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Abstract

The problem of characterizing zero product preserving maps has been studied by
several authors in many different settings. Recently such maps have been considered
on prime rings with nontrivial idempotents. Most of the known results assume that
the map in question is bijective. In the thesis we extend these results by considering
non-injective maps. More precisely, we characterize surjective additive zero product
preserving maps θ : A → B, where A is a ring with a nontrivial idempotent and
B is a prime ring. We also investigate maps on rings with involution that preserve
zeros of xy∗. In particular, we obtain a characterization of surjective additive maps
θ : A → B such that for all x, y ∈ A we have θ(x)θ(y)∗ = 0 if and only if xy∗ = 0.
Here A is a unital prime ring with involution that contains a nontrivial idempotent
and B is a prime ring with involution.

In the second part of the thesis we devote our attention to nil rings. One of
the most important open problems concerning nil rings is the Köthe conjecture,
which states that a ring with no nonzero nil ideals should have no nonzero nil
one-sided ideals. There are many known statements that are equivalent to the
Köthe conjecture and we add one more to the list. It has been proved that, when
considering the validity of these statements, we may restrict ourselves to algebras
over fields. We observe in the thesis that we may additionally restrict ourselves
to finitely generated prime algebras. Furthermore, we investigate the connections
between nilpotent, algebraic, and quasi-regular elements. It is well known that an
algebraic Jacobson radical algebra over a field is nil. We generalize this result to
algebras over certain PIDs and in particular to rings. On the way to this result we
introduce the notion of a π-algebraic element, i.e. an element that is a zero of a
polynomial with the sum of coefficients equal to one. As a corollary we show that if
every element of a ring R is π-algebraic then R is a nil ring, and at the same time
obtain a new characterization of the upper nilradical. At the end we investigate the
structure of the set of all π-algebraic elements of a ring.
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Povzetek

Problem karakterizacije preslikav, ki ohranjajo ničelni produkt, so študirali številni
avtorji v mnogih različnih kontekstih. Nedavno so bile take preslikave obravna-
vane na prakolobarjih z netrivialnimi idenpotenti. Večina znanih rezultatov pred-
postavlja, da so omenjene preslikave bijektivne. V disertaciji razširimo te rezultate
tako, da obravnavamo neinjektivne preslikave. Natančneje, podamo karakterizacijo
surjektivnih aditivnih preslikav θ : A → B, ki ohranjajo ničelni produkt, kjer je A
kolobar z netrivialnim idempotentom, B pa prakolobar. Razǐsčemo tudi preslikave
na kolobarjih z involucijo, ki ohranjajo ničle xy∗. V posebnem karakteriziramo sur-
jektivne aditivne preslikave θ : A→ B, za katere za vse x, y ∈ A velja θ(x)θ(y)∗ = 0
natanko tedaj, ko je xy∗ = 0. Pri tem je A enotski prakolobar z involucijo, ki vsebuje
netrivialen idempotent, B pa prakolobar z involucijo.

V drugem delu disertacije se posvetimo nilkolobarjem. Eden najpomembneǰsih
odprtih problemov s področja nilkolobarjev je Köthejeva domneva, ki pravi, da kolo-
bar brez neničelnih nilidealov nima niti neničelnih nil enostranskih idealov. Znanih
je mnogo trditev, ki so ekvivalentne Köthejevi domnevi, in mi dodamo še eno na
ta seznam. Dokazano je bilo, da se je za obravnavo veljavnosti teh trditev dovolj
omejiti na algebre nad komutativnimi obsegi. V disertaciji opazimo, da se lahko še
dodatno omejimo na končno generirane praalgebre. Poleg tega razǐsčemo povezave
med nilpotentnimi, algebraičnimi in kvaziregularnimi elementi. Znano je, da je vsaka
algebraična Jacobsonovo radikalna algebra nad komutativnim obsegom nilalgebra.
Ta rezultat posplošimo na algebre nad določenimi glavnimi kolobarji in v posebnem
na kolobarje. Na poti do tega rezultata vpeljemo pojem π-algebraičnega elementa,
tj. elementa, ki je ničla polinoma z vsoto koeficientov ena. Posledično dokažemo, da
je kolobar, v katerem je vsak element π-algebraičen, avtomatično nilkolobar, hkrati
pa dobimo tudi novo karakterizacijo zgornjega nilradikala. Na koncu razǐsčemo
strukturo množice vseh π-algebraičnih elementov kolobarja.
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Chapter 1

Prime rings

1.1 Basic definitions and properties

Prime rings are one of the more important types of rings in modern mathematics.
They are the most fruitful generalization of integral domains to the setting of non-
commutative rings and they come into play in many different fields of mathematics
such as algebraic geometry, radical theory, the theory of polynomial and functional
identities and many others.

Throughout this section R will denote a ring unless specified otherwise. We
begin with the definition of a prime ring.

Definition 1.1.1. A ring R is a prime ring if R 6= 0 and for any two ideals I, J /R,
IJ = 0 implies I = 0 or J = 0.

We shall also need the notion of a prime ideal.

Definition 1.1.2. An ideal P of a ring R is a prime ideal if R/P is a prime ring.

In particular P is a prime ideal if P 6= R and for any two ideals I, J /R, IJ ⊆ P
implies I ⊆ P or J ⊆ P . Note that R is a prime ring if and only if 0 is a prime ideal
of R.

Examples of prime rings are the ring of integers, the ring Mn(F ) of n×n matrices
over a field F and the ring F [x] of all polynomials over a field F . Also every simple
ring is prime.

The above definitions are the standard definitions of prime rings and prime ideals,
however, they are usually not the most appropriate to work with. It is often easier
to use one of the following equivalent forms.

Proposition 1.1.3. For an ideal P  R the following statements are equivalent:

(i) P is a prime ideal,

(ii) for any two left ideals I, J ⊆ R, IJ ⊆ P implies I ⊆ P or J ⊆ P ,

(iii) for any two right ideals I, J ⊆ R, IJ ⊆ P implies I ⊆ P or J ⊆ P ,
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(iv) for any two elements a, b ∈ R, aRb ⊆ P implies a ∈ P or b ∈ P .

Note that when verifying (ii) or (iii) we may assume that I and J contain P . The
only nontrivial part of Proposition 1.1.3 is the implication (i) implies (iv). Since we
will most often make use of (iv), we sketch the proof of this implication. So suppose
(i) holds and let aRb ⊆ P for some a, b ∈ R. Then I =

∑
RaR and J =

∑
RbR are

ideals of R with IJ ⊆ P . By (i) this implies RaR ⊆ P or RbR ⊆ P . Now define
L = {x ∈ R ; RxR ⊆ P}. Clearly L is an ideal of R such that RLR ⊆ P . Since
P 6= R this implies again by (i) that L ⊆ P . Consequently a ∈ P or b ∈ P .

Definition 1.1.4. A ring R is a semiprime ring if for any ideal I /R, I2 = 0 implies
I = 0. An ideal P / R is a semiprime ideal if R/P is a semiprime ring.

Clearly every prime ideal is semiprime. The precise relation between these two
notions is the following (see [19] for the proof).

Theorem 1.1.5. An ideal P / R is a semiprime ideal if and only if P is an inter-
section of prime ideals of R.

Prime and semiprime ideals and rings have many favourable properties. We
mention a few that we shall need. The first one is that any semiprime ring R
has zero left and right annihilator. Indeed, if a is an element of the right or left
annihilator of a semiprime ring R then aRa = 0, which implies a = 0.

The second property concerns the relation between ideals of rings and ideals of
algebras. For a commutative unital ring K the definition of a prime (semiprime)
K-algebra and a prime (semiprime) ideal of a K-algebra is the same as in the ring
case. Given a K-algebra R one can view R also solely as a ring. Given an ideal
I of the ring R, I need not be an ideal of the algebra R, since it need not be
closed for scalar multiplication. So one has to be a little bit careful when passing
from rings to algebras and vice versa. However, a semiprime ideal of the ring R is
always closed for scalar multiplication, and hence it is also an ideal of the algebra
R. Indeed, if P is a prime ideal of R, a an element of P , and k ∈ K a scalar then
(ka)R(ka) = a(k2R)a ⊆ aRa ⊆ P , which implies ka ∈ P .

Lemma 1.1.6. Let R be a K-algebra, where K is a unital commutative ring. Then
any semiprime ideal of the ring R is an ideal of the algebra R.

In an arbitrary ring, or more general an arbitrary algebra over a PID, the set
of all torsion elements may be very complicated. This is often an obstacle when
generalizing results from algebras over fields to algebras over PIDs. In prime rings
and algebras the torsion elements are much more manageable.

Proposition 1.1.7. Let K be a PID and R a prime K-algebra. If ka = 0 for some
k ∈ K and 0 6= a ∈ R then kR = 0. In particular, either R has no K-torsion or
there exists an irreducible element p ∈ K such that pR = 0.
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Proof. Suppose ka = 0 for some k ∈ K and 0 6= a ∈ R. Then (kr)Ra = rR(ka) = 0
for every r ∈ R. Since R is prime, this implies kr = 0 for every r ∈ R. If R has
K-torsion then kR = 0 for some 0 6= k ∈ K by what we have just proved. Let
k = p1p2 . . . pn be the decomposition of k into irreducible elements and let Ij = pjR
for every j = 1, 2, . . . , n. Then each Ij is an ideal of R and I1I2 . . . In ⊆ kR = 0.
Since R is prime, this implies Ii = 0 for some 1 ≤ i ≤ n.

