0)
inequality again, we deduce that such ray r is unique. We say that a sequence of points (xn)n∈N converges
to ξ ∈ ∂X, if the sequence of geodesics ([x0, xn])n∈N converges uniformly on compact sets to a geodesic
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ray r representing ξ for some (equivalently, any) point x0 ∈ X. Note that the sequence of distances
d(xn, r) = inf{d(xn, r(t))|t ∈ [0,∞)} might be unbounded.

We can topologize the boundary at infinity of a proper CAT(0) space in the following way. Pick a
base point x0 ∈ X and for every ξ ∈ ∂X take a ray rξ with initial point x0, pointing towards ξ. We
define a basis of neighborhoods of ξ as a family of sets {UR,ε|R, ε > 0}, where

UR,ε := {q(∞) | q : [0,∞) → X a geodesic ray with q(0) = x0, d(q(t), r(t)) < ε ∀t < R}.

It turns out that this topology is independent of x0 and with this topology, called the cone topology,
∂X becomes a compact Hausdorff space.

Another topology on the boundary is given by an angular metric on ∂X, induced from the notion
of angle in X. We first introduce some notation.

(i) For three different points x, y, z ∈ R2, the symbol <) x(y, z) denotes the angle between segments
[x, y] and [x, z] (or vectors y − x, z − x).

(ii) For three different points x, y, z ∈ X, the symbol <) x(y, z) denotes the angle <) x̄(ȳ, z̄), i.e. the angle
at x̄ in the comparison triangle △x̄ȳz̄. It is called the comparison angle.

(iii) For three different points x, y, z ∈ X, the symbol <) x(y, z) denotes the limit limt→0 <) x(γy(t), γz(t)),
where γy, γz are parametrizations of geodesics [x, y] and [x, z] with γy(0) = γz(0) = x. The limit is
well defined by CAT(0) inequality. The quantity <) x(y, z) is called Alexandrov angle between
[x, y] and [x, z]. It is dominated by the comparison angle <) x(y, z).

(iv) For x ∈ X and ξ, η ∈ ∂X, we define <) x(ξ, η) := <) xrξ(1), rη(1), where rξ, rη are parametrizations
of the rays from x to ξ, η, respectively.

(v) For ξ, η ∈ ∂X, we define <) ξ, η := supx∈X <) x(ξ, η).

It is an exercise in CAT(0) geometry that the map (ξ, η) 7→ <) ξ, η defines a metric on ∂X. We associate
to it an induced length metric, called the Tits metric and denoted by dT . The metric space (∂X, dT )
is called the Tits boundary of X and will also be denoted by ∂TX. Since <) (and hence dT ) detects
whether any pair of rays representing two points in ∂X diverge one from another, the metric dT is usually
finer than the cone topology which observes (the speed of) divergence only from a chosen base point.

With a geodesic line, we have (in an obvious way) defined two points at infinity, namely ℓ(∞) and
ℓ(−∞). We say that two points ξ, η ∈ ∂X are visible, if there exists a geodesic line ℓ such that ℓ(∞) = ξ
and ℓ(−∞) = η. Obviously, <) ℓ(0)(ξ, η) = <) ξ, η = π, while dT (ξ, η) may be strictly larger than π, or even
∞.

Observe that the action of any group G onX by isometries extends to an action with homeomorphisms
(isometries, respectively) of G on the ∂X equipped with the cone topology (the angular or Tits metric,
respectively). Indeed, every isometry respects the equivalence relation on geodesic rays and moreover
preserves also the Alexandrov angle.

2.1.1 Some properties of the angular metric

The following properties are (among many others) proved in [BH, Chapter II, §9]. Here we will only
briefly describe the ideas behind their proofs.

Proposition 2.1. Let X be a proper CAT(0) space.

(i) If <) ξ, η = <) x(ξ, η) < π for some x ∈ X, then the convex hull of [x, ξ) and [x, η) is a flat sector;

(ii) <) ξ, η = limt→∞ <) x(rξ(t), rη(t)), where rξ, rη : [0,∞) → X are geodesic rays, pointing to ξ and η
and emanating from x.

To prove the second property, one observes first that the right-hand side of the equality does not
depend on x. Since <) x(ξ, η) ≤ <) x(rξ(t), rη(t)) for any t > 0, the right-hand side is always at least as big
as the left-hand side. The opposite inequality is deduced by playing with properties of angles and CAT(0)
inequality. One needs to use a trivial fact that the sum of angles between a segment and asymptotic
geodesic rays, emanating from endpoints of that segment, is at most π. (It is the lemma saying that the
sum of angles of a triangle in CAT(0) space is at most π, generalized to ideal triangles, i.e. triangles with
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a vertex at the boundary at infinity.) Another tool in the proof is the triangle inequality for the angle,
i.e. <) x(y, z) +<) x(z, w) ≥ <) x(y, w) for all y, z, w, different from x.

The property (i) is in the spirit of the flat triangle lemma, [BH, Proposition II.2.9]. This lemma
says that if CAT(0) inequality for any pair of points u,w ∈ △xyz such that {u,w} * {x, y, z} is in fact
equality, then the triangle △xyz is isometric to its comparison triangle. Flat triangle lemma is equivalent
to saying that the comparison angle at x in △xyz equals to Alexandrov angle, i.e. <) x(y, z) = <) x(y, z).

Since the function t 7→ <) x(rξ(t), rη(t)) is constant under assumptions of (i), every triangle △xrξ(t)rη(t)
is flat and non degenerated and hence the whole sector is flat.

2.2 Reasonable subfamily of CAT(0) spaces and main theorems

As mentioned in the introduction, there are too many constructions for building new CAT(0) spaces from
existing ones (one example is discussed in §2.5). We are therefore forced to restrict our attention to some
subfamily. It turns out that the class of CAT(0) spaces equipped with some geometric group action is
large enough to be interesting, but not too large to be unmanageable. In particular, a CAT(0) group
is a direct generalization of a fundamental group of a compact Riemannian manifold M of non-positive
sectional curvature, acting by deck transformations on the universal cover M̃ . Here we collect some facts
about CAT(0) spaces, admitting a geometric group action, which are needed in the sequel.

Theorem 2.2 (Flat torus theorem). Let X be a CAT(0) space and Γ
geo
y X. If there is A ≤ Γ such

that A ∼= Zn, then there is Rn isometrically embedded into X. Moreover, A acts cocompactly on some
n-dimensional flat in X by translations.

To prove this theorem, we have to divide isometries of CAT(0) spaces into three classes, and associate
to each representative of each class some geometrical data. First, we define the translation length
|g| for isometry g as a quantity inf{d(x, gx)|x ∈ X}, roughly speaking the smallest amount for which g
moves points in X. Furthermore, we define min(g), the minimal space of g, as the set of all points
in X, moved by g for |g|, i.e. min(g) = {x ∈ X|d(x, gx) = |g|}. According to those two terms, we first
divide isometries of X into two classes – semi-simple isometries are those with nonempty minimal space
and parabolic isometries are all the rest. We further split semi-simple isometries into elliptic ones, i.e.
those with zero translation length (equivalently, with fixed points) and those with nonzero translation
length, called hyperbolic isometries.

Lemma 2.3. Let Γ
geo
y X, where X is CAT(0) space. Every element of Γ acts on X as a semi-simple

isometry. Every hyperbolic isometry g ∈ Γ has min(g) ∼= R × C (the right-hand side carries ℓ2-metric)
for some CAT(0) space C and g acts on min(g) with translation on the R-part of the decomposition and
trivially on the C-part.

Definition 2.4. With the notation from the lemma above, a geodesic line R× {c} for c ∈ C is called an
axis of g.

Sketch of the proof. Suppose there is a parabolic isometry g ∈ Γ. Observe first that

|h−1gh| = inf{d((h−1gh)x, x)|x ∈ X} = inf{d(g(hx), hx)|x ∈ X} = |g|

for every h ∈ Iso(X). Let (xn)n∈N be a sequence of points in X such that d(gxn, xn) < |g|+ n−1. Pick
elements gn ∈ Γ such that yn := gnxn remains in a compact set K ⊆ X and let x be some accumulation
point of yn. Since d((gngg

−1
n )yn, yn) = d(gxn, xn) < |g| + 1 for all n ∈ N and the action of Γ on X is

proper and Γ is discrete, it follows that, after passing to a subsequence, gngg
−1
n is a constant sequence,

all terms equal to, let say, g′ ∈ Γ. But g′ is conjugated to g and hence has the same translation length as
g and d(g′yn, yn)

n→∞−→ |g|. Moreover, yn converges (after passing to a further subsequence) to x, hence
d(g′x, x) = |g|, contradicting parabolicity of g (and hence g′).

To deduce the product decomposition of min(g) for g hyperbolic, observe first that for x ∈ min(g),
[g−1x, x] ∪ [x, gx] equals [g−1x, gx]. If not, the midpoint x′ of [g−1x, x] and the midpoint x′′ = gx′

of [x, gx] = g[g−1x, x] satisfies d(x′, gx′) ≤ 1
2d(x, g

2x) < 1
2

(
d(g−1x, x) + d(x, gx)

)
= |g|, contradic-

tion. Hence, γx :=
∪

n∈Z g
n[x, gx] is a geodesic line. For any other point y ∈ min(g), the line γy :=∪

n∈Z g
n[y, gy] is parallel to γx in the sense that the Hausdorff distance (Definition 3.10) between them

is finite. By the flat strip theorem, see [BH, Theorem II.2.13], the union of all γz with z ∈ min(g) decom-
poses as a product γx ×Pr−1

γx
(x), where PrZ denotes the closest point projection onto a convex subset Z

of a CAT(0) space, see [BH, Proposition II.2.4]. ⋆
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To prove Theorem 2.2, observe that for any hyperbolic isometry g ∈ Γ, the centralizer ZΓ(g) preserves
min(g) and respect its product decomposition. In fact, we have the following theorem due to K. Ruane.

Theorem 2.5 (Cocompact centralizer, [Rua, Theorem 3.2]). Let Γ
geo
y X, where X is a CAT(0)

space. For arbitrary γ ∈ Γ, the centralizer ZΓ(γ) acts geometrically on min(γ).

The proof is an elementary game with CAT(0) geometry and proper cocompact group action.

Proof of Theorem 2.2. The theorem is true for n = 1 by the lemma above. Suppose by induction that it
is true for n−1 and moreover, min(A) = {x ∈ X|d(x, ax) = |a| ∀a ∈ A} = Rn−1×C, where every element
in A acts as a translation on Rn−1-part and trivially on C-part (include this as an induction hypothesis).
Add another element t to A such that ⟨A, t⟩ ∼= Zn. Since t commutes with A, it preserves min(A) and
its product decomposition, acting as a translation on Rn−1 (see [BH, Theorem 6.8(5)]). Since A already
acts cocompactly on Rn−1, t must have infinite order, when restricted to C, and is hence a hyperbolic
isometry of C. Hence C decomposes as R× C ′. Putting things together, there is Rn−1 × R× {c′} ∼= Rn

on which ⟨A, t⟩ acts cocompactly by translations. ⋆

Surprisingly, the converse of the flat torus theorem is widely open. We are going to enlighten it
through the following notion.

2.3 Hyperbolicity

Recall the definition of a (δ-)hyperbolic metric space from the introduction. As we have already men-
tioned, there is a very nice criterion for distinguishing hyperbolic spaces among proper cocompact CAT(0)
spaces. Note that in fact there is no need for existence of Γ acting geometrically on X, just that the full
isometry group Iso(X) acts cocompactly.

Theorem 2.6 ([BH, Theorem II.9.33]). Let X be a proper cocompact CAT(0) space. Then X is
hyperbolic if and only if there is no isometrically embedded copy of R2 in it.

It is clear that a hyperbolic space can not contain a flat plane (i.e a copy of R2) since an equilateral
triangle with sides of length 4n+1√

3
is not n-thin, and we can choose n arbitrary large.

For the other implication, we have to define the following notion.

Definition 2.7. A CAT(0) space X is said to be locally visible if for every p ∈ X and every ε > 0 there
exists R = R(p, ε) > 0 such that if geodesic [x, y] lies entirely outside the ball B(p,R), then <) p(x, y) < ε.
We say that X is uniformly visible if for every ε > 0, R(ε) = sup{R(p, ε)|p ∈ X} < ∞.

This notion seems highly related to hyperbolicity. If you take a look at a geodesic triangle △pxy, you
see that if p at distance R from the side [x, y], then points x′ and y′, which are defined to be the points
on sides [p, x] and [p, y] at distance R− δ from p, must be δ-close (since otherwise, [p, x] would not lie in
a δ-neighborhood of the other two sides) and hence the angle at p must be small for R large compared
to δ. The following lemmas, which also finish the proof of Theorem 2.6, will explain this notion in detail.

Lemma 2.8. A proper cocompact CAT(0) space is uniformly visible if and only if it does not contain an
isometric copy of R2.

Proof. Clearly, if R2 can be found as a subspace of X, then X is not (uniformly) visible since there are
arbitrary large equilateral triangles, hence there is no R for ε = π

3 . For the opposite implication, suppose
that X is not visible. Observe that there exists a pair of points ξ, η ∈ ∂X with <) ξ, η < π. Indeed, take
sequences (xn)n∈N, (yn)n∈N and a point p in X and some ε > 0 such that

• <) p(xn, yn) > ε;

• limn→∞ d(p, [xn, yn]) = ∞;

• limn→∞ xn = ξ and limn→∞ yn = ξ′, ξ ̸= ξ′ ∈ ∂X.
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By the second item, the sequence (pn)n∈N of projections of p to [xn, yn] is unbounded, hence some
subsequence of it converges to η ∈ ∂X. Suppose η ̸= ξ (otherwise, η ̸= ξ′). Since <) pn(p, xn) ≥ π

2 ,

we have that comparison angle <) pn
(p, xn) ≥ π

2 and hence <) p(pn, xn) ≤ π
2 . From the properties of the

angular metric (Proposition 2.1(ii)), it follows that ϕ := <) ξ, η ≤ π
2 . Find a sequence zn ∈ X such that

<) zn(ξ, η) > ϕ− 1
n and a sequence gn ∈ Iso(X) such that d(gnzn, z0) is bounded. Since X is proper, there

is a subsequence of [gnzn, gnξ) and [gnzn, gnη) converging to a pair of geodesic rays [z, ξ̂) and [z, η̂) such

that <) z(ξ̂, η̂) = ϕ = <) ξ̂, η̂. Hence the convex hull of [z, ξ̂) and [z, η̂) bounds a flat sector. In particular,
there are arbitrary large flat disks in X. Invoking cocompactness and properness once again, we find a
flat plane R2 in X. ⋆

Lemma 2.9. A proper CAT(0) space X is hyperbolic if and only if it is uniformly visible.

Proof. Hyperbolic space is uniformly visible by a discussion above. For the opposite implication, take
δ = R(π2 ). Let △xyz ⊆ X be arbitrary and take any point p ∈ (x, y). At least one of the angles <) p(x, z)
and <) p(y, z) is at least

π
2 and then we can apply uniformly visibility condition for either △xpz or △ypz

to see that p is δ-close to [x, z] ∪ [y, z]. ⋆

2.4 Flat closing conjecture

Let Γ be a CAT(0) group and X a corresponding CAT(0) space. The flat closing conjecture predicts
that if X contains a m-dimensional flat, then Γ contains a copy of Zm (see [Gro, §6.B3]). According
to the previous section, this would imply that Γ is hyperbolic if and only if it does not contain a copy
of Z2. This notorious conjecture remains however open as of today. It holds when X is a real analytic
manifold of non-positive sectional curvature by the main result of [BS]. In the classical case when X is a
non-positively curved symmetric space, it can be established with the following simpler and well known
argument: by [BL, Appendix], the group Γ must contain a so called R-regular semi-simple element,
i.e. a hyperbolic isometry γ whose axes are contained in a unique maximal flat of X. In particular,
min(γ) coincides with the set of all geodesic lines, parallel to some axis of γ. See Apendix B for further
discussion on CAT(0) symmetric spaces. By a lemma of Selberg [Sel], the centralizer ZΓ(γ) is a lattice in
the centralizer ZIso(X)(γ). Alternatively, this also follows from Theorem 2.5. Since the latter centralizer
is virtually Rm with m = rank(X) = rank(Iso(X)), one concludes that Γ contains Zm, as desired.

It is tempting to try and mimick that strategy of proof in the case of a general CAT(0) space X: if
one shows that Γ contains a hyperbolic isometry γ which is maximally regular in the sense that its
axes are contained in a unique flat of maximal possible dimension among all flats of X, then the flat
closing conjecture will follow as above.

The main result of this thesis ensures a copy of Zm in a CAT(0) group, when the underlying CAT(0)
space contains a special kind of flats. An obvious way of possessing m-dimensional flats is when the space
splits as a product of m geodesically complete factors. We can then take a geodesic line in each factor
and the product of them is a m-dimensional flat. Corollary 4.3 states that in this case, there is a copy of
Zm in Γ.

Recall that even the “trivial case” m = 1 requires some work. It was done by Swenson and it carries
an important idea, which we use in the proof of existence of a regular hyperbolic isometry in a product
of cocompact geodesically complete CAT(0) spaces with totally disconnected isometry groups, namely
Proposition 4.7.

Theorem 2.10 ([Swe, Theorem 11]). If Γ acts geometrically on a CAT(0) space X, then Γ contains
an element of infinite order.

Note that an element of infinite order in a CAT(0) group is necessary hyperbolic, [BH, Proposi-
tion II.6.10]. The same idea as Swenson used to prove the above theorem is used later to prove Proposi-
tion 4.7, hence we skip the discussion about Theorem 2.10 here.

2.5 Generalization of geometric group action

A possible generalization of the situation Γ
geo
y X is a proper CAT(0) space with a proper isometric

action of a group G with full limit set, i.e. for every point ξ ∈ ∂X, there is a sequence (gn)n∈N of
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group elements such that the sequence (gnx)n∈N converges to ξ (for some/any point x ∈ X). Ballmann

suggested this approach in [Bal, Definition/Exercise/Question III.1.11]. If Γ
geo
y X, the Tits boundary

∂TX is finite dimensional (geometric dimension, see [Kle] for definition and proof). When one generalizes
the setup as above, the natural question is, which consequences of the stronger assumptions still hold.

Question 2.11 ([CM-DS, Question 7.1]). Assume X is a proper CAT(0) space such that its isometry
group has full limit set. Is its Tits boundary finite dimensional?

In the example below, we will construct a space X satisfying assumptions from the question above
and with infinite dimensional Tits boundary, hence it answers the question negatively.

Example 2.12. Take a real line R ∼= R and at each integer point z ∈ R, glue a |z|-dimensional Euclidean
space Ez

∼= R|z|, identifying z ∈ R and the origin of Ez. We refer to this space as a base space X0, it is
shown at the left part of Figure 2.1. Next, take infinitely many copies of X0 indexed by all possible 2k-
tuples (where k runs over N0) of the form (n1, w1, . . . nk, wk), where n1 ̸= n2 ̸= · · · ≠ nk (non-consecutive

ni and nj can be equal), ni ∈ Z\{0} and wi ∈ Z|ni| \{(0, . . . 0)}. Denote such a copy by X
(n1,w1,...nk,wk)
0 ;

X0 itself corresponds to a copy of X0 indexed by a 0-tuple. Denote by R(n1,w1,...nk,wk) a copy of R in

X
(n1,w1,...nk,wk)
0 . For z ∈ Z, denote by E

(n1,w1,...nk,wk)
z a copy of |z|-dimensional Euclidean space that is

glued at z ∈ R(n1,w1,...nk,wk). Denote a disjoint union of all X
(n1,w1,...nk,wk)
0 by X̃.

Next, define an equivalence relation on X̃, generated by the following rule. Say that two points
x, x′ ∈ X̃ are equivalent if for some k ∈ N, some n1 ̸= · · · ̸= nk ∈ Z, some wi ∈ Z|ni| \{(0, . . . 0)} we have

x ∈ E
(n1,w1,...nk,wk)
nk ⊆ X

(n1,w1,...nk,wk)
0 , x′ ∈ E

(n1,w1,...nk−1,wk−1)
nk ⊆ X

(n1,w1,...nk−1,wk−1)
0 and x′ = x− wk.

The quotient X of X̃ under this equivalence relation is the space with desired property.
Graphically, the above construction means that at each point w ∈ E|z| ⊆ X0 with integer coordinates

(except at the origin) we glue another copy X ′
0 of X0, identifying E|z| and E′

|z| via a translation x′ = x−w.

This produces a subspace X1 ⊆ X consisting of X0 and all X
(n1,w1)
0 . Now, keep growing your space by

gluing new copies of X0 along Euclidean subspaces of X
(n1,w1)
0 (execpt along E

(n1,w1)
n1 ) to produce a

subspace X2 ⊆ X consisting of X0, all X
(n1,w1)
0 and all X

(n1,w1,n2,w2)
0 . . . The final space X equals to the

union
∪∞

n=0 Xn.
Obviously, X is a CAT(0) space since it is produced by gluing construction, see [BH, Chapter II, §11].

Since X0 is proper and every ball in X meets only finitely many copies of X0 (by construction since
ni ̸= ni+1 in index 2k-tuples), the whole space X is proper. To see that Iso(X) has full limit set, take
any geodesic ray r : [0,∞) → X with initial point r(0) = 0 ∈ R. By construction of X, for any t > 0, there

is T > t and w ̸= (0, . . . 0) with integer coordinates in some E
(n1,w1,...nk−1,wk−1)
n ⊆ X

(n1,w1,...nk−1,wk−1)
0 ,

n ̸= nk−1, not contained in the image of r, such that d(w, r(T )) ≤ 1. We can apply an isometry

α ∈ Iso(X) which maps X0 to X
(n1,w1,...nk−1,wk−1,n,w)
0 . Now the geodesic segment [r(0), αr(0)] is 1-close

to a geodesic ray r up to time t. Since t was arbitrary and the metric on X is convex, we are done.
Since there are round spheres of arbitrary high dimensions in ∂TX, the Tits boundary of X is not finite
dimensional.
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Figure 2.1: Base space X0 and the fundamental domain for Iso(X)-action



Chapter 3

Structure theory for CAT(0) space’s
isometry group

A remarkably deep properties about nice CAT(0) spaces and their isometry groups can be deduced using
an additional tool – the structure theory of locally compact topological groups. One can equip the
full isometry group G of a proper metric space with a compact open topology (Definition A.1), which
turns G into a locally compact Hausdorff topological group (Theorem A.2). For a proper cocompact
irreducible geodesically complete non-Euclidean CAT(0) space, Theorem 3.16 presents the dichotomy for
its isometry group – either it is a semi-simple virtually connected Lie group with a trivial center or is a
totally disconnected topological group. In the later case, there are some theorems (e.g. Alexandrov angle
rigidity, open stabilizers) describing further properties of isometries – they behave much like in a discrete
case, while in the Lie group case, the situation is quite well understood already from older theory (see
[Pra, PR, Sel]). In the next sections, we are going to present some results of this spirit, which are mostly
due to [CM-ST, CM-DS] and which we will use later to prove a special case of the flat closing conjecture.

According to Theorem A.2, isometry group of a proper CAT(0) space X is a locally compact Hausdorff
topological group. Under additional assumptions on X, we will deduce finer structure results about
Iso(X).

3.1 Decompositions

The following theorem due to Caprace and Monod, [CM-ST, Theorem 1.1], classify the factors of a nice
CAT(0) space.

Theorem 3.1. Let X be a proper, cocompact and geodesically complete CAT(0) space such that Iso(X)
has no global fixed points at infinity. Then there is a canonical (unique, preserved by all isometries)
splitting

X = Rn ×M × Y,

(each of the factors may be trivial) with M a symmetric space of noncompact type and Y a CAT(0) space
with totally disconnected isometry group. Iso(M) is a semi-simple Lie group and

Iso(X) = Iso(Rn)× Iso(M)× Iso(Y ).

We will omit the proof in full generality, but rather present simpler arguments, which are enough for
our setting in the flat closing conjecture. Interested reader can find all the details in [CM-ST, Theorems 1.1
and 1.6]. For the purposes of this thesis, we will refer to the solution of Hilbert’s fifth problem (see
Appendix A.3), which goes back to Montgomery and Zippin, [MZ2]. After accepting it and some other
general result on geodesic metric spaces due to Förtsch and Lytchak [FL], here collected in Theorem 3.4,
we deduce the proof of our version of the flat closing conjecture in more straight-forward way than
originally in [CZ]. We proceed with giving terminology and stating necessary theorems in appropriate
forms.

Definition 3.2. Let X be a geodesic metric space. An Euclidean piece in X is an image of an isometric
embedding of a convex subset of a real Hilbert space into X. To each affine piece φ(K), where K is a
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convex subset of a real Hilbert space and φ : K → X is an isometric embedding, we can associate its
dimension as an algebraic dimension of the linear span of K. An Euclidean rank of a geodesic metric
space is the supremum of dimensions of Euclidean pieces in X.

Remark 3.3. The dimension of a Euclidean piece P is well-defined quantity since it equals to the supre-
mum of the number n of points x1, . . . xn ∈ P for which there exist x0 ∈ P and d > 0 such that xi is at
distance d from x0 and all the distances between two different xi, xj are d

√
2.

The following theorem about the de Rham docomposition is originally stated for general geodesic
metric spaces of finite affine rank, see [FL, Theorem 1.1 and Corollary 1.3], i.e. in definition above
we allow pieces of X to be subspaces of X isometric to a convex subsets of normed real vector spaces.
But we do not need that generality because affine pieces in CAT(0) spaces are in fact Euclidean. This
follows from the characterization of Hilbert spaces as Banach spaces where the parallelogram inequality is
equality, see note [AN], and the fact that the strict parallelogram inequality violates CAT(0) inequality.

Theorem 3.4 (The de Rham decomposition). Let X be a CAT(0) space of finite Euclidean rank.
Then there is a unique decomposition

X ∼= Rn ×X1 × · · · ×Xm, n,m ≥ 0,

where ∼= denotes the isometry for the right-hand side equipped with ℓ2-metric. Each Xi is nontrivial,
non-isometric to the real line and indecomposable in that way. Furthermore, the isometry group of X is
a finite extension of the direct product of Iso(Rn) = Rn oO(n) and the Iso(Xi)’s for i = 1, . . .m.

Analysis of Iso(Xi) from the theorem above will refer to the solution of Hilbert’s fifth problem.
Further results will be deduced using finer structure of X (namely, geodesic completeness and presence
of a group acting on X geometrically) in the next sections. We conclude this section with the proposition
which ensures that in our setting, the assumptions of Theorem 3.4 are satisfied.

Proposition 3.5. Let X be a geodesically complete CAT(0) space and let Γ
geo
y X. Then X has finite

Euclidean rank.

Proof. We have to bound the dimension of pieces in X. Let n ∈ N be any number such that there
is a positive constant d ≤ 1 and points x0, x1, . . . xn ∈ X with d(x0, xi) = d for all i = 1, . . . n and
d(xi, xj) = d

√
2 for all i, j = 1, . . . n with i ̸= j. By geodesic completeness, we can extend geodesic

segment [x0, xi] over xi and choose a point yi on it at distance 1 from x0. By CAT(0) inequality, we have
d(yi, yj) ≥

√
2 for all i, j = 1, . . . n with i ̸= j. On the other hand, there is a bound on the number of

points in any ball of radius 1, which are pairwise at least
√
2 apart, by the properness and cocompactness

of X. Hence Euclidean rank is bounded from above. ⋆

3.2 Minimality

As cocompactness forces the isometry group (or its subgroup) to be large enough, there are also another
notions of largeness of a group acting on some space. In what follows, we will use minimality.

Definition 3.6. Let G ≤ Iso(X), where X is CAT(0) (or, more generally, any geodesic metric) space.
We say that G acts minimally if there is no proper nonempty closed convex G-invariant subset in X.

In particular, the closed convex hull conv(Gx) of any G-orbit equals to the whole X. The following
proposition is a special case of [CM-ST, Proposition 1.5] and [CM-DS, Theorem 3.11].

Proposition 3.7. Let Γ
geo
y X, where X is a geodesically complete CAT(0) space. Then Iso(X) (and

also Γ) acts minimally. Furthermore, Iso(X) has no fixed points at ∂X.

Proof. Suppose for contradiction that Γ does not act minimally. Then there is a Γ-invariant closed convex
subset Y ( X. Pick x ∈ X \ Y and let x′ be the projection of x on Y . Extend the geodesic segment
[x′, x] over x to get a ray r : [0,∞) → X with r(0) = x′. Observe that d(r(t), Y ) = d(r(t), x′) = t
since otherwise we get a triangle with two right (or even bigger) angles, see [BH, Proposition II.2.4(3)],
which is an absurd. Hence there are points arbitrary far away from Γ-orbit of any point from Y , which
contradicts the cocompactness. Since Iso(X) is even bigger group than Γ, it also acts minimally.
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Next part of the proposition follows by similar, but easier arguments as in [CM-DS, Theorem 3.11].
Suppose for contradiction that there is a point ξ ∈ ∂X, fixed by Iso(X). In particular, ξ is Γ-fixed.
Take any geodesic line c : R → X with c(∞) = ξ (it exists since X is geodesically complete) and
denote x0 := c(0). Let γn ∈ Γ be elements such that d(γnc(−n), x0) is bounded. Let {s1, . . . sm} be a
generating set of Γ. Recall that Γ is finitely generated by Švarc-Milnor Lemma, [BH, Proposition I.8.19].
Since c(∞) is Γ-fixed, the set {d(γ−1

n siγnx0, x0)|n ∈ N} is bounded for every i = 1, . . .m. Since Γ acts
properly and is discrete, the sequence (γ−1

n siγn)n∈N is (up to passing to a subsequence) constant for
every i = 1, . . .m. Pick γ̃ ∈ Γ such that γ−1

n siγn = γ̃−1siγ̃ for all n ∈ N and all i = 1, . . .m. In
particular, γ̃−1siγ̃c is at a bounded distance from c, hence parallel to c. Since si’s generate Γ, γ̃−1γγ̃c
and hence γc is at bounded distance from c for every γ ∈ Γ. Let P be the union of all geodesics
parallel to c. By what is written above, P is Γ-invariant and by minimality of the Γ-action, it must
be the whole X. By [BH, Theorem 2.14], X = P ∼= R × X ′ with ξ being the endpoint of the R-
factor. By the uniqueness from Theorem 3.4, the factor R must be a subspace of Rn. But the group
Rn oO(n) ≤ (Rn oO(n))× Iso(X1)× · · · × Iso(Xm) ≤ Iso(X) has no fixed point at infinity because it
contains reflection across the origin, x⃗ 7→ −x⃗, which is fixed point free at ∂Rn. This finishes the proof.
⋆

Remark 3.8. Note that for minimality of the action of Iso(X) the assumption of the existence of a group

Γ acting geometrically on X is not necessary. However, non-existence of Γ
geo
y X might cause presence

of Iso(X)-fixed points at ∂X, as shown by an example in [Hei].