The last property that we mention is that the semiprimeness can often be a
substitute for the existence of an identity element. To make it more clear what we
mean by this, we present a concrete example. Given a unital ring R it is well known
that every ideal of the matrix ring Mn(R) is of the form Mn(J) for some ideal J /R.
It is essential here that R has an identity. If R is not unital this need not be true.
For example let I denote the identity matrix in Mn(Z). Then 2I ∈Mn(2Z) and the
ideal Z · 2I +Mn(4Z) of Mn(2Z) is not of the desired form if n ≥ 2. However, if P
is a prime ideal of Mn(R) then it is always of the desired form, even if R is not a
unital ring. The main step in showing this is to prove that (assuming n = 2)[

a b
c d

]
∈ P implies

[
a 0
0 0

]
∈ P

and similarly for other entries. If R is unital, this is clear; all we have to do is
multiply the given matrix by [

1 0
0 0

]
from both sides. If R is not unital, it is equivalent to showing that P is also an
ideal of Mn(R1), which then reduces the problem to the unital case. The ideal of

Mn(R1) generated by P is equal to P̂ =
∑
Mn(R1)PMn(R1), hence we have (P̂ )3 ⊆∑

P̂Mn(R1)PMn(R1)P̂ ⊆
∑
P̂P P̂ . Observe that P̂ ⊆ Mn(R) since P ⊆ Mn(R)

and Mn(R) / Mn(R1). Consequently (P̂ )3 ⊆ P and the semiprimeness of P implies

P̂ ⊆ P , i.e. P in an ideal of Mn(R1).
For additional properties of prime and semiprime rings we refer the reader to

[19].

1.2 Rings of quotients

The method of localization of a commutative ring R at a given multiplicative sub-
set S and in particular the construction of the field of fractions of a given integral
domain K is one of the most important tools in commutative algebra. In the non-
commutative setting similar constructions are possible, but only when the subset S
satisfies certain additional properties. In particular, what we would call ’the (right
or left) ring of fractions’ of a noncommutative domain may not always exist. In
fact, there are noncommutative domains, that cannot be embedded into a division
ring (see [18, Theorem 9.11] for a concrete example that was discovered by Mal’cev).
Consequently many other rings of quotients have been defined, that seem to be more
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suitable for the noncommutative setting. The aim of this section is to present some
of these rings along with their constructions and a few of their properties that we
shall need. For a more detailed discussion of the theory see [4] and [31]. Although
several of these constructions work in a wider class of rings, it is not surprising that
these rings of quotients have much nicer properties if the starting ring is prime. Some
of the constructions in fact require the ring to be prime or at least semiprime. As
we are only interested in prime rings, we shall assume throughout that the starting
ring is prime.

At the core of the construction of various rings of quotients lie the so called dense
ideals.

Definition 1.2.1. A right ideal J of a ring R is dense if for every a, b ∈ R, b 6= 0,
there exists r ∈ R such that br 6= 0 and ar ∈ J .

Note that a dense right ideal is always nonzero. Dense left ideals of R are defined
in a similar fashion using left multiplication by r.

Remark 1.2.2. Why these ideals are called dense is partially explained by the
following property. Let K and L be right ideals of R and f : K → R and g : L→ R
homomorphisms of right R-modules. If f and g agree on some dense right ideal
J ⊆ K ∩ L then they agree on K ∩ L. In particular, if f(J) = 0 then f = 0.
Indeed, if f(x) 6= g(x) for some x ∈ K ∩ L then there would exist r ∈ R such
that (f(x) − g(x))r 6= 0 and xr ∈ J . But this would lead to a contradiction
0 6= (f(x)− g(x))r = f(xr)− g(xr) = 0 since f and g agree on J .

We need the following basic property of dense right ideals (see [4, Proposition
2.1.1] for the proof).

Lemma 1.2.3. Let J and K be dense right ideals of R and g : K → R a homo-
morphism of right R-modules. Then J ∩ K and g−1(J) are dense right ideals of
R.

We are now ready to construct the first ring of quotients, which is in a sense the
largest one. Let R be a prime ring and denote by S the set of all pairs (f ; J), where
J is a dense right ideal of R and f : J → R is a homomorphism of right R-modules.
Define a relation ∼ on S by (f ; J) ∼ (g;K) if f and g agree on J ∩K. Referring to
Remark 1.2.2 it is not hard to show that ∼ is in fact an equivalence relation on S.
We denote the equivalence class of (f ; J) ∈ S by [f ; J ] and the set of all equivalence
classes in S by Qmr(R). We define addition and multiplication on Qmr(R) by

[f ; J ] + [g;K] = [f + g; J ∩K],

[f ; J ] · [g;K] = [f ◦ g; g−1(J)],

where f ◦ g denotes the composition of f and g. Observe that by Lemma 1.2.3 the
right ideals J ∩K and g−1(J) are indeed dense in R. It is straightforward to show
that these operations are well defined and satisfy all ring axioms. We note only
that, since R is a prime ring, the left annihilator of R is 0, hence R is a dense right
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ideal of R. Consequently [0;R] is the zero of Qmr(R), where 0 : R → R is the zero
homomorphism. In addition, [id;R] is an identity in Qmr(R).

Definition 1.2.4. The ring Qmr(R) is called the maximal right ring of quotients of
R.

The ring Qmr(R) was first constructed by Utumi [36] in 1956 in the form pre-
sented above. For a different more homological approach to the construction of
Qmr(R) we refer the reader to [18, §13], where it is also explained why this ring is
called the maximal right ring of quotients.

The ring Qmr(R) can be characterized by a certain set of properties ([4, Propo-
sition 2.1.7]).

Theorem 1.2.5. For a prime ring R the ring Qmr(R) satisfies the following prop-
erties:

(i) R is a subring of Qmr(R),

(ii) for every q ∈ Qmr(R) there exists a dense right ideal J of R such that qJ ⊆ R,

(iii) for every q ∈ Qmr(R) and every dense right ideal J of R, qJ = 0 implies
q = 0,

(iv) for every dense right ideal J of R and every homomorphism of right R-modules
f : J → R there exists q ∈ Qmr(R) such that f(x) = qx for all x ∈ J .

Furthermore, these properties characterize Qmr(R) up to an isomorphism over R.

Proof. The ring R is a subring of Qmr(R) via the inclusion F : R → Qmr(R) given
by F (a) = [la;R], where la is the left multiplication by a. We skip the verification
that F is indeed an injective ring homomorphism. Henceforth we identify R with
its image F (R). Given [f ; J ] ∈ Qmr(R) and a ∈ J we have [f ; J ]a = [f ; J ][la;R] =
[f ◦ la; l−1

a (J)]. Since f is a homomorphism of right R-modules and a ∈ J it follows
that f ◦ la = lf(a) and l−1

a (J) = R, hence [f ; J ]a = [lf(a);R] = f(a). Therefore
[f ; J ]J = f(J) ⊆ R, which proves (ii). To prove (iii) let [f ; J ] ∈ Qmr(R) and
let K be a dense right ideal of R such that [f ; J ]K = 0. As above this implies
f(J ∩ K) = 0. By Lemma 1.2.3 J ∩ K is a dense right ideal, hence f(J) = 0 by
Remark 1.2.2, i.e. [f ; J ] = 0. Now let J be a dense right ideal of R and f : J → R
a homomorphism of right R-modules. Then as above f(x) = [f ; J ]x for all x ∈ J ,
which proves (iv).

Now suppose Q is another ring that satisfies the properties in the theorem.
Define a map H : Q→ Qmr(R) by H(q) = [lq; {x ∈ R ; qx ∈ R}] for all q ∈ Q. The
property (ii) ensures that {x ∈ R ; qx ∈ R} is a dense right ideal of R, so H is well
defined. The property (iii) ensures that H is injective and the property (iv) ensures
that H is surjective. Clearly H fixes the elements of R. To verify that H is a ring
homomorphism is straightforward.

Observe that property (iii) in Theorem 1.2.5 implies that the element q in prop-
erty (iv) is uniquely determined by f .
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In a similar fashion we define the maximal left ring of quotients Qml(R). For this
purpose we have to use dense left ideals of R and right multiplications by elements
of R. It should be noted that multiplication must be defined by [f ; J ] · [g;K] =
[g ◦ f ; f−1(K)] in this case.

We shall need a few basic properties of the maximal right ring of quotients. Of
course the same properties hold for the maximal left ring of quotients as well.

Proposition 1.2.6. Let R be a prime ring and p, q ∈ Qmr(R). If pRq = 0 then
p = 0 or q = 0.