In [CM-ST, Theorem 1.10] it is stated that under the assumptions of Proposition 3.7 every nontrivial
normal subgroup N E Iso(X) also acts minimally and without fixed points at ∂X. This property is called
geometric density (of normal subgroups). For our purposes, it is unnecessary for N to be without fixed
points in ∂X. A proof of the proposition below uses some nontrivial results from [BaL, Kle].

Proposition 3.9. For an irreducible CAT(0) space satisfying conclusions of Proposition 3.7, any normal
subgroup N of Iso(X) still acts minimally or it is trivial.

In the proof of that proposition and for Lemma 3.12, we will need the following definition. Recall
that for a subset A of a metric space, Nr(A) denotes the union all open balls of radii r with centers in A.

Definition 3.10. Let X be a metric space. The Hausdorff distance is a map dH : P(X)×P(X) → [0,∞]
that associates to each pair A,B ⊆ X the number inf{r ∈ [0,∞)|A ⊆ Nr(B) and B ⊆ Nr(A)}; infimum
of the empty set is ∞.

Most often, it is only important for us whether the Hausdorff distance between two subsets of a metric
space is finite or not.

Proof of Proposition 3.9. Suppose first that there is no minimal closed convex N -invariant subset of X.
Then there is a descending chain of closed convex N -invariant subsets Z1 ⊇ Z2 ⊇ . . . with

∩
m∈N Zm = ∅.

Fix a base point x0 ∈ X and let xm := PrZm(x0), the nearest point projections of x0 onto Zm. Passing to
a subsequence, we may assume that (xm)m∈N converges to ξ ∈ ∂X. First observe that ξ does not depend
on the choice of x0 since for some other base point at distance R from x0, its projection to Zm is at
distance at most R from xm (since projection on a closed convex subset of a CAT(0) space is 1-Lipschitz
map). We claim that ξ is Iso(X)-fixed. To see that, let g ∈ Iso(X) be arbitrary. Since N is normal in
Iso(X), the set gZm is also N -invariant subset of X for every m ∈ N and g ∈ Iso(X). Without loss of
generality, we may assume that Zm = conv(Nzm) for some point zm ∈ Zm. Hence

gZm = gconv(Nzm) = conv(gNzm) = conv(g(g−1Ng)zm) = conv(Ngzm).

But the Hausdorff distance between Ngzm and Nzm is finite (it is at most d(gzm, zm)), hence the
Hausdorff distance dH(Zm, gZm) is finite by Lemma 3.12 below. Hence Zm and gZm have the same
boundary at infinity, which means that g preserves ∂Zm for any m. In particular, Iso(X) preserves∩

m∈N ∂Zm. But the circumradius (in the metric <) ) of this intersection is at most π/2; indeed, for
any η ∈

∩
m∈N ∂Zm, we can choose a sequence ym ∈ Zm such that ym converges to η. By Proposi-

tion 2.1(ii), <) ξ, η = limm→∞ <) x0
(xm, ym), but each of the angles appearing in the limit is smaller than

π−<) xm(x, ym) ≤ π/2 by [BH, Proposition II.2.4(3)]. Since X is equipped with a geometric group action,
its Tits boundary is finite dimensional by [Kle], hence we can apply [BaL, Proposition 1.4] to ensure the
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canonical circumcenter of
∩

m∈N ∂Zm, which is Iso(X)-fixed point on ∂X. This is a contradiction with
Proposition 3.7.

Let now Z be a minimal closed convex N -invariant subset of X. As above, each gZ for g ∈ Iso(X)
is at finite Hausdorff distance from Z and is still minimal closed convex N -invariant subset of X. Let Z
be the family of all minimal closed convex subsets of X at finite Hausdorff distance from Z. We claim
that the function d(·, Z) is constant on each Z ′ ∈ Z. If it is not, then there exists r ∈ [0,∞) such that
Z ′
r := {z′ ∈ Z ′|d(z′, Z) ≤ r} is a proper subset of Z ′. Since the metric d is convex, Z ′

r is closed convex
subset of Z ′. It is clearly N -invariant since moving elements from Z ′ by isometries from N does not
change the distance to Z. But this contradicts minimality of Z ′.

Let x0 ∈ Z continue to denote a base point. Let Y be a subset of X consisting of the nearest point
projections of x0 to elements of Z. By the Sandwich lemma (see [BH, Exercise II.2.12(2)]), conv(Z1∪Z2)
is isometric to Z × [0, dH(Z1, Z2)] for any pair Z1, Z2 ∈ Z. Hence Y is convex and

∪
Z is isometric to

Z × Y . As in the first paragraph, we find out that
∪

Z is Iso(X)-invariant. By minimality, it is the
whole space X. Since X is irreducible, either Z or Y is trivial. In the first case, N acts trivially on X
and is hence trivial. In the later case, X = Z and hence N acts minimally. ⋆

Remark 3.11. The same proof as above works in the situation where we take a normal subgroup N
of any subgroup G ≤ Iso(X), acting minimally and without fixed points at infinity instead of the whole
Iso(X) in Proposition 3.9.

Lemma 3.12. Let U and W be two subsets of a CAT(0) space X at finite Hausdorff distance. Then the
Hausdorff distance between conv(U) and conv(W ) is also finite.

Proof. We use the following characterization of a convex hull of a set U . Let U0 := U and Un :=∪
x,y∈Un−1

[x, y] for n ≥ 1. Then conv(U) =
∪

n∈N Un.

Since the metric on CAT(0) space is convex, it follows that

dH(Un,Wn) ≤ dH(Un−1,Wn−1) ≤ · · · ≤ dH(U,W ) for all n ∈ N.

This can be proven by induction. For any u ∈ Un, there exist x, y ∈ Un−1 such that u ∈ [x, y]. Let
x′, y′ ∈ Wn−1 be points such that d(x, x′), d(y, y′) ≤ dH(Un−1,Wn−1). By convexity of the metric
on CAT(0) space, there is u′ on [x′, y′] ⊆ Wn with d(u, u′) ≤ max{d(x, x′), d(y, y′)} and hence Un ⊆
NdH(Un−1,Wn−1)(Wn). By symmetry, dH(Un,Wn) ≤ dH(Un−1,Wn−1).

We conclude that dH(conv(U), conv(W )) ≤ dH(U,W ). Since the closure does not change the Hausdorff
distance, we are done. ⋆

The next step on the way to the dichotomy requires the notion of the amenable and the solvable
radical of a locally compact topological group, which is (as well as a definition of amenability) given in
§A.2. Some properties of the behavior of amenable subgroups in CAT(0) context are taken from [AB].

Corollary 3.13. Under the assumptions of Proposition 3.9, N has trivial amenable radical.

Proof. If N is trivial, it has trivial amenable radical. Otherwise N acts minimally. Suppose that the
amenable radical A of N is nontrivial. The main result of Adams and Ballmann, namely [AB, Theorem],
states that A either preserves a flat F in X or fixes a point at ∂X. The former case is impossible. To
see this, observe that the set of all flats F ′ at finite Hausdorff distance from F splits as a product F × Y
(see the last part of the proof of Proposition 3.9). Since A is a normal subgroup of N , the later space
is N -invariant, hence equals X by minimality of the N -action. But X is indecomposable (hence Y is a
point) and not isometric to a flat, a contradiction.

The second case (A-fixed point at ∂X) can be excluded as follows. By amenability of A, there is
an A-invariant probability measure µ on ∂X (see Appendix A.2). From the proof of [AB, Theorem], we
deduce that the support of µ is contained in the set of flat points. In geodesically complete case, the set of
flat points coincide with the boundary of the Euclidean factor. Since X is non-Euclidean and irreducible,
the set of flat points is empty, hence the support of a probability measure µ is empty, which is absurd.
Hence the amenable radical of Iso(X) is trivial.

Since every solvable group is amenable, the solvable radical of Iso(X) is trivial as well. ⋆

Proposition 3.14. For an irreducible CAT(0) space X, not isometric to R, any group G ≤ Iso(X)
acting minimally on X has trivial centralizer ZIso(X)(G).
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Proof. Suppose there is a nontrivial g ∈ Iso(X), commuting with each element of G. Then the function
τg : X → [0,∞), defined by τg(x) = d(x, gx) is clearly G-invariant. If there are 0 ≤ r < r′ in the image
of τg, then τ−1

g ([0, r]) is closed (since τg is continuous) convex (since metric on X is convex) G-invariant
(since τg is G-invariant) subset of X. This contradicts the minimality of the G-action. Hence τg must be
constant, in particular, g is a Clifford translation [BH, Definition II.6.14]. By [BH, Theorem II.6.15(1)],
X splits as R×X ′. Since X is not a real line, X ′ is nontrivial, which contradicts irreducibility of X. ⋆

3.3 Dichotomy for the full isometry group

To prove the dichotomy for the isometry group of a cocompact, geodesically complete CAT(0) space,
admitting some geometric action of a discrete group, we refer to the following well known results.

Lemma 3.15. An outer automorphism group of a Lie group with trivial amenable radical is finite.

Proof. See [Mon, Theorem 11.3.4] ⋆

Theorem 3.16 ([Cap, Corollary III.3]). Let X be a geodesically complete CAT(0) space admitting
some geometric group action. Then Iso(X) is virtually a product of RnoO(n), virtually connected semi-
simple Lie groups without compact factors and totally disconnected topological groups (which may as well
be discrete).

Proof. By Theorem 3.4, X splits as Rn ×X1 × · · · ×Xm with Xi indecomposable and Iso(X) virtually
splits as (Rn oO(n))× Iso(X1)× · · · × Iso(Xm). Hence Γ acting geometrically on X has a finite index
subgroup Γ′, which respects the product decomposition. As deduced at the second part of the proof of
Proposition 3.7, Γ′-fixed points at ∂X are contained at the boundary of the Euclidean factor. Hence
induced Γ′-action on each ∂Xi is fixed point free. Note also that each Xi is minimal (i.e. Iso(Xi) acts
minimally) since minimality of the Iso(X)-action passes to a finite index subgroup and hence to factors.
Hence Proposition 3.9 applies. Let Gi be the identity component of Iso(Xi). It is closed normal subgroup
of Iso(Xi), hence by Proposition 3.9, it is either trivial in which case Iso(Xi) is totally disconnected or
it acts minimally on Xi. To see that in the later case, Gi is a Lie group, it is enough to prove that there
is no non-trivial compact normal subgroup of Gi and then apply Theorem A.6. Suppose that K E Gi is
compact. Then K has nontrivial fixed point set in Xi, which is Gi-invariant by normality. But Gi acts
minimally, hence fixed point set of K must be the whole Xi. In particular, K = {1}. This also proves
the absence of compact factors in Gi.

Since Gi has trivial solvable and amenable radical by Corollary 3.13, Gi is semi-simple by Defini-
tion A.9. By Lemma 3.15, Out(Gi) is finite. Hence the kernel of ϕ : Iso(Xi) → Out(Gi) (conjugation)
is a normal subgroup of Iso(Xi) of finite index. It is clear that Ker(ϕ) = Gi · ZIso(Xi)(Gi). By Proposi-
tion 3.14, ZIso(Xi)(Gi) = {1}, hence Ker(ϕ) = Gi is a finite index subgroup of Iso(Xi). ⋆

3.4 Totally disconnected isometry group

The behavior of a totally disconnected isometry group of a CAT(0) space, similar to discrete groups, will
be an important tool in the proof of a version of the flat closing conjecture for reducible CAT(0) spaces.
To deduce all the properties we need, we have to assume geodesic completeness of a space. We are going
to prove the three important theorems, [CM-ST, Theorem 6.1, Corollary 6.3(iii) and Proposition 6.8].

Theorem 3.17 (Open stabilizers). Let X be a proper cocompact geodesically complete CAT(0) space
with a totally disconnected isometry group. Then the stabilizer of every bounded subset of X is open in
Iso(X).

Proof. By Proposition 3.7 and Remark 3.8, Iso(X) acts minimally. Let C denote the set of all points
in X having an open stabilizer in Iso(X). By Theorem A.7, there exists a compact open subgroup
K ≤ Iso(X), which obviously fixes a point of X, hence C is nonempty. Furthermore, C is Iso(X)-
invariant since StabIso(X)(gx) = gStabIso(X)(x)g

−1 and conjugation by g ∈ Iso(X) is a homeomorphism
of Iso(X). Given two points x, y ∈ C, StabIso(X)(x) and StabIso(X)(y) are compact open subgroups and
hence Sx,y := StabIso(X)(x) ∩ StabIso(X)(y) is a compact open subgroup. Note that Sx,y fixes x and y,
hence fixes the whole geodesic segment [x, y]. Thus C is convex. By minimality of the Iso(X)-action, it
is dense.
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By Corollary A.8, C can be expressed as a union of increasing chain of closed convex sets (Cn)n∈N,
where Cn is a fixed point set of

∩n
i=1 Ki, where (Kn)n∈N is a basis of neighborhoods of the identity of

Iso(X), consisting of compact open subgroups. By the following lemma, C equals X and every bounded
subset is contained in some Cn, hence has open stabilizer. ⋆

Lemma 3.18 ([CM-ST, Lemma 6.4]). Let C1 ⊆ C2 ⊆ . . . be an increasing chain of closed convex
subsets of a proper geodesically complete CAT(0) space X, whose union is dense in X. Then every
bounded subset of X is contained in Cn for some n.

Proof. Suppose for contradiction that there is a bounded subset B ⊆ X, which contains point yn outside
Cn for every n ∈ N. Since B is bounded and the sequence Cn is increasing, there is a bound R < ∞ such
that d(yn, Cn) ≤ R for all n ∈ N. We will construct a sequence zn of points in some neighborhood of B
with d(zn, zm) ≥ 1 for all m ̸= n. Let xn be the projection of yn to Cn and let rn : [0,∞) → X be a
geodesic ray emanating from xn through yn. Notice that d(rn(t), Cn) = t. Since

∪
n∈N Cn is dense in X,

for each x ∈ X there is n such that d(x,Cn) < 1.
Let z1 = r1(2) and n1 = 1. Suppose we have constructed z1, . . . zk with the following properties.

There is a sequence 1 = n1 < · · · < nk such that d(zi, Cni) = 2 for i = 1, . . . k and d(zi, Cni+1) < 1 for
i = 1, . . . k − 1. Let nk+1 be the natural number such that d(zk, Cnk+1

) < 1 and let zk+1 = rnk+1
(2).

We add a new term zk+1 to our sequence, still satisfying required properties. Observe that by the
construction, for i < j we have

d(zi, zj) ≥ d(zj , Cnj )− d(zi, Cnj )
Cni+1

⊆Cnj

≥ 2− d(zi, Cni+1) ≥ 1

and that
d(zi, B) ≤ d(zi, yni) ≤ d(zi, xni) + d(xni , yni) ≤ 2 +R.

Hence assuming that B * Cn for every n ∈ N, we can construct arbitrary many points in NR+2(B) at
pairwise distances at least 1. But this contradicts properness of X. ⋆

Theorem 3.19 (Semi-simple isometries). Let X be a proper cocompact geodesically complete CAT(0)
space with a totally disconnected isometry group. Then every element of Iso(X) acts on X as a semi-
simple isometry.

Proof. Suppose for a contradiction that there is a parabolic g ∈ Iso(X). Let xn ∈ X be a sequence such
that d(gxn, xn) < |g| + n−1. Since Iso(X) is cocompact, we can take a sequence of gn ∈ Iso(X) such
that yn := gnxn lies in a prescribed compact set K ⊆ X. Then gngg

−1
n is a sequence that moves yn ∈ K

for less than |g|+ n−1 = |gngg−1
n |+ n−1. By properness of the Iso(X)-action, it sub-converges to some

g′ ∈ Iso(X) with d(g′y, y) = |g′| = limn→∞ |gngg−1
n | = |g| for an accumulation point y of a sequence

(yn)n∈N. By Theorem 3.17, the stabilizer Sy ≤ Iso(X) of y is open, hence g′Sy contains all but finitely
many gngg

−1
n . But each element of g′Sy moves y to g′y, hence d(gngg

−1
n y, y) = d(g′y, y) = |gngg−1

n |,
which contradicts parabolicity of g. ⋆

Theorem 3.20 (Alexandrov angle rigidity, [CM-ST, Proposition 6.8]). Let X be a proper cocom-
pact geodesically complete CAT(0) space with a totally disconnected isometry group. Then there is ε > 0
such that for any elliptic isometry g ∈ Iso(X) and any x ∈ X not fixed by g, we have <) c (gx, x) ≥ ε,
where c denotes the projection of x on the set of g-fixed points.

Proof. Suppose there is no ε with desired properties. Hence we can find a sequence (gn)n∈N of elliptic
isometries of X, a sequence (xn)n∈N of points in X such that gnxn ̸= xn and (cn)n∈N, the sequence of
projections of xn to gn-fixed point set with the property that limn→∞ <) cn(xn, gnxn) = 0. Without loss
of generality, we may assume that d(xn, cn) = 1 since otherwise, we can replace xn with a point on a
geodesic ray from cn through xn at distance 1 from cn.

SinceX is cocompact, there is a sequence (hn)n∈N in Iso(X) such that hncn (sub)converges to some c ∈
X. Pass to another subsequence such that hnxn converges to some x ∈ X. By definition of the topology
on Iso(X), hngnh

−1
n has an accumulation point g′ ∈ Iso(X). Note that <) hncn(hnxn, (hngnh

−1
n )hnxn) =

<) cn(xn, gnxn). By CAT(0) property, d(hnxn, hngnh
−1
n (hnxn)) tends to 0 as n tends to infinity. Hence

x, as well as c, is g′-fixed. By Theorem 3.17, the stabilizer Gx of x is open and hence contains hngnh
−1
n

for all but finitely many n. Since hnxn converges to x and x is hngnh
−1
n -fixed, it is not hncn which is the

projection of hnxn to (hngnh
−1
n )-fixed point set, since 1 = d(hncn, hnxn) for all n, but d(hnxn, x) tends

to 0 as n tends to infinity. ⋆



Chapter 4

Existence of regular elements

The flat closing conjecture in its most general form can be stated as follows.

Conjecture 4.1 (Flat closing). Let Γ
geo
y X, where X is a proper CAT(0) space, containing an isometric

embedded copy of Rm. Does Γ contain a copy of Zm?

The name for the conjecture comes from the flat torus theorem – if the conjecture holds, this means
that if X contains a flat, it also contains a closed flat or a periodic flat, i.e. a flat that is preserved by
some free abelian subgroup of Γ.

In that form, Swenson answered the question affirmatively for m = 1, see Theorem 2.10 or [Swe,
Theorem 11]. For higher m, it is believed that the conjecture is wrong, although there is no candidate
for the counterexample. The evidence for that belief comes from work of Wise, [W1, W2], where he
constructed a proper and cocompact CAT(0) space with isometrically embedded copy of R2, which is
not periodic, and even an example with an embedded copy of R2, which is not the limit of periodic flats.
(But still, some other flats in Wise’s examples are periodic.)

Anyway, there are some special cases when the flat closing conjecture holds. In early nineties, Bangert
and Schröder proved it for real analytic manifolds of non-positive sectional curvature, see [BS]. In
[SW2], Sageev and Wise proved it for CAT(0) cube complexes under some additional assumptions on
combinatorial-geometrical structure.

In this chapter, we will prove the following theorem, which implies a version of flat closing conjecture,
namely Corollary 4.3.

Theorem 4.2. Assume that X is geodesically complete and Γ
geo
y X. Then Γ contains a hyperbolic

element which acts as a hyperbolic isometry on each indecomposable de Rham factor of X.

Every CAT(0) space X as in the theorem admits a canonical de Rham decomposition, see Theorem 3.4
and Proposition 3.5. Notice that the number of indecomposable de Rham factors of X is a lower bound
on the dimension of all maximal flats in X, although two such maximal flats need not have the same
dimension in general. As expected, we deduce a corresponding lower bound on the maximal rank of free
abelian subgroups of Γ.

Corollary 4.3 ([CZ, Corollary 1]). If X is a product of m geodesically complete factors, then discrete
Γ, which acts properly and cocompactly on X, contains a copy of Zm.

The first step of the proof consists in applying Proposition 3.5 and Theorem 3.4, which ensures that
X splits as

X ∼= Rn ×X1 × · · · ×Xm.

Invoking Theorem 3.4 once again, Iso(X) possesses a finite index subgroup which splits as a direct
product of Rn o O(n) and Iso(Xi)’s. Hence also Γ has a finite index subgroup preserving the product
decomposition of X. Each Iso(Xi) is by Theorem 3.16 either a semi-simple virtually connected Lie group
or a totally disconnected locally compact group. The next essential point is that, by Theorem A.12,
the group Γ virtually splits as Zn × Γ′, and the factor Γ′ (resp. Zn) acts properly and cocompactly on
X1 × · · · ×Xm (resp. Rn). Therefore, our main theorem is a consequence of the following.
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Proposition 4.4. Let X = M × Y1 × · · · × Yq, where Iso(M) is a semi-simple virtually connected
Lie group with trivial center and no compact factors and Yi’s are geodesically complete locally compact
CAT(0) spaces with totally disconnected isometry groups. Any discrete cocompact group of isometries of
X contains an element (γM , γ1, . . . γq), acting as an element with ZIso(M)(γM ) ∼= Rrank(Iso(M)), and with
γi a hyperbolic isometry of Yi for all i.

As in the discussion in the introduction, this yields a lower bound on the rank of maximal free abelian
subgroups of Γ, from which Corollary 4.3 follows.

Corollary 4.5. Let X = M ×Y1 × · · · ×Yq be as in Proposition 4.4. Then any discrete cocompact group
of isometries of X contains a copy of Zrank(Iso(M))+q.

Proof. Let Γ ≤ Iso(X) be a discrete subgroup acting cocompactly. Upon replacing Γ by a subgroup
of finite index, we may assume that Γ preserves the given product decomposition of X. Let γ ∈ Γ
be as in Proposition 4.4 and let γM (resp. γi) be its projection to Iso(M) (resp. Iso(Yi)). Then
min(γM ) = Rrank(Iso(M)) and for all i we have min(γi) ∼= R × Ci for some CAT(0) space Ci, see [BH,
Theorem II.6.8(5)]. Hence the desired conclusion follows from the following lemma. ⋆

Lemma 4.6. Let X = X1 × · · · ×Xp be a proper CAT(0) space and Γ a discrete group acting properly
cocompactly on X. Let also γ ∈ Γ be an element preserving some ni-dimensional flat in Xi on which it
acts by translation, for all i. Then Γ contains a free abelian group of rank n1 + · · ·+ np.

Proof. By assumption γ preserves the given product decomposition of X. We let γi denote the projection
of γ on Iso(Xi). Observe that

min(γ) = min(γ1)× · · · ×min(γp).

By hypothesis, we have min(γi) ∼= Rni ×Ci for some CAT(0) space Ci. Therefore min(γ) ∼= Rn1+···+np ×
C1 × · · · × Cp. By Theorem 2.5, the centralizer ZΓ(γ) acts geometrically on min(γ). Therefore, invoking
Theorem A.12, we infer that Zn1+···+np is a (virtual) direct factor of ZΓ(γ). ⋆

It remains to prove Proposition 4.4. We proceed in three steps. The first one provides an element
γY ∈ Γ acting as a hyperbolic isometry on each Yi. This combines an argument of Swenson, Theorem 2.10,
with the phenomenon of Alexandrov angle rigidity, Theorem 3.20. The latter requires the hypothesis of
geodesic completeness. The second step uses that Γ has subgroups acting properly and cocompactly on
M , and thus contains an element γM acting as an R-regular isometry of M by [BL]. The last step uses a
result from [PR] ensuring that for all elements δ′ in some Zariski open subset of Iso(M) and all sufficiently
large n > 0, the product γn

Mδ′ is R-regular. Invoking the Borel density theorem, i.e. Theorem A.11, we
finally find an appropriate element δ ∈ Γ such that the product γ = γn

MδγY has the requested properties.
We now proceed to the details.

Proposition 4.7. Let Y = Y1 × · · · × Yq, where Yi is a geodesically complete locally compact CAT(0)
space with totally disconnected isometry group, and let G ≤ Iso(Y ) be cocompact. Then G contains an
element acting on Yi as a hyperbolic isometry for all i.

Proof. Upon replacing G by a finite index subgroup, we may assume that G preserves the given product
decomposition of Y , see Theorem 3.4. Let ρ : [0,∞) → Y be a geodesic ray which is regular, in the
sense that its projection to each Yi is a ray (in other words, if we decompose ρ according to the given
product decomposition of Y , we have ρ = (ρ1, . . . ρq) with none of ρi being a constant map).

Since G is cocompact, we can find a sequence (gn)n∈N in G and a strictly increasing sequence (tn)n∈N
of positive integers such that the sequence of maps

ρn : [−tn,∞) → Y, t 7→ gn.ρ(t+ tn)

converges uniformly on compact subsets of R to a geodesic line ℓ : R → Y . Set hi,j = g−1
i gj ∈ G and

consider the angle
θ = <) ρ(ti)

(
h−1
i,j .ρ(ti), hi,j .ρ(ti)

)
.

Observe that by the construction of hi,j , the angle θ is arbitrarily close to π for i < j large enough.
In [Swe, Theorem 11], it is proven in the case of discrete group acting geometrically on Y that if the
angle θ is close enough to π, then the isometry hi,j is hyperbolic. The proof uses the uniform upper
bound on the order of torsion elements in CAT(0) group. There is no such bound in our setting (since G
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may be non-discrete), but still we are able to apply a geometric argument, Alexandrov angle rigidity (see
Theorem 3.20). If hi,j is elliptic, let c be the projection of ρ(ti) onto hi,j-fixed point set. We can bound an
angle between [ρ(ti), c] and [hi,j .ρ(ti), c] in terms of θ. Indeed, the isosceles triangles △

(
c, h−1

i,j .ρ(ti), ρ(ti)
)

and △
(
c, ρ(ti), hi,j .ρ(ti)

)
are congruent, hence

<) c (ρ(ti), hi,j .ρ(ti)) ≤ π −<) c (ρ(ti), hi,j .ρ
′(ti))−<) c

(
ρ(ti), h

−1
i,j .ρ(ti)

)
≤ π −<) ρ(ti)

(
h−1
i,j .ρ(ti), hi,j .ρ

′(ti)
)

= π − θ.

Now, if θ is close enough to π, this contradicts Alexandrov angle rigidity.

Y2

Y1

Y

b

b

b

θ

b

b

b

x
(i)
2
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(i)
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b b

b

x
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1 ρ1(ti)

y
(i)
1θ1

Figure 4.1: Projections of [h−1.ρ(ti), ρ(ti)] ∪ [ρ(ti), h.ρ(ti)] to the factors.

Since hi,j respects the product decomposition of Y , we can apply this procedure to each Yk-component
of hi,j . Fix some small δ > 0. Let x(i) (resp. y(i)) be the point at distance δ from ρ(ti) and lying on the
geodesic segment [h−1

i,j .ρ(ti), ρ(ti)] (resp. [ρ(ti), hi,j .ρ(ti)]). By construction, for i < j large enough, the

union of the two geodesic segments [x(i), ρ(ti)]∪[ρ(ti), y(i)] lies in an arbitrary small tubular neighborhood
of the geodesic ray ρ. Since the projection Y → Yk is 1-Lipschitz, it follows that the Yk-component of

[x(i), ρ(ti)] ∪ [ρ(ti), y
(i)], which we denote by [x

(i)
k , ρk(ti)] ∪ [ρk(ti), y

(i)
k ], is uniformly close to ρk, the

Yk-component of ρ, which is nontrivial by construction. Therefore, the angle

θk = <) ρk(ti)(x
(i)
k , y

(i)
k )

is arbitrarily close to π for i < j large enough. Pick i < j so large that θk > π − εk for all k = 1, . . . q,
where εk > 0 is the constant from Alexandrov angle rigidity for Yk. Set h = hi,j and let hk be the
projection of h on Iso(Yk). By construction hk is hyperbolic for all k and we are done. ⋆

Proof of Proposition 4.4. Let Γ be a discrete group acting properly and cocompactly on X. First ob-
serve that (after passing to a finite index subgroup) we may assume that Γ preserves the given product
decomposition of X, see Theorem 3.4.

Let G be the projection of Γ to Iso(Y1)×· · ·×Iso(Yq). Then G acts cocompactly on Y = Y1×· · ·×Yq.
Therefore it contains an element g acting as a hyperbolic isometry on Yi for all i by Proposition 4.7.

Let γ = (α, h) be the decomposition of γ along the splitting Iso(X) = Iso(M) × Iso(Y ). By
construction h acts as a hyperbolic isometry on Yi for all i. Pick some y ∈ min(h) ⊆ Y .

Let U ≤ Iso(Y ) be the pointwise stabilizer of {y, γy}. Notice that every element of Iso(Y ) contained
in the coset Uh maps h−1y to y and y to h.y, and therefore acts also as a hyperbolic isometry on Yi for
all i.

On the other hand U is a compact (since Iso(Y ) acts properly) open (by Theorem 3.17) subgroup
of Iso(Y ). Set ΓU = Γ ∩ (Iso(M) × U). Notice that ΓU acts properly and cocompactly on M by
Theorem A.13. In other words the projection of ΓU to Iso(M) is a cocompact lattice. Abusing notation
slightly, we shall denote this projection equally by ΓU .
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By the appendix from [BL] (see also [Pra] for an alternative argument), the group ΓU contains an
element γM acting as an element with a centralizer of maximal possible dimension, i.e. as an R-regular
element on M . By [PR, Lemma 3.5] there is a Zariski open set V = V (γM ) in Iso(M) with the following
property. For any δ ∈ V there exists nδ such that an element γn

Mδ is R-regular for any n ≥ nδ. By the
Borel density theorem (see Theorem A.11), the intersection ΓU ∩ V α−1 is nonempty. Pick an element
δ ∈ ΓU ∩ V α−1. Then δα ∈ V which means by definition that γn

Mδα is R-regular for all n ≥ n0 for some
integer n0.

Pick an element γ′
M ∈ Γ (resp. δ′ ∈ Γ) which lifts γM (resp. δ). Set

γ = (γ′
M )n0δ′γY ∈ Γ.

The projection of γ to Iso(M) is γn0

M δα and is thus R-regular. The projection of γ to Iso(Y ) belongs to
the coset Uh, and therefore acts as a hyperbolic isometry on Yi for all i. ⋆
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Appendix A

Generalities about isometry groups

A.1 Topology on isometry group

A natural topology on the group of transformations of a metric space is a compact open topology.

Definition A.1. Let X be a topological space. The compact open topology on the set of continuous
maps X → X is the topology with sub-basis consisting of sets

WK,U := {f : X → X | f(K) ⊆ U},

where K runs over compact subsets of X and U runs over open subsets of X.

Equipped with this topology, the isometry group of a proper metric space turns out to be a nice
topological group.

Theorem A.2. Let X be a proper metric space. Then the full isometry group Iso(X), equipped with
the compact open topology, is a locally compact (Hausdorff) topological group, and the natural action of
Iso(X) on X is continuous and proper.