Proof. By Theorem 1.2.5 (ii) there exist dense right ideals J and K of R such that
pJ, qK ⊆ R. Observe that (pJ)R(qK) ⊆ pRqK = 0. Since R is prime, this implies
pJ = 0 or qK = 0, hence p = 0 or q = 0 by Theorem 1.2.5 (iii).

Let R be a prime ring and S a ring such that R ⊆ S ⊆ Qmr(R). Then Propo-
sition 1.2.6 implies that S is a prime ring as well. In particular, the maximal right
ring of quotients of a prime ring is again a prime ring.

We can view Qmr as an operator that assigns to each prime ring R its maximal
right ring of quotients Qmr(R), which is again a prime ring. It turns out that this
operator is idempotent (see [4, Proposition 2.1.10] for the proof).

Proposition 1.2.7. Let R be a prime ring and S a subring of Qmr(R) that contains
R. Then S is a prime ring and Qmr(S) ∼= Qmr(R). In particular, Qmr(R) is a prime
ring and Qmr(Qmr(R)) ∼= Qmr(R).

Next we shall define the so called Martindale rings of quotients named after W.S.
Martindale who introduced them in 1969. In contrast to maximal rings of quotients,
these rings are defined using two-sided ideals. Given a prime ring R and a two-sided
ideal I / R it is not hard to see that I is dense as a right ideal of R if and only if
I 6= 0. This explains the following definition. For a prime ring R define

Qr(R) = {q ∈ Qmr(R) ; qI ⊆ R for some 0 6= I / R}.

Let p, q ∈ Qr(R) and choose 0 6= I, J /R such that pI, qJ ⊆ R. Then I∩J ⊇ JI 6= 0
since R is a prime ring. In addition, (p− q)I ∩ J ⊆ R and (pq)JI ⊆ pRI ⊆ pI ⊆ R,
hence p− q, pq ∈ Qr(R). This shows that Qr(R) is a subring of Qmr(R).

Definition 1.2.8. The ring Qr(R) is called the Martindale right ring of quotients
of R.

Since the only difference between the maximal right ring of quotients and the
Martindale right ring of quotients is that two-sided ideals are used instead of one-
sided ideals, it is not surprising that the latter can be characterized similarly as the
former ([4, Proposition 2.2.1]).

Theorem 1.2.9. For a prime ring R the ring Qr(R) satisfies the following proper-
ties:

(i) R is a subring of Qr(R),
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(ii) for every q ∈ Qr(R) there exists 0 6= I / R such that qI ⊆ R,

(iii) for every q ∈ Qr(R) and every 0 6= I / R, qI = 0 implies q = 0,

(iv) for every 0 6= I / R and every homomorphism of right R-modules f : I → R
there exists q ∈ Qr(R) such that f(x) = qx for all x ∈ I.

Furthermore, these properties characterize Qr(R) up to an isomorphism over R.

In the construction of Qmr(R) as a ring of equivalence classes of partial homo-
morphisms, the subring Qr(R) is the subring of those classes, that correspond to
homomorphisms of right R-modules f : I → R, where I is a nonzero ideal of R.

In the same manner we define the Martindale left ring of quotients Ql(R) as a
subring of Qml(R).

For a prime ring R define

Qs(R) = {q ∈ Qmr(R) ; qI ∪ Iq ⊆ R for some 0 6= I / R}.

Similarly as for Qr(R) we can show that Qs(R) is a subring of Qmr(R). Clearly
Qs(R) ⊆ Qr(R) ⊆ Qmr(R).

Definition 1.2.10. The ring Qs(R) is called the Martindale symmetric ring of
quotients of R.

Passman has showed that the ring Qs(R) can also be characterized by four prop-
erties analogous to those for Qr(R) and Qmr(R) ([4, Proposition 2.2.3]).

Theorem 1.2.11. For a prime ring R the ring Qs(R) satisfies the following prop-
erties:

(i) R is a subring of Qs(R),

(ii) for every q ∈ Qs(R) there exists 0 6= I / R such that qI ∪ Iq ⊆ R,

(iii) for every q ∈ Qs(R) and every 0 6= I / R, qI = 0 or Iq = 0 implies q = 0,

(iv) for every 0 6= I / R, every homomorphism of right R-modules f : I → R, and
every homomorphism of left R-modules g : I → R such that xf(y) = g(x)y for
all x, y ∈ I, there exists q ∈ Qs(R) such that f(x) = qx and g(x) = xq for all
x ∈ I.

Furthermore, these properties characterize Qs(R) up to an isomorphism over R.

Observe that, since R is a prime ring, the identity for f and g in property (iv)
itself implies, that f and g are homomorphisms of R-modules, so we could omit this
in the formulation.

We have defined the ring Qs(R) as a subring of Qmr(R), however it can also be
viewed as a subring of Qml(R), since it is isomorphic to its analogue

{q ∈ Qml(R) ; qI ∪ Iq ⊆ R for some 0 6= I / R} ⊆ Qml(R).

Given q ∈ Qs(R) and 0 6= I / R such that qI ∪ Iq ⊆ R, the isomorphism maps
q = [lq; I] to q′ = [rq; I], where lq and rq are left and right multiplications by q.
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Due to its symmetry the ring Qs(R) inherits a lot more structure from R then
the rings Qr(R) and Qmr(R). In particular, if R is a prime ring with involution then
the involution can be extended to Qs(R) (see also [4, Proposition 2.5.4]).

Proposition 1.2.12. Let R be a prime. Any involution on R can be extended
uniquely to an involution on Qs(R).

Proof. Let ∗ denote the involution on R. Given an element q ∈ Qs(R) there is an
ideal 0 6= I / R such that qI ∪ Iq ⊆ R. Hence we can define f, g : I∗ → R by
f(x) = (x∗q)∗ and g(x) = (qx∗)∗ for all x ∈ I∗. Observe that I∗ is a nonzero ideal
of R and that the maps f and g satisfy xf(y) = g(x)y for all x, y ∈ I∗. Thus by
Theorem 1.2.11 there exists a unique element q# ∈ Qs(R) such that f(x) = q#x and
g(x) = xq# for all x ∈ I∗. It is straightforward to show that the map q → q# is an
involution on Qs(R) that extends ∗. Let us just mention that in the construction of
Qs(R) ⊆ Qmr(R) this involution corresponds to the map [lq; I]→ [∗ ◦ rq ◦ ∗; I∗].

If we attempt to define an involution on Qmr(R) in a similar way, we actually
end up with an anti-isomorphism Qmr(R)→ Qml(R).

Definition 1.2.13. The center of Qs(R) is denoted by C(R) and called the extended
centroid of R.

It turns out that C(R) coincides with the center of any other ring of quotients
defined above ([4, Remark 2.3.1]).

Proposition 1.2.14. For every prime ring R,

C(R) = Z(Qr(R)) = Z(Qmr(R)) = {q ∈ Qmr(R) ; qr = rq for all r ∈ R}.

Proof. Denote Z := {q ∈ Qmr(R) ; qr = rq for all r ∈ R}. It suffices to prove
that Z ⊆ Qs(R) ∩ Z(Qmr(R)). Take q ∈ Z. By Theorem 1.2.5 there exists a dense

right ideal J of R such that qJ ⊆ R. Then Ĵ = J +
∑
RJ is a nonzero ideal of R.

Since q commutes with elements of R, we have Ĵq = qĴ = qJ +
∑
RqJ ⊆ R, hence

q ∈ Qs(R). Let x be an arbitrary element of Qmr(R). Then there exists a dense
right ideal K of R such that xK ⊆ R. This implies (xq − qx)k = xqk − q(xk) =
xkq − (xk)q = 0 for all k ∈ K, i.e. (xq − qx)K = 0. Hence xq − qx = 0 by
Theorem 1.2.5, which shows that q ∈ Z(Qmr(R)).

In the construction of Qmr(R) as a ring of equivalence classes of homomorphisms
of right R-modules the ring C(R) is the subring of all equivalent classes [f ; I], where
I is a nonzero ideal of R and f : I → R is a homomorphism of (R,R)-bimodules.

The next proposition gives the main reason why C(R) plays an important role.

Proposition 1.2.15. For every prime ring R, C(R) is a field.

Proof. Let 0 6= c ∈ C(R) ⊆ Qs(R) and let I be a nonzero ideal of R such that
cI ∪ Ic ⊆ R. Since c commutes with elements of R, the annihilator AnnR(c) = {x ∈
R ; cx = 0} is a two-sided ideal of R such that cAnnR(c) = 0. By Theorem 1.2.11
this implies AnnR(c) = 0 since c 6= 0. This shows that we have a well defined
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homomorphism of right R-modules f : cI → R given by f(cx) = x for all x ∈ I.
Observe that cI is a nonzero two-sided ideal of R since c commutes with elements
of R. Hence by Theorem 1.2.9 there exists c′ ∈ Qr(R) such that f(y) = c′y for all
y ∈ cI, i.e. x = c′cx for all x ∈ I. This implies (1−c′c)I = 0, therefore c′c = cc′ = 1.
Consequently c′ ∈ C(R).