Proof. See [Cap, Exercise III.1]. ⋆

Note that the compact open topology on the isometry group of X as in the theorem above coincide
with the point open topology, i.e. the topology with a sub-basis {WF,U |U open and F finite}, [Cap,
Exercise III.1(iv)]. Since X is a proper metric space, it is second countable, hence it is enough to take
only countably many sets WK,U in a sub-basis for compact open (or point open) topology, namely those
with U being a member of some countable basis of X and K finite.

A.2 Amenability, radical

In measure theory, there is a famous statement, the Banach-Tarski paradox, which says that it is possible
to cut a unit ball B3 ⊆ R3 into finitely many pieces (i.e. we can express B3 as a finite disjoint union⨿n

i=1 An) and then on each An, we can apply an isometry φn ∈ R3oO(3) such that φn(An) are pairwise
disjoint and

⨿n
i=1 φn(An) is isometric to a disjoint union of two unit balls in R3. This paradox is a

consequence of the fact that O(3) contains a copy of a free group of rank 2, denoted by F2, and that
F2 admits a paradoxical decomposition, i.e. there exist a decomposition F2 = X1 ⊔ X2 ⊔ Y1 ⊔ Y2 and
elements a1, a2, b1, b2 ∈ F2 such that F2 = a1X1 ⊔ a2X2 = b1Y1 ⊔ b2Y2.

According to the Banach-Tarski paradox, one defines a class of groups that behave non-paradoxically,
i.e. do not allow a paradoxical decomposition as F2 does. It turns out that there are several equivalent
definitions (which, at first glance, seem quite different one from another) for that class of groups. After
one of the definitions, the class of non-paradoxical groups is called amenable groups.

Definition A.3 (Amenable group, two definitions). A (locally compact topological) group G is called
amenable if it admits a finitely additive G-invariant probability measure, called a mean. Equivalently, G
is amenable if for every continuous action of G on any compact Hausdorff topological space X, there is
a G-invariant (countably additive) probability measure on X.
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The following notion is important in the proof of the dichotomy for isometry groups of CAT(0) spaces
of our interest. We refer the reader to [Fur, §3] for characterization of an amenable radical.

Definition A.4 (Amenable (solvable) radical). An amenable (solvable) radical of a topological group
is the maximal normal amenable (solvable) subgroup.

There are several references on amenable groups. We refer the reader to [T2] for some basic properties
and examples and for further references, also on the Banach-Tarski paradox.

A.3 Hilbert’s fifth problem

In this section we recall the original statement/question of the Hilbert’s fifth problem, one of the twenty
three problems posed at the 1900’s International Congress of Mathematics in Paris. We apply it to prove
Theorem 3.16, the structure theorem for the isometry group of a CAT(0) space with some nice properties.
The topic is summarized from [T1, Chapter 1] and [Cap, Lecture III]

Question A.5 (Hilbert’s 5th problem). Is every topological group, which is locally Euclidean, neces-
sary a Lie group?

The solution of that problem was published in 1952, see [Gla, MZ1]. A bit later, the following
restatement of it was proven by the same mathematicians.

Theorem A.6 (Glaeson; Montgomery-Zippin). Let G be a connected locally compact topological
group. Then any identity neighborhood in G contains a compact normal subgroup K E G such that G/K
is a Lie group.

The theorem says that every connected locally compact topological group can be approximated by
Lie groups. In other words, G as in the theorem above is isomorphic to an inverse limit of a sequence of
Lie groups. Think of terms in a sequence as the quotients of G by smaller and smaller compact normal
subgroups. This point of view is crucial to establish the fact that Theorem A.6 answers Question A.5.
See [T1, §1.6.3] for details.

The following theorem deals with the opposite extreme of connected topological groups – totally
disconnected topological groups. In principle, this is all we need to know, since for any topological group
G, the connected component of identity, denoted by G◦, is (by definition) a connected topological group
which is normal in G and G/G◦ is totally disconnected.

Theorem A.7 (Van Dantzig, [Dan] and [T1, Theorem 1.6.7]). Let G be a totally disconnected lo-
cally compact topological group. Then any neighborhood of the identity contains a compact open subgroup.

A similar version of this theorem has also been stated in Bourbaki’s Elements of Mathematics.

Corollary A.8. Let X be a proper metric space with totally disconnected isometry group. Then the
identity element of Iso(X) has a countable basis of neighborhoods, consisting of compact open subgroups.

Proof. Since Iso(X) is second countable, it is also first countable. Let (Un)n∈N be a basis of neighborhoods
of idX . For each Un, there is a compact open subgroup Kn ≤ Iso(X) by Theorem A.7. ⋆

A.4 Lie groups

Let us recall that the main examples of Lie-type CAT(0) spaces (i.e. CAT(0) spaces X with Iso(X) being
Lie group) are symmetric spaces of non-compact type. See Appendix B for detailed discussion. Note
that without geodesic completeness, there are also exotic examples of CAT(0) spaces with Lie isometry
group, see [MP].

Note that we are dealing with semi-simple virtually connected real Lie groups with trivial center
and without compact factors. Everything is self-explaining, except the semi-simplicity, which has several
equivalent definitions. We use the following one.

Definition A.9 (Semi-simple Lie group). A Lie group G is semi-simple if it has trivial solvable
radical.
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The following result is used several times in the proof of Theorem 4.4 in order to find elements with
appropriate properties in discrete subgroups of Lie group. It is proven in [Bor, Statement (ii)]. Recall
the definition of a lattice.

Definition A.10. Let G be a topological group. A lattice Γ in G is a discrete subgroup such that G/Γ
carries a G-invariant probability measure. A lattice is called uniform if the quotient G/Γ is compact.

Observe that for discrete Γ ≤ G, the compactness of the quotient G/Γ implies the existence of a
G-invariant probability measure on that quotient. Hence since Iso(X) acts properly on X, we know that

for Γ
geo
y X, the group Γ is a uniform lattice in Iso(X).

Recall that the Zariski topology on matrix groups is the topology whose closed sets are zeros of
polynomial equations in matrix coefficients. We use the Zariski topology in the proof of the existence of
regular elements in CAT(0) groups via the results from [PR] and the following theorem.

Theorem A.11 (Borel density theorem, [Bor]). A lattice in a semi-simple Lie group without compact
factors is Zariski dense.

A.5 Products

Here we present two tools from the theory of locally compact groups that allow us to find an isometry
γ in Γ acting geometrically on a product Rn ×X × Y , where X is a Lie-type factor and Y has a totally
disconnected isometry group, such that γ acts hyperbolically on all factors.

First, we split off Euclidean factor on the algebraic level. The following generalization of Bieberbach’s
theorem is due to Caprace and Monod. For the original (slightly more general) statement the reader can
look at [CM-DS, Theorem 3.8]. Originally, Bieberbach conjectured that any lattice in isometry group
of Rn is virtually Zn. The proof can be found in [Aus]. The following theorem deals with lattices in a
product of Rn with some other CAT(0) space.

Theorem A.12. Let Γ
geo
y X, where X splits as a product Rn×X ′, where X ′ is geodesically complete and

without Euclidean factor. Then Γ virtually splits as Zn × Γ′, where Zn acts by translations on Rn-factor

and trivially on X ′ and Γ′ geo
y X ′.

To prove that theorem, one needs to analyze lattices in the product (RnoO(n))×G×H, where G is
a semi-simple Lie group with trivial center and has no compact factors and H is a totally disconnected
locally compact group. Note that the product G×H appears as a finite index subgroup of Iso(X ′).

Once we split off Rn, there remain two factors, one with semi-simple Lie isometry group and another
with a totally disconnected isometry group. To deal with them, we need the following.

Theorem A.13 ([CM-DS, Lemma 3.2]). Let G = S × D, where S is a semi-simple Lie group and
D is a totally disconnected locally compact topological group. Let Γ be a lattice in G and let U ≤ D be a
compact open subgroup. Then ΓU := Γ ∩ (S × U) is a lattice in S × U . In particular, the projection of
ΓU to S is a lattice in S.
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Appendix B

On symmetric spaces

The example of non-positively curved symmetric space is the space P1(n,R) of positive definite n × n
matrices of determinant 1 equipped with the Riemannian metric ⟨X,Y ⟩P = Tr(XP−1Y P−1). (The
tangent space at P ∈ P1(n,R) can readily be identified with the space of symmetric matrices X with

Tr(XP−1) = Tr(
√
P−1X

√
P−1) = 0.) In fact if M is any symmetric manifold of non-compact type there

exists a diffeomorphism onto a totally geodesic submanifold of some P1(n,R). The pull-back metric on M
obtained by means of the embedding coincides with the original metric on M up to a constant multiple on
each irreducible de Rham factor. See Eberlein [Ebe] for a more detailed account of symmetric manifolds.

An important aspect in the study of a Riemannian manifold is the investigation of isometries as well
as the group of all isometries. Here we address the problem of classification of the Riemannian isometries
of P1(n,R). Our vantage point, however, is that of CAT(0) geometry as it affords greater flexibility and
lucidity by neglecting the differentiable structure where it is possible.

The classification of all isometries of P1(n,R) is by no means trivial. Recently, Fujiwara, Nagano,
and Shioya [FNS] classified the isometries and their fixed point sets for the connected component of the
identity in the full group of isometries of P1(3,R). To some extent that achievement was an application of
their more general investigation of parabolic isometries of CAT(0) spaces. Here we classify the isometries
of P1(3,R) in the connected component of the inversion σ(P ) = P−1. In particular, we note that there
are parabolic isometries in that component and we determine their fixed point set at infinity, thereby
solving a problem posed by Fujiwara, see [Fuj, Problem 4.1].

To every matrix g ∈ SL(n,R) we can associate the Riemannian isometry g : P1(n,R) → P1(n,R)
sending each P to gPgT . The resulting representation SL(n,R) → Iso(P1(n,R) induces an isomorphism
of PSL(n,R) and the identity component of Iso(P1(n,R)). (See [BH, Chapter II, §10] for details.) By
virtue of that isomorphism we view PSL(n,R) as a subgroup of Iso(P1(n,R)). Similarly we associate to
every element g ∈ SL(n,R) the Riemannian isometry g̃ : P1(n,R) → P1(n,R) sending each P to gP−1gT .
This results in a diffeomorphism of PSL(n,R) and the component of inversion in Iso(P1(n,R)) which
we denote by PSL(n,R)σ. Note that for odd n we can identify SL(n,R) = PSL(n,R).

The isometry group Iso(P1(n,R)) has exactly two components for each n > 2. To see this, observe that
the transvections (ie. composition of two symmetries Sx and Sy) form a finite index normal subgroup
of the whole isometry group. Since the map P 7→ P−T is the only nontrivial outer automorphism
of PSL(n,R) for n > 2 we have that index [Iso(P1(n,R)) : PSL(n,R)] is two. Hence we now have a
technique to determine geometric objects (minimal/fixed point set and fixed points at infinity) associated
to any isometry of P1(n,R). We apply it to illustrate the advantage of CAT(0) over the differential-
geometric approach.

Notation. For a CAT(0) space X and α ∈ Iso(X), let us denote by fix(α) the fixed point set of α (which
makes sense if α is elliptic) and by fix∞(α) the set of α-fixed points at the boundary at infinity, ∂X.

We will use the following definition of the simplicial structure on ∂TP1(n,R) (which coincides with the
standard one from [BH, Chapter II, §10]). A simplex of dimension m, m = 0, 1, . . . n− 2 in ∂TP1(n,R) is
determined with the following data: an ordered orthonormal basis (e1, . . . en) (or, equivalently, a matrix
O ∈ O(n) whose columns are e1, . . . en) and a subset {i1, . . . im+1} of {1, 2, . . . n − 1} of power m + 1.
That simplex consists of all matrices X ∈ S such that OXOT = diag(λ1, . . . λn) where

λ1 = · · · = λii ≥ λi1+1 = · · · = λi2 ≥ · · · ≥ λim+1 = · · · = λim+1 ≥ λim+1+1 = . . . λn.
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Note that for two different orthogonal matrices, we may get the same m-simplex.

B.1 Additional properties of CAT(0) space’s isometries

The following theorem and its consequence Corollary B.3 are the key tools for classifying isometries from
the nonidentity component of Iso(P1(n,R)). Indeed, some power of any group element in a group of
isometries with finitely many connected components lies in the identity component. In case n = 3, we
have a complete characterization of the identity component of Iso(P1(3,R)) by [FNS, §6.3]

Recall that for an isometry α of a CAT(0) space X, the minimal space of α, denoted min(α), is the set
of points that are translated for the minimal distance |α| = inf{d(x, α(x))|x ∈ X}. In case of an elliptic
isometry α, its minimal space is also denoted by fix(α). We denote by fix∞(α) the set of fixed points of
the induced α-action on ∂X.

Theorem B.1. Let (X, d) be a proper CAT(0) space. An isometry α of X has the same type (ellip-
tic, hyperbolic or parabolic) as its powers and the translation lengths relate as |αn| = n|α|. Moreover,
fix∞(α) ⊆ fix∞(αn) and in the semi-simple case min(α) ⊆ min(αn).

Proof. Let n ∈ N. Recall that

• if α is elliptic, then so is αn, since fix(α) ⊆ fix(αn);

• if αn is elliptic, then α itself is elliptic, because for x ∈ fix(αn) the orbit of x under α is finite, hence
its circumcentre is a fixed point for α (see [BH, Proposition II.2.7]);

• if α is hyperbolic, so is αn, since it acts as translation by n|α| on min(α);

• if αn is hyperbolic, then α is hyperbolic (see [BH, Theorem II.6.8]).

Consequently, αn is parabolic if and only if α is parabolic, and the first statement of the theorem
follows. For the second part let us first observe that the limit

lim
n→∞

1

n
d(x, αnx)

exists and is independent of x (see [BH, Exercise II.6.6 (1)]). The existence follows from the fact that for
a fixed x the function f(n) = d(x, αnx) is subadditive. It is well known that for such functions the limit

limn→∞
f(n)
n exists. To show independence of x take another point y. The triangle inequality yields

d(x, αnx)− d(x, y)− d(αnx, αny) ≤ d(y, αny) ≤ d(x, αnx) + d(x, y) + d(αnx, αny).

Note that d(x, y) = d(αnx, αny). Hence dividing by n and taking the limit we obtain the equality

lim
n→∞

1

n
d(x, αnx) = lim

n→∞

1

n
d(y, αny).

The evaluation of this limit is also a part of the cited exercise, but only for the semi-simple case where
the proof is easier because one can take x ∈ min(α). We give here a proof of the general case. The
triangle inequality implies

d(x, αnx) ≤ d(x, αx) + d(αx, α2x) + · · ·+ d(αn−1x, αnx). (♢)

Choose an arbitrary ε > 0. Let x be such that d(x, αx) ≤ |α|+ ε. It follows from (♢) that 1
nd(x, α

nx) ≤
|α|+ ε, hence limn→∞

1
nd(x, α

nx) ≤ |α|. For the reverse inequality, let x′ and x′′ = αx′ be the midpoints
of geodesic segments [x, αx] and [αx, α2x]. It follows (by the convexity of metric d on X) that d(x, α2x) ≥
2d(x′, x′′) = 2d(x′, αx′). Applying this inductively we note that for each n there exists a point x̃n ∈ X
so that

d(x, α2nx) ≥ 2nd(x̃n, αx̃n).

Consequently 2−nd(x, α2nx) ≥ |α| for each n. The asserted inequality follows by taking the limit.
To conclude the proof, note that

|αn| = lim
m→∞

1

m
d(x, (αn)mx) = n lim

m→∞

1

nm
d(x, αnmx) = n|α|.