To summarize, for every prime ring R we have

C(R) ⊆ Qs(R) ⊆ Qr(R) ⊆ Qmr(R) and C(R) ⊆ Qs(R) ⊆ Ql(R) ⊆ Qml(R),

where all these are prime rings and C(R) is a field.
We conclude with a few standard examples to demonstrate the above definitions.

The proofs can mostly be found in [18].

Example 1.2.16. For a commutative domain K we have Qmr(K) = Qr(K) =
Qs(K) = C(K) ∼= F , where F denotes the field of fractions of K.

Example 1.2.17. For a simple unital ring R, Qr(R) = Qs(R) ∼= R and C(R) ∼=
Z(R).

Example 1.2.18. For the matrix ring R = Mn(Z) we have Qmr(R) = Qr(R) =
Qs(R) ∼= Mn(Q) and C(R) ∼= Q.

Example 1.2.19. Let k be a field and σ an automorphism of k of infinite order. Let
R = k[x;σ] be the skew polynomial ring over k. The elements of R are polynomials
with coefficients in k, the addition is the usual addition of polynomials, and the
multiplication is defined by xλ = σ(λ)x for all λ ∈ k (and extended appropriately).
It turns out that R has a division ring of fractions D. It can be shown that

Qmr(R) ∼= D,

Qr(R) = Qs(R) ∼= k[x, x−1;σ],

C(R) ∼= kσ.

Here kσ is the field of all fixed points of σ and k[x, x−1;σ] is the skew Laurent
polynomial ring over k (its elements are Laurent polynomials, i.e. finite Laurent
series, addition is the usual addition of Laurent series, and multiplication is defined
by xλ = σ(λ)x and x−1λ = σ−1(λ)x−1 for all λ ∈ k).

Example 1.2.20. Let R be the ring of all N×N matrices over C of the form A+λI,
where A is a finite matrix (i.e. matrix with only finitely many nonzero entries), I
is the identity matrix, and λ ∈ C. It is not hard to see that the set of all finite
matrices is the only proper nonzero ideal of R. This makes it possible to calculate
the Martindale rings of quotients of R. It turns out that

Ql(R) ∼= {N× N matrices over C with finite rows},
Qr(R) ∼= {N× N matrices over C with finite columns},
Qs(R) ∼= {N× N matrices over C with finite rows and columns},
C(R) ∼= C.
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1.3 Zero product preservers

The theory of preservers is a vast area with applications in many branches of math-
ematics as well as mathematical physics. It has been an active research area for
decades and still is. Loosely speaking a preserver is a map between two rings or
algebras that preserves certain properties of elements, relations between elements,
subsets of elements, or certain operations or identities. The aim of the theory is to
characterize all maps that preserve a particular property, i.e. to describe how these
maps look like. The most thoroughly studied preservers are preserver on matrix
algebras and operator algebras. Classical examples are commutativity preservers,
preservers of rank, determinant preservers, adjacency preservers, preservers of spec-
trum, and preservers of the group of invertible elements to name just a few. In the
present section we devote our attention to a specific example of preservers, the zero
product preservers.

Definition 1.3.1. Let A and B be two rings. A map θ : A→ B is said to preserve
zero product if θ(x)θ(y) = 0 for all x, y ∈ A with xy = 0.

Zero product preservers have been studied by many authors in many different
settings. We first mention the result for matrix algebras proved by Chebotar et
al. [9, Corollary 2.4], which will also demonstrate what is the expected form of a
zero product preserving map.

Theorem 1.3.2. Let F be an algebraically closed field of characteristic zero and
θ : Mn(F ) → Mr(F ) a linear zero product preserving map, where n and r are
positive integers with n ≥ 2 and n ≥ r. Then either Im θ has trivial multiplication
or n = r and there exists an invertible matrix A ∈ Mn(F ) and a scalar λ ∈ F such
that θ(X) = λAXA−1 for all X ∈Mn(F ).

Observe that if Im θ has nontrivial multiplication then the map θ is a scalar
multiple of an algebra homomorphism. In general the expected form of a zero
product preserving map is similar; a homomorphism multiplied by a central element.
As we often require the map in question to be surjective, the central element usually
turns out to be invertible. Clearly any such map is indeed zero product preserving.

Several other authors have considered zero product preservers in other settings.
Wong [41] characterized bijective semilinear zero product preserving maps on sim-
ple finite dimensional algebras and more generally on a class of primitive algebras.
Ajauro and Jarozs [3] considered zero product preserving maps on subalgebras of
the Banach algebra of bounded linear operators and on spaces of continuous opera-
tor valued functions. Cui and Hou [10] characterized bounded surjective linear zero
product preserving maps on von Neumann algebras. Chebotar et al. [9] characterized
surjective bounded linear zero product preserving maps on unital C∗-algebras and
also considered such maps on certain standard operator algebras. In 2004 Chebotar
et al. [8] generalized some of the above results by considering bijective additive zero
product preserving maps on prime rings with nontrivial idempotents. In particular
they proved the following theorem ([8, Theorem 1]).
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Theorem 1.3.3. Let A and B be prime rings and θ : A → B a bijective additive
map such that θ(x)θ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that Qmr(A)
contains a nontrivial idempotent e such that eA ∪ Ae ⊆ A.

(i) If 1 ∈ A, then θ(xy) = λθ(x)θ(y) for all x, y ∈ A, where θ(1) ∈ Z(B) and
λ = 1/θ(1) ∈ C(B). In particular, if θ(1) = 1 then θ is a ring isomorphism
from A onto B.

(ii) If degB ≥ 3, then there exists λ ∈ C(B), the extended centroid of B, such
that θ(xy) = λθ(x)θ(y) for all x, y ∈ A.

Since this theorem describes zero product preservers on general prime rings, the
additional condition of existence of a nontrivial idempotent is needed to ensure that
we have enough zero products in A. Otherwise A could be a domain, in which case
any additive map defined on A would trivially preserve zero product.

Wang [37] has shown that the technical assumption degB ≥ 3 can be removed
from this theorem. Moreover Brešar [6] has replaced the assumption that A is a
prime ring with a weaker assumption implying that A contains a noncentral idem-
potent.

In the following theorem we further extend these results by considering surjective
(not necessarily injective) additive zero product preserving maps. This result is
contained in [33].

Theorem 1.3.4. Let A be a ring and B a prime ring. Let θ : A→ B be a surjective
additive map such that θ(x)θ(y) = 0 for all x, y ∈ A with xy = 0. Suppose that R
is a unital ring that contains A as a subring and let e be an idempotent in R such
that eA ∪ Ae ⊆ A. Denote f = 1 − e. If either e ∈ A, f ∈ A, or A =

∑
A2 then

one of the following holds:

(i) θ(eA+ Ae+ AeA) = 0,

(ii) θ(fA+ Af + AfA) = 0,

(iii) there exists 0 6= λ ∈ C(B) such that θ(xy) = λθ(x)θ(y) for all x, y ∈ A.

We divide the proof into 4 steps. In Steps 1 and 3 we follow the methods used in
[8, Theorem 1], slightly modifying the calculations in Step 3. Step 2 is new and is
needed to deal with the non-injectivity of θ. In Step 4 we use a similar approach as
was used in [37] in order to eliminate the assumption degB ≥ 3. However we avoid
the use of the theory of functional identities and present a direct proof instead. We
give here the whole proof of the theorem for the sake of completeness.

Proof of Theorem 1.3.4. First notice that fA∪Af ⊆ A. We want to show that the
map θ satisfies the identity

θ(xy)θ(z) = θ(x)θ(yz) for all x, y, z ∈ A. (1.1)

Since θ is additive and y = eye + eyf + fye + fyf for all y ∈ A we only need to
prove the identity (1.1) for y ∈ eAe ∪ eAf ∪ fAe ∪ fAf .
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Step 1. First we prove the identity (1.1) for y ∈ eAf ∪ fAe. Let x, z ∈ A. Since
(xe)(z − ez) = 0, we have θ(xe)θ(z − ez) = 0 and hence θ(xe)θ(z) = θ(xe)θ(ez)
due to the additivity of θ. Similarly (x − xe)(ez) = 0 implies θ(x − xe)θ(ez) = 0,
therefore θ(x)θ(ez) = θ(xe)θ(ez). Both identities together imply

θ(xe)θ(z) = θ(x)θ(ez) for all x, y ∈ A. (1.2)

By symmetry of e and f we also have

θ(xf)θ(z) = θ(x)θ(fz) for all x, y ∈ A. (1.3)

Now let x, y, z ∈ A. Since (xe+ xeyf)(eyfz − fz) = 0, we have

θ(xe+ xeyf)θ(eyfz − fz) = 0.

Expanding the left-hand side we get

θ(xe)θ(eyfz)− θ(xe)θ(fz) + θ(xeyf)θ(eyfz)− θ(xeyf)θ(fz) = 0.

Taking into account that (xe)(fz) = (xeyf)(eyfz) = 0, which implies θ(xe)θ(fz) =
θ(xeyf)θ(eyfz) = 0, this identity reduces to

θ(xeyf)θ(fz) = θ(xe)θ(eyfz).

Applying (1.3) on the left and (1.2) on the right we get

θ(xeyf)θ(z) = θ(x)θ(eyfz) for all x, y, z ∈ A. (1.4)

Again by symmetry of e and f we also have

θ(xfye)θ(z) = θ(x)θ(fyez) for all x, y, z ∈ A. (1.5)

Step 2. In what will follow we will shorten the calculations from [8] a bit. But before
we proceed, we prove the following:

(a) θ(fAfAeA) = 0 implies θ(AeAf) = 0 or θ(fAeA) = 0,

(b) the following four conditions are equivalent:
θ(AfAe) = 0, θ(fAeA) = 0, θ(AeAf) = 0, θ(eAfA) = 0,

(c) θ(eAfA) = 0 implies θ(eA+ Ae+ AeA) = 0 or θ(fA+ Af + AfA) = 0.

(a): Let θ(fAfAeA) = 0. Then by (1.5)

θ(AfAfAe)θ(A) = θ(A)θ(fAfAeA) = 0.

Since θ is surjective and B is prime this implies θ(AfAfAe) = 0. Hence by (1.4),
(1.5) and (1.2)

θ(AeAf)θ(A)θ(fAeA) = θ(A)θ(eAfAfAe)θ(A) = θ(Ae)θ(AfAfAe)θ(A) = 0.
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Since θ is surjective and B is prime this implies θ(AeAf) = 0 or θ(fAeA) = 0.

(b): By (1.5) we have θ(AfAe)θ(A) = θ(A)θ(fAeA). Since θ is surjective and B
prime this means that the first two conditions in (b) are equivalent. By symmetry
of e and f the last two conditions in (b) are also equivalent. In addition by (1.5)
and (1.3) we have

θ(AfAe)θ(A)θ(fAeA) = θ(A)θ(fAeAf)θ(AeA) = θ(Af)θ(AeAf)θ(AeA),

so the third condition in (b) implies the first two. By symmetry of e and f the first
condition in (b) implies the last two. So all the conditions are equivalent.

(c): Let θ(eAfA) = 0 and let x, y ∈ A. Then by (b) we have θ(xfye) = θ(fxey) =
θ(xeyf) = θ(exfy) = 0. Since f = 1 − e this implies θ(xye) = θ(xeye), θ(xey) =
θ(exey), θ(xey) = θ(xeye) and θ(exy) = θ(exey). Hence

θ(exy) = θ(xey) = θ(xye) for all x, y ∈ A. (1.6)

Since e = 1− f this also implies

θ(fxy) = θ(xfy) = θ(xyf) for all x, y ∈ A. (1.7)

If A =
∑
A2 then (1.6) implies θ(ex) = θ(xe) for all x ∈ A since θ is additive. If

e ∈ A then (1.6) with x = e implies θ(ey) = θ(eye) for all y ∈ A and (1.6) with
y = e implies θ(exe) = θ(xe) for all x ∈ A. These two identities together then imply
θ(ex) = θ(xe) for all x ∈ A. Similarly if f ∈ A then (1.7) implies θ(fx) = θ(xf) for
all x ∈ A. So in any case we have

θ(ex) = θ(xe) for all x ∈ A (1.8)

and
θ(fx) = θ(xf) for all x ∈ A, (1.9)

since these two conditions are in fact equivalent. By (1.2), (1.3) and (1.8) we have

θ(Af)θ(A)θ(eA) = θ(A)θ(fAe)θ(A) = θ(A)θ(efA)θ(A) = θ(A)θ(0)θ(A) = 0,

where θ(0) = 0 since θ is additive. Hence either θ(Af) = 0 or θ(eA) = 0. In the first
case (1.9) and (1.7) imply θ(Af) = θ(fA) = θ(AfA) = 0 and in the later case (1.8)
and (1.6) imply θ(eA) = θ(Ae) = θ(AeA) = 0. This completes the proof of (c).

Step 3. Now we prove the identity (1.1) for y ∈ eAe ∪ fAf . In view of (a), (b) and
(c), if either θ(fAfAeA) = 0 or θ(eAfA) = 0 then one of the conditions (i) and (ii)
from the theorem holds. So we may assume that θ(fAfAeA) 6= 0 and θ(eAfA) 6= 0.
Let x, y, z, w, u, v ∈ A be arbitrary. Then

θ(xeye)θ(zf)θ(w)θ(eufv)

= θ(xeye)θ(z)θ(fweuf)θ(v) by (1.3) and (1.4)

= θ(xey)θ(ezfwe)θ(uf)θ(v) by (1.2) and (1.5)

= θ(xeyezf)θ(we)θ(uf)θ(v) by (1.4)

= θ(x)θ(eyezfwe)θ(uf)θ(v) by (1.4)

= θ(x)θ(eyez)θ(fweuf)θ(v) by (1.5)

= θ(x)θ(eyezf)θ(w)θ(eufv) by (1.3) and (1.4) ,
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which implies (θ(xeye)θ(zf)− θ(x)θ(eyezf))θ(w)θ(eufv) = 0. Since θ is surjective,
B is prime and θ(eAfA) 6= 0 this implies

θ(xeye)θ(zf) = θ(x)θ(eyezf) for all x, y, z ∈ A. (1.10)

Let x, y, z, w, t, u, v ∈ A be arbitrary. Then

θ(xeye)θ(ze)θ(w)θ(ftfuev)

= θ(xeye)θ(z)θ(ewftfue)θ(v) by (1.2) and (1.5)

= θ(xey)θ(ezewftf)θ(ue)θ(v) by (1.2) and (1.4)

= θ(xeyezewf)θ(tf)θ(ue)θ(v) by (1.4)

= θ(x)θ(eyezewftf)θ(ue)θ(v) by (1.4)

= θ(x)θ(eyez)θ(ewftfue)θ(v) by (1.4)

= θ(x)θ(eyeze)θ(w)θ(ftfuev) by (1.2) and (1.5) ,

which implies (θ(xeye)θ(ze) − θ(x)θ(eyeze))θ(w)θ(ftfuev) = 0. Again since θ is
surjective, B is prime and θ(fAfAeA) 6= 0 this implies

θ(xeye)θ(ze) = θ(x)θ(eyeze) for all x, y, z ∈ A. (1.11)

Summing (1.10) and (1.11) gives

θ(xeye)θ(z) = θ(x)θ(eyez) for all x, y, z ∈ A. (1.12)

By symmetry of e and f we also have

θ(xfyf)θ(z) = θ(x)θ(fyfz) for all x, y, z ∈ A. (1.13)

Finally summing (1.4), (1.5), (1.12) and (1.13) gives the identity (1.1).

Step 4. Now we treat the identity (1.1). Since θ : A→ B is surjective, let ψ : B → A
be any set-theoretic right inverse of θ, so that θψ = idB. Let y ∈ A be a fixed element
and define

f(X) = θ(ψ(X)y) and g(Z) = θ(yψ(Z))

for all X,Z ∈ B. Then by (1.1)

f(X)Z = θ(ψ(X)y)θ(ψ(Z)) = θ(ψ(X))θ(yψ(Z)) = Xg(Z)

for all X,Z ∈ B. By Theorem 1.2.11 there exists a unique q ∈ Qs(B) ⊆ Qmr(B)
such that

f(X) = Xq and g(Z) = qZ

for allX,Z ∈ B (the above identity itself implies that f : B → B is a homomorphism
of left B-modules and g : B → B is a homomorphism of right B-modules). Let
x, z ∈ A be arbitrary. Since θψ = idB we have

θ(xy)θ(z) = θ(x)θ(yz) = θ(ψ(θ(x)))θ(yz) = θ(ψ(θ(x))y)θ(z),
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hence (θ(xy)−θ(ψ(θ(x))y))θ(z) = 0. Since θ is surjective and B is prime this implies

θ(xy) = θ(ψ(θ(x))y) = f(θ(x)) = θ(x)q for all x ∈ A.

Similarly we get

θ(yz) = θ(yψ(θ(z))) = g(θ(z)) = qθ(z) for all z ∈ A.

Since q depends on y we shall write q = h(y). Then h : A→ Qmr(B) is a map that
satisfies

θ(x)h(y) = θ(xy) = h(x)θ(y) for all x, y ∈ A. (1.14)

Since θ is surjective this identity implies h(A) ⊆ IQmr(B)(B), where IQmr(B)(B) =
{r ∈ Qmr(B) ; rB ⊆ B, Br ⊆ B} is the idealizer of B in Qmr(B). Now define

H(X) = h(ψ(X))

for all X ∈ B. Then H : B → IQmr(B)(B) and

H(X)Y = h(ψ(X))θ(ψ(Y )) = θ(ψ(X))h(ψ(Y )) = XH(Y )

for all X, Y ∈ B. Since IQmr(B)(B) is a ring such that B ⊆ IQmr(B)(B) ⊆ Qmr(B)
and B is a prime ring, Theorem 1.2.7 implies that IQmr(B)(B) is a prime ring as well
and Qmr(IQmr(B)(B)) = Qmr(B). Observe that B is a nonzero ideal of IQmr(B)(B),
hence Theorem 1.2.11 together with the above identity implies that there exists a
unique λ ∈ Qs(IQmr(B)(B)) ⊆ Qmr(IQmr(B)(B)) = Qmr(B) such that

H(X) = Xλ and H(Y ) = λY

for all X, Y ∈ B. This implies Xλ = λX for all X ∈ B, hence λ ∈ C(B). Let
x, y ∈ A be arbitrary. Then by (1.14)

h(x)θ(y) = θ(x)h(y) = θ(ψ(θ(x)))h(y) = h(ψ(θ(x)))θ(y),

hence (h(x)− h(ψ(θ(x))))θ(y) = 0. As before this implies

h(x) = h(ψ(θ(x))) = H(θ(x)) = λθ(x) for all x ∈ A.