If ξ ∈ fix∞(α), then obviously ξ is already contained in fix∞(αn). In the hyperbolic case, every axis
of α is also an axis for αn, because αn acts on it as a translation by n|α|. In the elliptic case, if αx = x
then also αnx = x. ⋆
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Example B.2. The inclusions in the statement of the theorem can be strict as shown by the following
examples.

For the semi-simple case let β be a rotation of order n ≥ 2 on the Euclidean space R3, and let τ be a
translation in the direction of the axis of β. Then α = τβ is a semi-simple isometry (elliptic if τ is trivial
and a hyperbolic glide-rotation if τ is nontrivial). On the one hand, the only fixed points at infinity of α
are the ends of the axis of β. On the other hand, αn = τn is a translation, hence it fixes the whole of
∂R3.

For the parabolic case let X = R × H2 and let α act as reflection across the origin on R and as an
arbitrary parabolic isometry τ on H2 (for instance τ(x, y) = (x + 1, y) in the upper halfplane model).
Then fix∞(α) is a point, but fix∞(α2) = S0 ∗ fix∞(τ) ≈ [0, π].

Theorem B.1 yields the following corollary.

Corollary B.3. Let g̃ ∈ PSL(n,R)σ. Then g̃2 = gg−T ∈ PSL(n,R), hence the isometry g̃ has the same
type as the isometry gg−T ∈ PSL(n,R) and |g̃| = 1

2 |gg
−T |.

Proof. A trivial computation shows that in Iso(P1(n,R)), (g̃)2 = gg−T . Hence Theorem B.1 applies. ⋆

This means that the isometry g̃ ∈ PSL(n,R)σ is semi-simple if and only if the matrix gg−T is
diagonalizable over C (see [BH, Proposition II.10.61]), and is elliptic if and only if gg−T is conjugate (in
SL(n,R)) to an orthogonal matrix.

By using the classification of isometries in the identity component of Iso(P1(n,R)) in [BH, Chapter II,
§10], Corollary B.3 can be used to determine the type of any isometry g̃ ∈ PSL(n,R)σ.

The next lemma shows a nice relation between the fixed point set of an elliptic isometry α of a
complete CAT(0) space and the fixed point set of the induced action of α at infinity (see also [Swe,
Lemma 10]). We are going to apply it in the proof of Theorem B.9 below.

Lemma B.4. Let α be a semi-simple isometry of a complete CAT(0) space X and let F = min(α). Then
fix∞(α) = ∂F .

Proof. Let us denote F∞ := fix∞(α). Because of convexity of F the inclusion ∂F ⊆ F∞ is obvious. For the
reverse inclusion, take an element ξ ∈ F∞. For an arbitrary point x ∈ F let c : ([0,∞), 0,∞) → (X,x, ξ)
be the unique geodesic ray with initial point x in the class of geodesic rays representing ξ. As ξ ∈ F∞,
the geodesic ray α ◦ c is asymptotic to c, which means that f(t) = d(α(c(t)), c(t)) is a bounded function
of t. As the metric of a CAT(0) space is convex, f is itself convex and therefore decreasing. On the
other hand, f(t) ≥ d(α(c(0)), c(0)) = |α|, hence t 7→ f(t) is constant. This means that the image of c lies
entirely in F , hence ξ ∈ ∂F . ⋆

B.2 The non-identity component of Iso(P1(3,R))
In this section, we dive into PSL(n,R)σ to explore the machinery needed for our main result, Theo-
rem B.9.

B.2.1 Jordan forms

Recall that the geometric properties of an isometry of a given CAT(0) space X behave nicely under
conjugation. In particular, for given α, β ∈ Iso(X), the isometries α and βαβ−1 have the same type
(elliptic, hyperbolic or parabolic) and their translation lengths are the same. Furthermore, min(βαβ−1) =
β.min(α). The following result about conjugation in PSL(n,R)σ will be of use to us.

Lemma B.5. Isometries g̃, h̃ ∈ PSL(n,R)σ are conjugate if there exists A ∈ SL(n,R) such that g =
AhAT .

Proof. Let g = AhAT . For P ∈ P1(n,R) we have

g̃.P = gP−1gT = (AhAT )P−1(AhTAT ) = A.(h̃.(A−1.P )).

⋆
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To analyze the nonidentity component of the isometry group Iso(P1(3,R)), it is enough to classify all
the isometries of the form gg−T ∈ SL(3,R) by Corollary B.3. Following the classification of isometries
in SL(3,R) from [FNS, §6.3], we have to determine the real Jordan form of gg−T for each g ∈ SL(3,R).
Observe that conjugation of gg−T by A ∈ SL(n,R) corresponds to conjugating the isometry g̃ by A.
Since conjugation in SL(3,R) does not change the isometry type and the translation length of gg−T ,
we can restrict ourselves to solving the equation g = AgT for all possible real Jordan matrices A that
correspond to the isometries in SL(3,R). We can solve that equation as a homogeneous system of linear
equations and then scale to land at g ∈ SL(3,R). By some lengthy but straightforward linear algebra,
we get four families of solutions which we list below. The conjugacy relation between different solutions
in each family is deduced by Lemma B.5 and is given in the last column of the table below. We employ
the following notation.

Ax,y = diag

(
y

x
,

√
x

y
,

√
x

y

)
and Bx,y =

 1 1 x−y
2

0 1 1
0 0 1

 Cx,y = diag

(√
x

y
,

√
x

y
,
y

x

)

Possible real Jordan Solutions gx Conjugacy relations
form A for matrix of g = AgT among solutions

in SL(3,R)

(1)

 1 0 0
0 −1 1
0 0 −1


 1

4x2 0 0
0 x 2x
0 −2x 0

 ,

x ̸= 0

gx = Ax,ygyA
T
x,y

if sgn(x) = sgn(y)

(2)

 1 1 0
0 1 1
0 0 1


 x 0 1

1 −1 0
1 0 0

 ,

x ∈ R

gx = Bx,ygyB
T
x,y

for any x, y

(3)

 a b 0
−b a 0
0 0 1

 ,

a2 + b2 = 1, b ̸= 0

 x xb
1+a 0

−xb
1+a x 0

0 0 1+a
2x2

 ,

x ̸= 0

gx = Cx,ygyC
T
x,y

if sgn(x) = sgn(y)

(3’)

 1 0 0
0 1 0
0 0 1

 g is any
symmetric
matrix

g and g′ are
conjugated iff
either both are
positive or both
have two nega-
tive eigenvalues

(4)

 1 0 0
0 1

a 0
0 0 a

 ,

a /∈ {0, 1}

 − a
x2 0 0
0 0 x

a
0 x 0

 ,

x ̸= 0

gx = Ax,ygyA
T
x,y

if sgn(x) = sgn(y)

(5) all the rest no solutions

B.2.2 Minimal spaces

As Example B.2 shows, there is no straightforward way to determine the minimal space of g̃, given
min(gg−T ) = min(g̃2). Hence we have to calculate min(g̃) by hand. To this end, we first retrieve some
information about semi-simple isometries in Iso(P1(n,R))σ for general n. We use that information to
determine all possible shapes of minimal spaces of semi-simple isometries in SL(3,R)σ.

Assume first that g̃ is hyperbolic. Without loss of generality take I ∈ min(g̃) (otherwise we can

conjugate g̃ by
√
R

−1
for R ∈ min(g̃)). Let X ∈ S0(n,R) with ∥X∥2 = 1 be such that g̃ acts as a

translation on exp(RX). We can as well assume that X (or equivalently, exp(X)) is diagonal since
otherwise we can conjugate g̃ by an orthogonal matrix O for which the O-conjugate of X is diagonal. For
an arbitrary t ∈ R and t0 := |g̃| this means

g̃. exp(tX) = g exp(−tX)gT = exp((t+ t0)X).
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Acting by exp
(
− t0X

2

)
∈ PSL(n,R) on this equality gives

exp

(
− t0X

2

)
g exp(−tX)gT exp

(
− t0X

2

)
= exp(tX), (♡)

which implies exp
(
− t0X

2

)
g = O ∈ O(n) (it fixes I), hence g = exp

(
t0X
2

)
O is a polar decomposition

for g. Inserting t − t0 in place of t in the equation (♡) gives that g exp
(
t0X
2

)
= O′ ∈ O(n) and hence

g = O′ exp
(
− t0X

2

)
is another polar decomposition for g. A simple application of the above equalities

yields O = O′:

O exp

(
−t0X

2

)
OT = exp

(
t0X

2

)
= O′ exp

(
−t0X

2

)
OT ,

where the last equality comes from both polar decompositions.
From this we can derive additional information in case n = 3.

Lemma B.6. The minimal space min(g̃) of a hyperbolic isometry g̃ ∈ SL(3,R)σ is isometric to R.

Proof. As explained above, we may assume that I ∈ min(g̃) and X = diag(λ1, λ2, λ3) ∈ S0(3,R) with
λ1 ≥ λ2 ≥ λ3 ̸= 0 is such that g̃ acts as a translation on exp(RX). Suppose that also P = exp(Y ) ∈ min(g̃)
where Y ∈ S0(3,R) is linearly independent of X. As exp(Y ) ∈ min(g̃), there is a geodesic parallel to
c : t 7→ exp(tX) through exp(Y ). We borrow the notation of [BH, Proposition II.10.67]: let F (b)
denote the union of geodesics, parallel to b. With this notation, it means that exp(Y ) ∈ F (c) hence
exp(Y ) commutes with exp(X) (by the same proposition) and this implies [X,Y ] = 0, i.e. X and Y are
diagonalizable in some common basis.

As above, we show that g = exp( t0X2 )O is a polar decomposition for g, where t0 = |g̃|. Regarding
O we know O exp(−tX)OT = exp(tX) or, equivalently, OXOT = −X. Hence the spectrum of X must
satisfy σ(X) = −σ(X). Because X is nonzero, the only possibility is that σ(X) = {λ, 0,−λ} for positive
λ and that O is just a “permutation” of the basis, swapping Lin{e1} and Lin{e3} and leaving Lin{e2}
invariant. From [X,Y ] = 0 we get also [OY OT , X] = 0, hence X and OY OT are diagonalizable in a
common basis. But X has 3 different eigenvalues, hence is diagonalizable in only one basis, which means
that the three matrices X, Y and OY OT are diagonalizable in that basis. Hence, Y is a diagonal matrix.
The convexity of min(g̃) implies that exp(tY ) ∈ min(g̃) for all 0 ≤ t ≤ 1 and we can calculate

t0 = d(exp(tY ), g exp(−tY )gT ) =

= d

(
I, exp

(
− tY

2

)
exp

(
t0X

2

)
O exp(−tY )OT exp

(
t0X

2

)
exp

(
− tY

2

))
=

= d

(
I, exp

(
− tY

2
+

t0X

2
− tOY OT +

t0X

2
− tY

2

))
=

= d
(
I, exp(t0X − tY − tOY OT )

)
= ∥t0X − tY − tOY OT ∥2.

Because Y is supposed to be linearly independent of X and the length of the vector t0X − tY − tOY OT

is independent of t, we have OY OT = −Y . If we write Y = diag(µ1, µ2, µ3), the last equality means
0 ̸= µ1 = −µ3 and µ2 = 0. Hence Y is linearly dependent of X, and the contradiction completes the
proof. ⋆

We proceed to the elliptic case where again we start with general n. If g̃ is elliptic, then it fixes some
P ∈ P1(n,R). This means P = gP−1gT which we rewrite as

I =
√
P−1g

√
P−1

(√
P−1g

√
P−1

)T

.

Therefore g̃ is conjugate to h̃ where h =
√
P−1g

√
P−1 =

√
P−1g

√
P−1

T
∈ SO(n). Conversely, if

g ∈ SO(n), then g̃.I = I and obviously g̃ is elliptic.
Suppose now that for g ∈ SO(n), the isometry g̃ fixes some P = exp(X) ̸= I. As in the proof of

Lemma B.6, the property gXgT = −X implies that the spectrum of X is symmetric about 0 and that
exp(RX) ⊆ fix(g̃). If X has n different eigenvalues, then g acts as an involution on the set of n different
eigenspaces of X. Hence, g̃ has order either 2 or 4 (since g2 may be minus the identity on each eigenspace
for nonzero eigenvalue). Hence for n = 3 we have the following lemma.
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Lemma B.7. The fixed point set of an elliptic isometry from SL(3,R)σ is either a single point or a
hyperbolic plane.

Proof. Let g̃ be an elliptic isometry. Without loss of generality suppose I ∈ fix(g̃), hence g ∈ SO(3).
If there is a nonzero X with exp(X) ∈ fix(g̃), we have that gXgT = −X. In particular, the spectrum
of X equals {λ, 0,−λ} for some nonzero λ, and g swaps the eigenspaces corresponding to the nonzero
eigenvalues and preserves the eigenspace of the eigenvalue 0. After another conjugation, we may assume
that X = diag(λ, 0,−λ) and hence

g =

 0 0 ±1
0 1 0
∓1 0 0

 or g =

 0 0 1
0 −1 0
1 0 0

 .

A computation shows that in each case, there is another linearly independent Y ∈ S0(3,R) such that
gY gT = −Y . Then for any linear combination S = tX + sY we have exp(S) ∈ fix(g̃). Furthermore,
Y and X do not commute and hence fix(g̃) is not a flat. But it still has constant curvature since it is
homogeneous: exp(− tX+sY

2 ) conjugates g̃ to itself by Lemma B.5, hence it preserves fix(g̃), but it also
moves exp(tX + sY ) to I. We conclude that fix(g̃) is a scaled hyperbolic plane. ⋆

B.2.3 Boundary at infinity

Recall from Section ?? that ∂TP1(n,R) is a simplicial complex.

Lemma B.8. The inversion σ acts as a simplicial map on ∂TP1(n,R).

Proof. Let ξ ∈ ∂TP1(n,R) be represented by a geodesic ray [t 7→ exp(tX)]t>0 for X ∈ S0(n,R). Then σ.ξ
is represented by [t 7→ exp(−tX)]t>0. This means that σ maps the simplex, determined by the ordered
orthonormal basis (e1, . . . en) and {i1, . . . im+1} ⊆ {1, 2, . . . n−1} to the simplex determined by (en, . . . e1)
and {n− im+1, . . . n− i1}. ⋆

If we take an apartment A ≈ Sn−2, which is the boundary of a flat containing I, then σ acts as a
reflection across the center of Sn−2.

We know (see e.g. [BH, Proposition II.10.75]) that for an isometry α in PSL(n,R), the set fix∞(α)
is a simplicial subcomplex of ∂TP1(n,R) but for α in PSL(n,R)σ that is generally not true, see the
classification theorem for SL(3,R)σ below.

The tools developed above together with [FNS, Theorem 6.1] make the classification of isometries
in SL(3,R)σ quite easy. In the next theorem, we use ci, i = 1, 2, . . . 6, for the chambers consisting of
equivalence classes of rays t 7→ exp(tX) for diagonal matrices X = diag(λ1, λ2, λ3) ∈ S0(3,R). More
accurately,

c1 := {equivalence classes of rays t 7→ exp(t · diag(λ1, λ2, λ3)) | λ1 ≥ λ2 ≥ λ3},
c2 := {equivalence classes of rays t 7→ exp(t · diag(λ1, λ2, λ3)) | λ2 ≥ λ1 ≥ λ3},
c3 := {equivalence classes of rays t 7→ exp(t · diag(λ1, λ2, λ3)) | λ2 ≥ λ3 ≥ λ1},
c4 := {equivalence classes of rays t 7→ exp(t · diag(λ1, λ2, λ3)) | λ3 ≥ λ2 ≥ λ1},
c5 := {equivalence classes of rays t 7→ exp(t · diag(λ1, λ2, λ3)) | λ3 ≥ λ1 ≥ λ2},
c6 := {equivalence classes of rays t 7→ exp(t · diag(λ1, λ2, λ3)) | λ1 ≥ λ3 ≥ λ2}.

Furthermore, let vi denote the common vertex of ci and ci−1 (indices modulo 6) such that the simplex
[vi, vi+1], i.e. the simplex spanned on vi and vi+1, equals ci. Let Ci denote the barycenter of the simplex
ci.

B.2.4 Classification

Theorem B.9. Let g̃ ∈ SL(3,R)σ and let gg−T have a (real) Jordan form as in the table above. We
have

(1) g̃ is parabolic, fix∞(g̃) = C2 and |g̃| = 0;

(2) g̃ is parabolic, fix∞(g̃) = C1 and |g̃| = 0;

(3) g̃ is elliptic, fix(g̃) is a single point and fix∞(g̃) = ∅;
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(3’) g̃ is elliptic and

(a) if g is positive, fix(g̃) is a single point g and fix∞(g̃) = ∅;
(b) if g is not positive, fix(g̃) is a hyperbolic plane and fix∞(g̃) is its boundary;

(4) g̃ is semi-simple and

(a) if a = −1, g̃ is elliptic, fix(g̃) is a hyperbolic plane and fix∞(g̃) is its boundary;

(b) if a ̸= −1, g̃ is hyperbolic, |g̃| =
√
2| log(|a|)|, fix(g̃) is a single axis and fix∞(g̃) consists of

ends of this axis.

Proof. We analyze each case separately.
Case (1). By [FNS, Theorem 6.1], |gg−T | = 0 and fix∞(gg−T ) = c1 ∪ c2 ∪ c3, hence by Theorem B.1

and Corollary B.3, |g̃| = 0 and fix∞(g̃) ⊆ c1 ∪ c2 ∪ c3. For arbitrary x ∈ R \ {0} we calculate

d (g̃x. exp (diag(−t, 2t,−t)) , exp (diag(t, t,−2t))) =

= d

(
exp

(
diag

(
− t

2
,− t

2
, t

))
.gx. exp (diag(t,−2t, t)) , I

)
=

= d

 1
16x4 0 0
0 x2(e−3t + 4) −2x2e−3t/2

0 −2x2e−3t/2 4x2

 , I


which is bounded when t → ∞. This means that g̃.v3 = v2 (geodesic ray exp (diag(−t, 2t,−t))t>0

represents v3 and exp (diag(t, t,−2t))t>0 represents v2 in ∂TP1(3,R)). Similarly we get g̃.v2 = v3. Because
fix∞(g̃) is connected and nonempty (see [FNS, §1]), the only fixed point of g̃ at infinity is the barycenter
C2 of [v2, v3] = c2.

Case (2). Similarly as in Case (1), from |gg−T | = 0 we get |g̃| = 0, from fix∞(gg−T ) = c1 we get
fix∞(g̃) ⊆ c1 and for arbitrary x ∈ R we calculate that g̃x.v1 = v2 and g̃x.v2 = v1, hence the only fixed
point of g̃ at infinity is the barycenter C1 of c1.

Case (3). The matrix gg−T is orthogonal and fix(gg−T ) = {exp(diag(t, t,−2t))|t ∈ R}. Since for any
x ̸= 0, fix(g̃x) ⊆ {exp(diag(t, t,−2t))|t ∈ R} by Theorem B.1, Lemma B.7 gives that the fixed point set of
g̃x is a single point that can be calculated using the conjugacy relation from the table above and the fact

that gx is orthogonal exactly when x = ±
√

1+a
2 in which case g̃x fixes {I}. By Lemma B.4, fix∞(g̃) = ∅.

Case (3’a). Note that g̃ is conjugate to Ĩ because I =
√
g−1g

√
g−1

T
. Inversion on P1(3,R) acts as

a reflection around I on any line t → exp(tX), hence fix(Ĩ) = {I} and fix∞(Ĩ) = ∂{I} = ∅. Conjugating
again to get back g̃ yields fix(g̃) = {g}.

Case (3’b). Since the matrix g is symmetric, not positive, and has determinant 1, it has exactly two

negative eigenvalues, and thus by Lemma B.5 the isometry g̃ is conjugate to g̃′ where g′ =
[

0 0 1
0 −1 0
1 0 0

]
.

Observe that g̃′ fixes two geodesic lines through I, namely

exp(diag(t, 0,−t))t∈R and exp

t

 0 1 0
1 0 1
0 1 0


t∈R

(because g′Xg′T = −X for both possibilities X noted above), and by Lemma B.7, fix(g̃′) and hence fix(g̃)
is isometric to a hyperbolic plane. By Lemma B.4, fix∞(g̃′) = ∂fix(g̃′).

Case (4a). The isometry gg−T = diag(1,−1,−1) has a large (3-dimensional) fixed point set,
parametrized as

Ps,t,u :=

 e−2u 0 0
0 euescosh(t) eusinh(t)
0 eusinh(t) eue−scosh(t)

 , s, t, u ∈ R.

For arbitrary x ̸= 0, the solution of the equation gxP
−1
s,t,ug

T
x = Ps,t,u is u = log(|x|). Hence the fixed point

set for g̃x is a hyperbolic plane by Lemma B.7 and fix∞(g̃) is its boundary.
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Case (4b). The isometry gg−T and hence g̃ is hyperbolic,

|g̃| = 1

2
|gg−T | = 1

2
2

√
(log |a|)2 +

(
log

1

|a|

)2

=
√
2| log(|a|)|.

Since for x = ±
√
|a| we have g̃x.I = gxg

T
x = diag(1, 1

|a| , |a|) and d(diag(1, 1
|a| , |a|), I) =

√
2| log(|a|)| = |g̃x|,

we know that I ∈ min(g̃x). Hence g̃x acts as a translation on the geodesic line through I and g̃x.I =
diag(1, 1

|a| , |a|), i.e. on the geodesic exp(diag(0,−t, t)). The axis of g̃x for x ̸= ±
√
|a| can be expressed

using the conjugacy relation among different solutions gx from the table above. By Lemma B.6, this single
axis forms the whole minimal space. For the fixed point set of g̃x at infinity we again use Lemma B.4
which says that fix∞(g̃x) = ∂min(g̃x), hence the ends of the axis of g̃x are the only fixed points at infinity
of g̃x. ⋆

Remark B.10. An interested reader can verify that in each case where the fixed point set of an elliptic
isometry g̃ ∈ SL(3,R)σ is isometric to a hyperbolic plane, the set fix∞(g̃) consists of barycenters of
certain chambers.

B.3 On translation lengths of isometries from Iso(P1(n,R))
In this section we introduce a decomposition of an isometry of P1(n,R) from PSL(n,R) into three
commuting isometries, one (if nontrivial) hyperbolic, one elliptic and the third one (if nontrivial) parabolic
with zero translation length. This result gives us a formula to calculate the translation length of any
isometry of P1(n,R) for any n ∈ N.

In every expression of the form
∑

λ∈σ(X) . . . below, eigenvalues λ from the spectrum σ(X) are counted
with multiplicities.

Theorem B.11. Let g ∈ PSL(n,R) be an isometry of P1(n,R). Then g is conjugated to a product
HUJ , where all the factors commute, H is a positive diagonal matrix and U is an orthogonal matrix
(and hence both are semi-simple isometries), and J is an upper triangular matrix with 1s on the diagonal.
Furthermore, g is semi-simple exactly when J = I and the translation length of g equals to the translation
length of H and can be expressed as

|g| = 2

√ ∑
λ∈σ(g)

log(|λ|)2.

Proof. Every matrix g ∈ SL(n,R) can be conjugated by another matrix in SL(n,R) to take on a modified
real Jordan form, namely a matrix of block diagonal form

diag(D,DO, J1, J2, . . . Jb, J
O
1 , JO

2 , . . . JO
a )

where the blocks are as follows. First, D is a pure diagonal matrix diag(λ1, λ2, . . . λd). Next, DO has
2 × 2 blocks on the diagonal, which are µiOi, i = 1, 2, . . . c, for some µi ∈ (0,∞) and some Oi ∈ O(2).
Each Ji is a nontrivial modified Jordan block of dimension mi for real eigenvalues νi, i = 1, 2, . . . b, which
means that it has νi on the diagonal and also on the first upper super diagonal (instead of 1s as in the
classical Jordan form). Finally, JO

i is a modified Jordan block of dimension 2ki pertaining to complex
eigenvalues, i.e. JO

i is a block of the form
κiUi κiUi 0 . . . 0 0
0 κiUi κiUi . . . 0 0
...

. . . . . .
...

...
0 0 0 . . . κiUi κiUi

0 0 0 . . . 0 κiUi

 ,

where Ui ∈ O(2) and κi is the absolute value of the corresponding complex eigenvalue.
We will now express g as a product of commuting matrices H, U and J and then use the formula

|g| = limr→∞
1
rd(g

r.I, I) = limr→∞
1
r

√
Tr(log(grgrT )2). The factors H,U, J are as follows. First, the
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diagonal matrix

H = diag

(
|λ1|, |λ2|, . . . |λd|, µ1, µ1, µ2, µ2, . . . µc, µc,

|ν1|, |ν1|, . . . |ν1|︸ ︷︷ ︸
m1−times

, . . . |νb|, |νb|, . . . |νb|︸ ︷︷ ︸
mb−times

, κ1, κ1, . . . κ1︸ ︷︷ ︸
2k1−times

, . . . κa, κa, . . . κa︸ ︷︷ ︸
2ka−times

)
.

Next, the orthogonal matrix

U = diag

(
sgn(λ1), sgn(λ2), . . . sgn(λd), O1, O2, . . . Oc,

sgn(ν1), sgn(ν1), . . . sgn(ν1)︸ ︷︷ ︸
m1−times

, . . . sgn(νb), sgn(νb), . . . sgn(νb)︸ ︷︷ ︸
mb−times

, U1, U1, . . . U1︸ ︷︷ ︸
k1−times

, . . . Ua, Ua, . . . Ua︸ ︷︷ ︸
ka−times

)

and finally a Jordan form matrix J with only 1s on the diagonal,

J = diag( 1, 1, . . . 1︸ ︷︷ ︸
(d+2c)−times

,Km1 ,Km2 , . . .Kmb
, Lk1 , Lk2 , . . . Lka),

where Ki is an i × i Jordan block with 1s on the diagonal and first upper superdiagonal and Li is a
Jordan block with I2s on the diagonal and first upper superdiagonal, hence a block of dimension 2i× 2i.

Note that g is diagonalizable over C (and hence semi-simple isometry by [BH, Proposition II.10.61])
exactly when there are no nontrivial (i.e. nonidentity) blocks among Ki and no nontrivial blocks among
Li. Therefore g is semi-simple isometry exactly when J = I.

Let us now compute the translation length of UJ . Because U and J commute, it means that
(UJ)r(UJ)rT = JrUrUrTJrT = JrJrT and we get

|UJ | = lim
r→∞

1

r
d((UJ)r(UJ)rT , I) = lim

r→∞

1

r
d(JrJrT , I) = |J |.

Take the geodesic ray γ(t) := exp(t diag(u1, u2, . . . un)), where u1 > u2 > · · · > un and calculate

|J | ≤ lim
t→∞

d(J.γ(t), γ(t)) = lim
t→∞

d

(
γ

(
− t

2

)
.J.γ(t), I

)
=

= lim
t→∞

d

((
γ

(
− t

2

)
Jγ

(
t

2

))
.I, I

)
.

Because J is an upper triangular matrix with 1s on the diagonal and the eigenvalues of the generator of
the geodesic line γ are decreasing, the matrix γ

(
− t

2

)
Jγ

(
t
2

)
tends to the identity as t tends to infinity,

see [BH, Proposition 10.64]. Hence the above limit equals 0 and also |J | = |UJ | = 0.
Recall from the definition of H that it is a diagonal matrix with positive diagonal entries. Such a

matrix acts as an elliptic isometry exactly when H = I, otherwise it acts as a translation on the geodesic
line through I and H. It moves I to H2 and one can easily compute

|H| = d(I,H.I) = d(I,H2) = ∥ log(H2)∥2 =

√ ∑
λ∈σ(H)

log(λ2)2 = 2

√ ∑
λ∈σ(H)

log(λ)2.

Compute further

2

√ ∑
λ∈σ(H)

log(λ)2 = |H| =

= lim
r→∞

1

r
d(HrHrT , I) = lim

r→∞

1

r
d(HrHrT , I) + lim

r→∞

1

r
d((UJ)r(UJ)rT , I) =

= lim
r→∞

1

r
d((UJ)rHrHrT (UJ)rT , (UJ)r(UJ)rT ) + lim

r→∞

1

r
d((UJ)r(UJ)rT , I) ≥

≥ lim
r→∞

1

r
d((UJ)rHrHrT (UJ)rT , I) = lim

r→∞

1

r
d((HUJ)r(HUJ)rT , I) = |g| ≥
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≥ lim
r→∞

1

r
d((UJ)rHrHrT (UJ)rT , (UJ)r(UJ)rT )− lim

r→∞

1

r
d((UJ)r(UJ)rT , I) =

= lim
r→∞

1

r
d(HrHrT , I) = |H|.

Because the absolute values of eigenvalues of g and their multiplicities are exactly the same as those
of H we infer

|g| = 2

√ ∑
λ∈σ(g)

log(|λ|)2.

⋆

Theorem B.11 together with Corollary B.3 yields the following corollary.

Corollary B.12. Given g̃ ∈ PSL(n,R)σ, its translation length is

|g̃| =
√ ∑

λ∈σ(gg−T )

log(|λ|)2.



Razširjeni povzetek

Uvod

V zgodnjih osemdesetih letih preǰsnjega stoletja je Mikhail Gromov dokazal številne rezultate iz teorije
Riemannovih mnogoterosti nepozitivnih prereznih ukrivljenosti brez uporabe gladke (Riemannove) struk-
ture, temveč le preko lastnosti inducirane funkcije razdalje. Natančneje, njegov pristop se sklicuje na
CAT(0) neenakost, ki ji inducirana funkcija razdalje na Riemannovi mnogoterosti nepozitivnih prereznih
ukrivljenosti zadošča. Revolucionarni seminar, na katerem je predstavil svoje rezultate, je motiviral
številne matematike, da so pričeli s študijem splošnih CAT(0) prostorov, tj. geodezičnih metričnih pros-
torov, katerih metrika zadošča CAT(0) neenakosti.

Za številne lastnosti Riemannovih mnogoterosti nepozitivnih prereznih ukrivljenosti je še danes nez-
nano, ali se posplošijo na širši razred CAT(0) prostorov oziroma pod kakšnimi dodatnimi predpostavkami
se to zgodi. Pomemben vir vprašanj v CAT(0) geometriji so tudi fundamentalne grupe kompaktnih
Riemannovih mnogoterosti nepozitivnih prereznih ukrivljenosti. Vemo, da le-te delujejo kokompaktno
diskretno z izometrijami na univerzalnem krovu, ki je CAT(0). Naravno vprašanje je torej, katere last-
nosti teh fundamentalnih grup se posplošijo na grupe, ki delujejo kokompaktno diskretno z izometrijami
na kakšnem CAT(0) prostoru. Kot kažejo številni primeri iz geometrične teorije grup, se geometrija
prostora močno prepleta z algebraičnimi lastnostmi grupe, ki deluje na prostoru (z izometrijami, kokom-
paktno, diskretno ...). V tej disertaciji se ukvarjamo s konkretnim primerom problema v tem duhu. V
nadaljevanju bo Γ vedno označevala diskretno grupo, ki deluje kokompaktno diskretno z izometrijami na
nekem CAT(0) prostoru X. Kokompaktnost pomeni, da obstaja kompaktna podmnožica K ⊆ X, da je
ΓK =

∪
γ∈Γ γK = X, diskretnost pa, da je za vsako omejeno množico B ⊆ X število elementov γ ∈ Γ,

za ka tere γB ∩ B ̸= ∅, končno. Kokompaktno diskretno delovanje z izometrijami bomo označevali tudi

Γ
geo
y X ali da Γ deluje na X geometrično ali da je Γ CAT(0) grupa.