By (1.14) we have θ(xy) = λθ(x)θ(y) for all x, y ∈ A as required. Suppose λ = 0.
Then

θ(xy) = 0 for all x, y ∈ A. (1.15)

If A =
∑
A2 then (1.15) implies θ(A) = 0, which is impossible since θ is surjective.

If e ∈ A then (1.15) implies θ(eA+Ae+AeA) = 0 and θ satisfies condition (i) of the
theorem. Similarly if f ∈ A then θ satisfies condition (ii) of the theorem. Therefore
we may assume that λ 6= 0.
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We should remark that in order to get any information from Theorem 1.3.4, the
idempotent e must be nontrivial, otherwise one of the conditions (i) and (ii) will be
satisfied trivially. Even more, e must act nontrivially on A, i.e. not as 0 or 1. This in
a way means that e must have some meaningful connection to A. In Theorem 1.3.3
this connection was that e lies in the maximal right ring of quotients of A.

In certain situations we can guarantee that condition (iii) of Theorem 1.3.4 will
hold. Suppose that e acts nontrivially on A. Then eA + Ae +

∑
AeA and fA +

Af +
∑
AfA are nonzero ideals of A. So if A is a simple ring or if θ is injective

then the condition (iii) must hold. This shows in particular that in [6, Corollary
4.3] no additional assumptions on the ring A are needed besides the existence of a
nontrivial idempotent.

Observe that if a map θ satisfies condition (iii) of Theorem 1.3.4 then it indeed
preserves zero product. On the other hand conditions (i) or (ii) are not sufficient
for θ to preserve zero product. So one would think that perhaps more information
about θ could be extracted. However, a simple example shows that this is not the
case. In other words the conclusions of (i) and (ii) are optimal.

Example 1.3.5. Let T be a ring, S a domain, B a prime ring, and A = S ⊕ T .
Embed S and T into unital rings S1 and T 1. Then A is embedded into R =
S1 ⊕ T 1 and e = (1, 0) ∈ R is an idempotent such that eA + Ae + AeA = S and
fA + Af + AfA = T . For an arbitrary (additive, surjective) map φ : S → B
with φ(0) = 0 the map θ : A → B defined by θ(s, t) = φ(s) for all s ∈ S, t ∈ T
preserves zero product and satisfies condition (ii) of Theorem 1.3.4. This shows that
the information in (i) or (ii) of Theorem 1.3.4 is the most information we can extract
from the existence of a single idempotent.

Notice that for example condition (ii) of Theorem 1.3.4 implies θ(x) = θ(exe)
for all x ∈ A. Of course the restriction of θ to a subring eAe ⊆ A again preserves
zero product. However this does not reduce the problem to the ring eAe since the
map θ(x) = ψ(exe) might not preserve zero product even if ψ : eAe→ B does.

1.4 Maps preserving zeros of xy∗

In this section we consider a variant of the zero product preservers for rings with
involution. By involution we mean an anti-automorphism of order ≤ 2.

Definition 1.4.1. Let A and B be two rings with involution. A map θ : A→ B is
said to preserve zeros of xy∗ if θ(x)θ(y)∗ = 0 for all x, y ∈ A with xy∗ = 0.

The preservers of zeros of xy∗ have not been studied as extensively as the zero
product preservers, as they have appeared more recently. Nevertheless there are a
few known results on this subject and on related questions. Again we start with a
basic result for matrices, that was proved by Swain [34, Corollary 5].

Theorem 1.4.2. Let F be a field, ∗ an involution on Mn(F ), where n ≥ 2, and
θ : Mn(F )→ Mn(F ) a bijective linear map that preserves zeros of xy∗. Then there
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exist invertible matrices B,U ∈ Mn(F ), with U∗ = U−1, such that θ(X) = BXU
for all X ∈Mn(F ).

Observe that the map θ can also be written in the form θ(X) = CU−1XU for
all X ∈ Mn(F ), where C = BU ∈ Mn(F ). In particular, θ is a composition of a
∗-homomorphism of Mn(F ) and a left multiplication by some element of Mn(F ).
This is in general the expected form of a map that preserves zeros of xy∗; a ∗-
homomorphism multiplied from the left by some element of the ring. As we often
require the map to be surjective (or even bijective), the corresponding element usu-
ally turns out to be invertible.

Swain [34] has also considered maps that preserve zeros of xy∗ on prime rings with
involution. He has obtained a characterization of bijective additive maps θ : A→ A
that preserve zeros of xy∗ in the case when A is a unital prime ring with involution
that is generated by idempotents. Examples of rings generated by idempotents
are simple rings with nontrivial idempotents and the rings of n × n matrices over
any unital ring, where n ≥ 2 (see [6] for details). The assumption that the ring
is generated by idempotents is quite strong, however as Swain has pointed out, it
might be difficult to obtain such a characterization for general prime rings with
involution that contain a nontrivial idempotent.

In the last decade several related problems have appeared in the literature. For
example Wong [40] considered linear maps θ on C∗-algebras such that θ(x)θ(y)∗ =
θ(x)∗θ(y) = 0 for all x, y with xy∗ = x∗y = 0. He called such maps disjointness
preserving maps. Some work has also been done on maps preserving zeros of other
∗-polynomials, such as xy − yx∗ (see [7]).

There is one crucial difference between the setting with involution and the set-
ting without involution. The condition for a zero product preserver is completely
symmetric, while the condition for a map that preserves zeros of xy∗ is not symmet-
ric, as the ∗ only appears on the right-hand side. This loss of symmetry in the case
with involution has certain consequences. Firstly, the class of expected solutions is
somewhat larger. In both settings the expected solutions are morphisms multiplied
by some element, however, in the case without involution this element has to be cen-
tral, while in the case with involution it may be general. And secondly, the results
are usually less general and often some additional assumptions are needed to be able
to describe maps preserving zeros of xy∗. For example, in the aforementioned result
of Swain [34] on prime rings with involution, the additional assumption was that
the ring is generated by idempotents. The aim of the present section is to prove
some results in which we avoid this strong additional assumption and rather impose
additional assumptions on the map itself. Most of these results are contained in
[33].

First we demonstrate how the problem of maps preserving zeros of xy∗ can in fact
be viewed as a generalization of the problem of zero product preservers. Suppose A
and B are rings with involution and θ : A → B is an arbitrary map. Define a map
φ : A → B by setting φ(x) = θ(x∗)∗ for all x ∈ A. Then the map θ will preserve
zeros of xy∗ if and only if θ(x)φ(y) = 0 for all x, y ∈ A with xy = 0. This condition
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is a generalization of the condition for a zero product preserver in the sense that
it involves two maps instead of only one. The fact that φ is closely related to θ
plays no significant role in our proofs, hence most results could be formulated for
arbitrary pairs of maps θ and φ. We do this explicitly only in the most interesting
case.

Our first result shows that, similar to the case with no involution, the injectivity
of the map in [34, Theorem 4] can be omitted. The proof is similar to that of
Theorem 1.3.4 so we leave the details out.

Proposition 1.4.3. Let A be a unital ring with involution generated by idempotents
and B a prime ring with involution. Let θ : A → B be a surjective additive map
that preserves zeros of xy∗. Then there exists a ∗-homomorphism h : A → Qs(B)
such that θ(x) = θ(1)h(x) for all x ∈ A.

Proof. As in [34, Theorem 4] we have

θ(xy)θ(z)∗ = θ(x)θ(zy∗)∗ for all x, y, z ∈ A.

Let ψ : B → A be any set-theoretic right inverse of θ and let y ∈ A be a fixed
element. Now define

f(X) = θ(ψ(X)y) and g(Z) = θ(ψ(Z∗)y∗)∗

for all X,Z ∈ B. Then

f(X)Z = Xg(Z) for all X,Z ∈ B.

By Theorem 1.2.11 there exists a unique q ∈ Qs(B) such that

f(X) = Xq and g(Z) = qZ for all X,Z ∈ B.

Similarly as in the proof of Theorem 1.3.4 this implies

θ(xy) = θ(x)q and θ(zy∗) = θ(z)q∗ for all x, z ∈ A.

Since q depends on y we write q = h(y). Then h : A→ Qs(B) is a map, such that

θ(xy) = θ(x)h(y) and θ(zy∗) = θ(z)h(y)∗ for all x, y, z ∈ A.

As in [34, Theorem 4] this implies that h is a ∗-homomorphism of rings and θ(x) =
θ(1)h(x) for all x ∈ A.

Let A be a unital ring and let E(A) denote the set of all idempotents of A. For
e ∈ E(A) denote by Ie the ideal of A generated by e, that is Ie =

∑
AeA. Observe

that Ie is in fact the ideal generated by all left and right annihilators of 1 − e. As
in [6] let I(A) denote the ideal of A generated by [E(A), A], where [·, ·] denotes the
commutator in A.
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We claim that
I(A) =

∑
e∈E(A)

Ie ∩ I1−e.

For an arbitrary e ∈ E(A) we have [e, x] = −[1 − e, x] ∈ Ie ∩ I1−e for all x ∈ A,
thus I(A) ⊆

∑
e∈E(A) Ie ∩ I1−e. Conversely, if a is an element of Ie ∩ I1−e then

a =
∑

i xieyi =
∑

j zj(1− e)wj for some xi, yi, zj, wj ∈ A. Thus

(1− e)a =
∑
i

[1− e, xi]eyi and ea =
∑
j

[e, zj](1− e)wj.

Summing the last two equalities gives

a =
∑
i

[1− e, xi]eyi +
∑
j

[e, zj](1− e)wj,

which lies in I(A). Note that if A is a ring with involution then I(A)∗ = I(A).

Lemma 1.4.4. Let A be a unital ring and B an arbitrary ring. Let θ, φ : A → B
be additive maps such that θ(x)φ(y) = 0 for all x, y ∈ A with xy = 0. Then

θ(xy)φ(z) = θ(x)φ(yz) for all y, z ∈ A, x ∈ I(A).

Proof. Let e be an idempotent in A and let f = 1 − e. In the same way as in
the proof of Theorem 1.3.4 we can prove that the following identities hold for all
x, y, z ∈ A:

θ(xe)φ(z) = θ(x)φ(ez), (1.16)

θ(xf)φ(z) = θ(x)φ(fz), (1.17)

θ(xeyf)φ(z) = θ(x)φ(eyfz), (1.18)

θ(xfye)φ(z) = θ(x)φ(fyez). (1.19)

Now let y, z, u, v ∈ A be arbitrary. Then we have

θ(ufveye)φ(z)

= θ(u)φ(fveyez) by (1.19)

= θ(ufve)φ(yez) by (1.19)

= θ(ufv)φ(eyez) by (1.16) .

Since θ is additive, this implies

θ(xeye)φ(z) = θ(x)φ(eyez) for all y, z ∈ A, x ∈ If . (1.20)

By symmetry of e and f we also have

θ(xfyf)φ(z) = θ(x)φ(fyfz) for all y, z ∈ A, x ∈ Ie. (1.21)
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Summing (1.18), (1.19), (1.20) and (1.21), we obtain

θ(xy)φ(z) = θ(x)φ(yz) for all y, z ∈ A, x ∈ Ie ∩ If . (1.22)

Since θ is additive and I(A) =
∑

e∈E(A) Ie ∩ I1−e, this implies

θ(xy)φ(z) = θ(x)φ(yz) for all y, z ∈ A, x ∈ I(A).

Clearly we could show that θ(xy)φ(z) = θ(x)φ(yz) holds also when x is arbitrary
and z ∈ I(A).

With the above lemma we are ready to prove the main result of this section,
which describes pairs of maps θ and φ that satisfy the condition

θ(x)φ(y) = 0 iff xy = 0. (1.23)

This will then help us characterize maps that preserve zeros of xy∗ in both directions.

Theorem 1.4.5. Let A be a unital prime ring with a nontrivial idempotent and B
a prime ring. Let θ, φ : A→ B be surjective additive maps such that for all x, y ∈ A
we have θ(x)φ(y) = 0 if and only if xy = 0. Then θ(1) is invertible in Qr(B), φ(1)
is invertible in Ql(B), and there exists an injective homomorphism h : A → Qs(B)
such that θ(x) = θ(1)h(x) and φ(x) = h(x)φ(1) for all x ∈ A.

Proof. Let I = I(A). Since A is a prime ring with a nontrivial idempotent, I is a
nonzero ideal of A. By Lemma 1.4.4 we have

θ(xy)φ(z) = θ(x)φ(yz) for all y, z ∈ A, x ∈ I. (1.24)

Since θ and φ are additive, we have θ(0) = φ(0) = 0. If θ(x) = 0 for some x ∈ A,
then θ(x)φ(1) = 0 implies x1 = 0, hence x = 0. Since θ is additive, this shows that
it is injective. In particular θ(I) 6= 0. Similarly φ is injective.

Since θ is surjective, the same argument as above shows that the left annihilator
of φ(1) in B is zero. Now let L = Bφ(1), which is a left ideal of B. We want to
show that L is dense in B. Let b1, b2 ∈ B with b2 6= 0. Since φ is surjective, we
may write b1 = φ(a1) and b2 = φ(a2). The injectivity of φ implies a2 6= 0. Since I is
a nonzero ideal of a prime ring A, it has zero right annihilator. Hence there exists
i ∈ I such that ia2 6= 0, which implies θ(i)b2 = θ(i)φ(a2) 6= 0. On the other hand
the identity (1.24) implies

θ(i)b1 = θ(i)φ(a1) = θ(ia1)φ(1) ∈ L.

This shows that L is dense in B. Now define g : L→ B by g(bφ(1)) = b for all b ∈ B.
Since the left annihilator of φ(1) in B is zero, g is a well defined homomorphism
of left B-modules. By the left version of Theorem 1.2.5 there exists r ∈ Qml(B)
such that g(x) = xr for all x ∈ L, i.e. b = bφ(1)r for all b ∈ B. This implies
B(1− θ(1)r) = 0, therefore θ(1)r = 1 by the left version of Theorem 1.2.5. Hence r
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is a right inverse of φ(1) in Qml(B). If we insert z = 1 into (1.24) and multiply it
by r from the right, we get

θ(xy) = θ(x)φ(y)r for all y ∈ A, x ∈ I. (1.25)

The right annihilator of r in Qml(B) is zero since r has left inverse θ(1). Next we
want to show that the left annihilator of r in Qml(B) is zero as well. Suppose that
qr = 0 for some 0 6= q ∈ Qml(B). By the left version of Theorem 1.2.5 there exists
a dense left ideal J of B such that Jq ⊆ B. Since q is nonzero, Jq is also nonzero.
Take any nonzero c ∈ Jq ⊆ B. Then cr = 0. Since φ is bijective, there exists a
nonzero d ∈ A such that c = φ(d). By (1.25)

θ(xd) = θ(x)φ(d)r = θ(x)cr = 0 for all x ∈ I.

Since θ is injective, this implies Id = 0. Hence d = 0, which is a contradiction.
Let x ∈ I and y, z, w ∈ A be arbitrary. Then by (1.25) on one hand

θ(xyzw) = θ(xy)φ(zw)r = θ(x)φ(y)rφ(zw)r,

on the other hand

θ(xyzw) = θ(xyz)φ(w)r = θ(xy)φ(z)rφ(w)r = θ(x)φ(y)rφ(z)rφ(w)r.

Since φ is surjective, this implies θ(I)B(rφ(zw)r − rφ(z)rφ(w)r) = 0. By the left
version of Proposition 1.2.6 it follows that r(φ(zw)− φ(z)rφ(w))r = 0. Taking into
account that both left and right annihilator of r in Qml(B) are zero we get

φ(zw) = φ(z)rφ(w) for all z, w ∈ A. (1.26)

If we insert w = 1 into (1.26), we get φ(z) = φ(z)rφ(1). Since φ is surjective, this
implies B(1 − rφ(1)) = 0, hence rφ(1) = 1 by the left version of Theorem 1.2.5.
So φ(1) is invertible in Qml(B) and r is its inverse. Notice that (1.25) implies
θ(I)Br ⊆ B, therefore (

∑
Bθ(I)B)r ⊆ B. This means that r ∈ Ql(B) since∑

Bθ(I)B is a nonzero ideal of B.
In the same way we can show that θ(1) is invertible in Qr(B) with inverse s and

the maps θ and φ satisfy

φ(xy) = sθ(x)φ(y) for all x ∈ A, y ∈ I. (1.27)

and
θ(zw) = θ(z)sθ(w) for all z, w ∈ A. (1.28)

We would now like to combine identities (1.25), (1.26), (1.27), and (1.28), how-
ever we have to be a little bit careful, because the first two are identities in Qml(B)
while the last two are identities in Qmr(B). Nevertheless, we may interpret all these
identities in Qs(B) once we observe that Br, sB ⊆ Qs(R). To verify this notice that
(1.25) implies θ(I)Br ⊆ B, hence (

∑
Bθ(I)B)Br ⊆ B. In addition (1.26) implies
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BrB ⊆ B, hence Br(
∑
Bθ(I)B) ⊆ B. Since

∑
Bθ(I)B is a nonzero ideal of B,

this means that Br ⊆ Qs(R). Similarly (1.27) and (1.28) imply sB ⊆ Qs(R). Now
let x ∈ I and y, z ∈ A be arbitrary. Then on one hand by (1.25)

θ(xyz) = θ(xy)(φ(z)r) = θ(x)(φ(y)r)(φ(z)r),

on the other hand by (1.28) and (1.25)

θ(xyz) = θ(xy)(sθ(z)) = θ(x)(φ(y)r)(sθ(z)).