Problem periodičnih ravnin

Ena izmed trditev, ki so že dolga leta znane v kontekstu mnogoterosti nepozitivnih prereznih ukrivljenosti
[LY], je izrek o ravnem torusu.

Izrek 1 (Lawson in Yau, ravni torus). Naj bo M kompaktna Riemannova mnogoterost nepozitivnih
prereznih ukrivljenosti. Če je Zn podgrupa π1(M), tedaj je Rn vsebovan kot izometrično vložen podprostor
v univerzalnem krovnem prostoru mnogoterosti M in na njem Zn deluje s translacijami.

Gromov je izrek posplošil v naslednjo obliko.

Izrek 2 (Ravni torus, CAT(0)). Naj bo X CAT(0) prostor in Γ
geo
y X. Naj Zn ∼= A ≤ Γ. Tedaj X

vsebuje izometrično vloženo kopijo Rn, na kateri A deluje kokompaktno diskretno s translacijami.

Zgornja izreka govorita le o eni smeri – če Γ (π1(M)) vsebuje podgrupo Zn, tedaj X (M̃) vsebuje
podprostor Rn. Naravno je torej vprašanje obrata zgornjih izrekov.

Problem 3 (Problem periodičnih ravnin). Naj bo X CAT(0) prostor (M̃ univerzalni krov kompaktne
Riemannove mnogoterosti M nepozitivnih prereznih ukrivljenosti), ki vsebuje podprostor Rn. Ali Γ, ki
deluje geometrično na X (ali π1(M)) vsebuje podgrupo Zn?

V začetku devedesetih let preǰsnjega stoletja sta Bangert in Schröder v [BS] pritrdilno odgovorila na
zgornje vprašanje za realno analitično mnogoterost M . Še več, dokazala sta, da za vsako kopijo maksi-
malnega evklidskega prostora Rn (tj. prostora, ki ni vsebovan v večjem evklidskem), obstaja podgrupa
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Zn v π1(M), ki na dani kopiji Rn deluje s translacijami. Tej situaciji pravimo, da je Rn periodični
evklidski podprostor. Za ta strožji rezultat je že znano, da v kontekstu CAT(0) prostorov ne drži.

V delih [W1, W2] sta primera Γ
geo
y X, kjer X vsebuje evklidsko ravnino R2, ki ni periodična, in celo

evklidsko ravnino, ki ni limita periodičnih ravnin. A v obeh primerih se kljub temu nekje v Γ nahaja
podgrupa Z2 (ki po izreku 2 deluje kokompaktno s translacijami na nekem R2 ⊆ X).

Pomembnost ravnin v CAT(0) prostorih, ki dopuščajo geometrično delovanje kakšne grupe, se skriva
v naslednjem razdelku.

Negativna ukrivljenost, hiperboličnost

Poddružina CAT(0) prostorov so CAT(κ) prostori za negativen parameter κ. Tako kot so CAT(0) prostori
posplošitev Riemannovih mnogoterosti prereznih ukrivljenosti največ 0, so CAT(κ) prostori posplošitev
Riemannovih mnogoterosti prereznih ukrivljenosti največ κ. O grupah, ki delujejo na CAT(κ) prostorih
geometrično, je znano mnogo več kot o CAT(0) grupah. Znane so tudi kot hiperbolične grupe, vendar ta
izraz originalno prihaja iz drugačne definicije negativne ukrivljenosti, prav tako Gromove.

Definicija 4. Geodezični metrični prostor X je δ-hiperboličen za nenegativen parameter δ, če za poljubno
trojico točk x, y, z ∈ X velja, da poljubna geodetka med x in y leži v δ-okolici unije poljubnih geodetk med
x in z ter med z in y. Če vrednost parametra δ ni pomembna, pravimo, da je X hiperbolični prostor.
Grupa je hiperbolična, če deluje geometrično na kakšnem hiperboličnem prostoru.

Po obnašanju “velikih” trikotnikov v hiperboličnih prostorih so le-ti podobni CAT(κ) prostorom za
negativne κ (oziroma hiperbolični ravnini H2). Iz definicije CAT(κ) neenakosti je z nekaj računanja v
H2 lahko preveriti, da so CAT(κ) prostori hiperbolični za κ < 0. Obrat seveda ne drži, saj definicija
δ-hiperboličnosti ne zahteva ničesar od trikotnikov obsega manj kot δ, definicija CAT(κ) pa. Toda v grobi
geometriji, s pogledom “od daleč”, pa hiperbolični prostori seveda imajo duh negativne ukrivljenosti.

Čeprav ni znano, ali je vsaka hiperbolična grupa CAT(0), pa imajo hiperbolične grupe številne last-
nosti, ki jih CAT(0) grupe v splošnem nimajo oz. za njih niso znane. Zato je z vidika CAT(0) in
hiperbolične geometrije pomemben naslednji izrek.

Izrek 5 ([BH, Theorem II.9.33]). Naj bo X pravi kokompakten CAT(0) prostor (npr. Γ
geo
y X). Tedaj

je X hiperboličen natanko tedaj, ko ne vsebuje podprostora R2.

Izrek podaja jasno oviro, ki CAT(0) prostoru preprečuje biti hiperboličen. Problem periodičnih ravnin
pa osvetljuje to oviro še z algebraičnega vidika.

Trditev 6. Če je odgovor na problem periodičnih ravnin pritrdilen, tedaj je CAT(0) grupa hiperbolična
natanko tedaj, ko ne vsebuje kopije Z2.

Naravni primer nehiperboličnega CAT(0) prostora je produkt vsaj dveh geodezično polnih faktorjev.
Očitne ravnine v takšnem produktu so produkti geodezičnih premic v posameznih faktorjih. Natančneje,
če je X ∼= X1 × · · · × Xm in so ℓ1, . . . ℓm geodezične premice v ustreznih faktorjih, tedaj je ℓ1 × · · · ×
ℓm izometrično Rm. V disertaciji pritrdilno odgovorimo na problem periodičnih ravnin za evklidske
podprostore takšne oblike.

Izrek 7 ([CZ, Corollary 1]). Naj bo X geodezično poln CAT(0) prostor, ki je produkt m faktorjev. Naj

Γ
geo
y X. Tedaj Γ vsebuje podgrupo Zm, ki deluje kokompakto diskretno s translacijami na ℓ1 × · · · × ℓm

za neke geodezične premice ℓi ⊆ Xi.

Čeprav obravnavamo zgolj te posebne oblike CAT(0) prostorov in evklidskih podprostorov v njih, pa
dokaz zgornjega izreka zahteva uporabo globokih rezultatov strukturne teorije za grupe izometrij CAT(0)
prostorov. Glavna vira uporabljene teorije sta [CM-ST, CM-DS].

Strukturna teorija za grupo izometrij CAT(0) prostora

Kombinacija rešitve Hilbertovega petega problema [MZ1, MZ2, T1] ter izrekov o kanoničnem razcepu
[FL, Theorem 1.1] ter o podgrupah edinkah grupe izometrij geodezično polnega CAT(0) prostora, ki
dopušča geometrično delovanje kakšne grupe [CM-ST, Theorem 1.10], pripelje do naslednjega izreka.
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Izrek 8. Naj bo X geodezično poln CAT(0) prostor in Γ
geo
y X. Tedaj je X izometričen produktu (z

ℓ2-metriko)
Rn ×X1 × · · · ×Xp × Y1 × · · · × Yq, n, p, q ≥ 0,

kjer so X1, . . . Xp, Y1, . . . Yq nerazcepni, neizometrični R in je

(i) grupa izometrij Xi je enostavna Liejeva grupa s končno povezanimi komponentami za vse i in

(ii) grupa izometrij Yj je popolnoma nepovezana lokalno kompaktna topološka grupa za vse j.

Poleg tega velja še, da je grupa izometrij X končna razširitev direktnega produkta grup izometrij Rn, Xi

in Yj za vse i, j.

Izrek je ključen za dokaz izreka 7 v primeru, da je evklidski faktor trivialen. Če je n iz zgornjega izreka
pozitiven, se najprej skličemo na [CM-ST, Theorem 3.8], ki je nekakšna posplošitev Bieberbachovega
izreka o mrežah (diskretnih podgrupah končnega kovolumna) v Rn oO(n).

Izrek 9. Naj Γ
geo
y X, kjer je X geodezično poln CAT(0) prostor, ki razpade kot produkt Rn ×X ′. Tedaj

ima Γ podgrupo končnega indeksa, ki razpade kot direktni produkt Zn ×Γ′, kjer Zn-faktor deluje trivialno
na X ′ in Γ′ deluje kokompaktno diskretno z izometrijami na X ′.

Ta trditev nam omogoča, da se že na začetku znebimo evklidskega faktorja. Z drugimi besedami,
Γ (virtualno) vsebuje faktor Zn in njena projekcija na grupo izometrij prostora X ′ deluje geometrično
na X ′. Vendar pa faktorjev z Liejevo grupo izometrij ter faktorjev s popolnoma nepovezano grupo
izometrij z vidika grupe Γ ne ločimo tako zlahka. Projekcija Γ na grupo izometrij Xi ali Yi je kaj lahko
nediskretna oziroma gosta. Da obidemo ta problem, moramo kombinirati rezultate iz teorije Liejevih
grup [Pra, PR, Sel] ter dejstva o CAT(0) prostorih s popolnoma nepovezano grupo izometrij, [CM-ST,
§6].

Skica dokaza

Po razpravi iz preǰsnjega razdelka smo v situaciji, ko Γ
geo
y X ∼= X ′×Y1×· · ·×Yq, kjer je grupa izometrijX ′

polenostavna Liejeva grupa in so grupe izometrij faktorjev Yj popolnoma nepovezane lokalno kompaktne
grupe. Vsi faktorji so geodezično polni. Poiskali bomo element γ ∈ Γ, ki deluje kot hiperbolična izometrija
na vseh faktorjih prostora X. Še več, minimalni prostor X ′-komponente izometrije γ bo maksimalen
evklidski podprostor v X ′. Takšen γ ima minimalni prostor min(γ) izometričen Rr+q, kjer je r rang
grupe izometrij X ′. Po naslednjem izreku centralizator ZΓ(γ) deluje geometrično na min(γ), torej lahko
ponovno uporabimo izrek 9, da zagotovimo Zr+q ≤ Γ, saj

min(γ) = min(γX′)×min(γY1)× · · · ×min(γYq )
∼= Rr × (R× C1)× · · · × (R× Cq).

Izrek 10 ([Rua, Theorem 3.2]). Naj Γ
geo
y X. Tedaj za poljuben γ ∈ Γ velja, da ZΓ(γ)

geo
y min(γ).

Pri iskanju kandidata za γ najprej poǐsčemo ustrezen element v grupi Γ, ki deluje kot hiperbolična
izometrija na vseh faktorjih Yj . Za to uporabimo argument, ki ga Swenson uporabi pri dokazu ob-
stoja hiperbolične izometrije v poljubni (neskončni) CAT(0) grupi, [Swe, Theorem 11], v kombinaciji z
rigidnostjo kota Aleksandrova, ki zagotavlja “diskretno” obnašanje poljubnih eliptičnih izometrij CAT(0)
prostora s popolnoma nepovezano grupo izometrij.

Izrek 11 (Rigidnost kota Aleksandrova, [CM-ST, Proposition 6.8]). Naj bo X pravi kokompakten
geodezično poln CAT(0) prostor s popolnoma nepovezano grupo izometrij. Tedaj obstaja ε > 0, tako da
za poljubno eliptično izometrijo g prostora X, za poljubno točko x, za katero gx ̸= x, velja <) c(x, gx) ≥ ε,
kjer je c projekcija x na množico g-fiksnih točk.

To pa je natanko lastnost, ki jo Swensonov argument uporabi za dokaz hiperboličnosti ustreznega
elementa. V našem primeru jo uporabimo q-krat, po enkrat na vsakem faktorju Yj , kar nam da element
γ, ki deluje hiperbolično na vsakem od Yj-faktorjev. Naj bo γ = (γX′ , γY ).

V drugem koraku uporabimo lastnost odprtih stabilizatorjev točk v Y1 × · · · × Yq.

Izrek 12 ([CM-ST, Theorem 6.1]). Naj bo X pravi kokompakten geodezično poln CAT(0) prostor
s popolnoma nepovezano grupo izometrij. Tedaj je stabilizator poljubne omejene podmnožice X odprt v
grupi izometrij prostora X.
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Ker je izometrija g, za katero je [g−1x, x] ∪ [x, gx] = [g−1x, gx] za kakšen x, hiperbolična z x ∈
min(g), so vsi elementi iz Uγ hiperbolični na vseh faktorjih Yi, kjer je U stabilizator množice {y, γy}
za kakšen y ∈ min(γ). Po izreku 12 pa je Uγ odprta, kar nam daje dovolj prostora, da zagotovimo
maksimalno regularnost tudi na X ′-komponenti nekega elementa, ki deluje kot hiperbolična izometrija
na vseh faktorjih Yi. Velja namreč naslednja trditev.

Trditev 13 ([CM-DS, Lemma 3.2]). Naj bo Γ kokompaktna mreža v G ×H, kjer je G polenostavna
Liejeva grupa in H popolnoma nepovezana lokalno kompaktna grupa. Naj bo U poljubna odprta kompaktna
podgrupa v H. Tedaj je Γ∩ (G×U) kokompaktna mreža v G×U , njena projekcija na G pa kokompaktna
mreža v G.

V ΓU := prG(Γ∩ (G×U)), kjer je G grupa izometrij X ′ in U stabilizator {y, γy} za neki y ∈ min(γ),
po klasičnih izrekih iz teorije Liejevih grup poǐsčemo R-regularni element γ′ (tj. element z maksimal-
nim centralizatorjem, torej element, ki ima minimalni prostor izometričen Rr). Slednji obstaja, saj so
R-regularni elementi Zariski odprti [Pra, Theorem], mreža pa je Zariski gosta po Borelovem izreku o
gostoti, [Bor, Trditev (ii)]. Po [PR, Lemma 3.5] obstaja še Zariski odprta podmnožica V = V (γ′) ⊆ G
z naslednjo lastnostjo. Za vsak v ∈ V obstaja nv ∈ N, tako da γ′nv deluje kot R-regularen element na
X ′ za vsak n ≥ nv. Torej je ΓU ∩ (V γX′) neprazna (pomnimo, γX′ je X ′-komponenta izometrije γ ∈ Γ,
ki deluje hiperbolino na vseh Yi-faktorjih). Izberimo element w ∈ ΓU ∩ (V γ−1

X′ ). Torej je wγX′ ∈ V , kar
po definiciji pomeni, da je za dovolj velik n ∈ N element γ′nwγX′ ∈ ΓU deluje kot R-regularen element
na X ′. Naj bo (γ′′, u) ∈ Γ ∩ (G × U) iz prG-praslike γ′nw ∈ ΓU . Tedaj je (γ′′, u)γ = (γ′nwγX′ , uγY )
ustrezen element, ki deluje R-regularno na X ′ in kot hiperbolična izometrija na vseh Yj-faktorjih.



Izjava

Podpisani Gašper Zadnik izjavljam, da je disertacija z naslovom Pomen ravnin v CAT(0) geometriji
oziroma Significance of flats in CAT(0) geometry plod lastnega raziskovalnega dela.
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