Since all the terms in brackets lie in Qs(B), we can combine these two identities to
get

θ(x)(φ(y)r)(φ(z)r) = θ(x)(φ(y)r)(sθ(z)).

If we view this in Qml(B) we may rewrite it as

θ(x)φ(y)r((φ(z)r)− (sθ(z))) = 0.

Since φ is surjective, this implies θ(I)Br((φ(z)r)− (sθ(z))) = 0. By the left version
of Proposition 1.2.6 it follows that r((φ(z)r)− (sθ(z))) = 0. Hence

φ(z)r = sθ(z) for all z ∈ A

since r is invertible. Now define h : A → Qs(B) by h(x) = φ(x)r = sθ(x) for
all x ∈ A. Since r is the inverse of φ(1) and s is the inverse of θ(1), we have
φ(x) = h(x)φ(1) and θ(x) = θ(1)h(x) for all x ∈ A. Clearly h is additive. Since r is
invertible and φ is injective, h is injective as well. By (1.26) we have

h(xy) = φ(xy)r = φ(x)rφ(y)r = h(x)h(y)

for all x, y ∈ A, hence h is a homomorphism of rings as needed.

Observe that the conclusions of Theorem 1.4.5 are also sufficient for θ and φ to
satisfy the condition (1.23). A careful inspection of the proof shows that instead of A
being a prime ring with a nontrivial idempotent, it would be enough to assume that
the ideal I(A) has zero left and right annihilator. As a corollary of Theorem 1.4.5
we have the following.

Theorem 1.4.6. Let A be a unital prime ring with involution that contains a non-
trivial idempotent and B a prime ring with involution. Let θ : A→ B be a surjective
additive map such that for all x, y ∈ A we have θ(x)θ(y)∗ = 0 if and only if xy∗ = 0.
Then θ(1) is invertible in Qr(B) and there exists an injective ∗-homomorphism
h : A→ Qs(B) such that θ(x) = θ(1)h(x) for all x ∈ A.

Proof. Let φ(x) = θ(x∗)∗ for all x ∈ A. Then θ and φ satisfy condition (1.23). By
Theorem 1.4.5 θ(1) is invertible in Qr(B) and there exists an injective homomor-
phism h : A→ Qs(B) such that θ(x) = θ(1)h(x) and φ(x) = h(x)φ(1) for all x ∈ A.
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By Proposition 1.2.12 the involution on B can be extended uniquely to an involution
on Qs(B), which we denote by ∗ as well. Hence we have

θ(1)h(x∗) = θ(x∗) = φ(x)∗ = φ(1)∗h(x)∗ = θ(1)h(x)∗

for all x ∈ A. Since θ(1) is invertible in Qr(B), this implies h(x∗) = h(x)∗ for all
x ∈ A.

Remark 1.4.7. By the proof of Theorem 1.4.5 the map θ from Theorem 1.4.6 is
injective and satisfies the identity

θ(xy∗) = θ(x)θ(y)∗r for all x, y ∈ A,

where r is the inverse of θ(1)∗ in Ql(B).

Theorem 1.4.6 characterizes maps that preserve zeros of xy∗ in both directions.
The question remains what can be said about maps on rings with nontrivial idem-
potents that preserve zeros of xy∗. The next result describes such maps θ : A→ B
in the special case when θ(1) is a central element in B. In particular, this is the
case if we assume that B is unital and θ(1) = 1.

Proposition 1.4.8. Let A be a unital ring with involution that contains a nontrivial
idempotent e and B a prime ring with involution. Let θ : A → B be a surjective
additive map that preserves zeros of xy∗ and suppose θ(1) ∈ Z(B). Then one of the
following holds:

(i) θ(Ie ∩ I1−e + Ie∗ ∩ I1−e∗) = 0,

(ii) θ(xy∗) = λθ(x)θ(y)∗ for all x, y ∈ A, where λ = 1/θ(1)∗ ∈ C(B).

Proof. Let φ(x) = θ(x∗)∗ for all x ∈ A. The conclusions follow from the proof of
Theorem 1.4.5 upon noticing that what was needed in the proof is satisfied auto-
matically here. More precisely, unless θ(1) = 0, both θ(1) and φ(1) are invertible in
C(B) since they are central in B, so we obtain (1.25) and (1.27) immediately where
r = 1/θ(1)∗ = λ and s = 1/θ(1) = λ∗. In view of condition (i) we may assume
that θ(I) 6= 0, where I = I(A). Since r and s are invertible, their left and right
annihilators are zero, which gives (1.26) and (1.28). These facts are sufficient for
the rest of the proof as well. By Remark 1.4.7 we get the desired conclusion. The
only remaining case we need to settle is the case when θ(1) = 0. If this is the case
then (1.24) with z = 1 implies θ(I)B = 0, hence θ(I) = 0.

Observe that if we additionally assume in Theorem 1.4.8 that θ is injective then
condition (i) implies Ie∩I1−e = 0. Since Ie+I1−e = A this means that A = Ie⊕I1−e.
In particular, if A is a prime ring, this cannot happen.
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Chapter 2

Nil rings

2.1 Definitions and properties

An element a of a ring R is nilpotent if an = 0 for some positive integer n. The
smallest integer n for which an = 0 is called the index of nilpotency of a or just the
index of a. The set of all nilpotent elements of a ring R will be denoted by N(R).

Definition 2.1.1. A ring R is nil if every element in R is nilpotent.

Nil rings are a generalization of nilpotent rings, which are historically one of the
most important class of rings. A ring R is nilpotent if there exists a positive integer
n such that Rn = 0, i.e. any product of n elements of R is zero. Every nilpotent
ring is nil, but a nil ring need not be nilpotent.

Example 2.1.2. Let Sn(C) denote the ring of strictly upper triangular n× n ma-
trices over C. Then the ring R =

⊕
n∈N Sn(C) is nil but not nilpotent.

Let R be an arbitrary ring. An ideal I / R is nil if it is nil as a ring. If I and J
are two nil ideals of R then I + J is again a nil ideal of R. Indeed, if a ∈ I + J then
a + J is nilpotent element of (I + J)/J , since (I + J)/J ∼= I/(I ∩ J) is nil. Thus
an ∈ J for some positive integer n and hence a is nilpotent, because J is nil. This
implies that in every ring R the sum of all nil ideals of R is again a nil ideal and is
thus the largest nil ideal of R.

Definition 2.1.3. The upper nilradical of R is the largest nil ideal of R and is
denoted by Nil∗(R).

It is well known that in a commutative ring R the set of all nilpotent elements
is in fact an ideal of R, so N(R) = Nil∗(R) for any commutative ring R. In
noncommutative rings the inclusion Nil∗(R) ⊆ N(R) is usually strict. Rings R for
which N(R) = Nil∗(R) are called NI rings.

One of the shortcomings of the notion of nilpotent rings is that the sum of all
nilpotent ideals of a ring need not be a nilpotent ideal. There are different ways to
overcome this shortcoming. One possibility is to work with locally nilpotent rings
instead. A ring R is locally nilpotent if every finitely generated subring of R is
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nilpotent. Clearly a nilpotent ring is locally nilpotent. On the other hand the ring
R from Example 2.1.2 is locally nilpotent but not nilpotent. It is easy to prove that
the sum of all the locally nilpotent ideals of a ring is again a locally nilpotent ideal.

Definition 2.1.4. The Levitzki radical of R (also called the locally nilpotent radical)
is the largest locally nilpotent ideal of R and is denoted by L(R).

Clearly L(R) ⊆ Nil∗(R). The first example of a nil ring that is not locally
nilpotent was given by Golod [14] as a consequence of joint work of Golod and
Shafarevich [15] (the example can also be found in [35, §20]). The ring in this
example is a nil algebra generated by three elements, which has infinite dimension
over the corresponding field, hence it cannot be nilpotent.

Definition 2.1.5. The lower nilradical of R (also called the prime radical) is the
intersection of all prime ideals of R and is denoted by Nil∗(R). In particular,
Nil∗(R) = R if R has no prime ideals.

The following classical result shows that Nil∗(R) is a nil ideal, which justifies
the naming (see [19]).

Theorem 2.1.6. For every ring R we have Nil∗(R) ⊆ L(R), hence Nil∗(R) is a
locally nilpotent ideal of R.

It is well known that in a commutative ring R we always have Nil∗(R) = L(R) =
Nil∗(R). In particular a commutative prime ring cannot be nil. In general, however
this is not the case. In fact, below we give an example of a nonzero prime ring R,
which is locally nilpotent. For such a ring R we have in particular 0 = Nil∗(R) 6=
L(R) = R.

Example 2.1.7. Let F be a field and let F 〈x1, x2, x3, . . .〉 denote the free F -algebra
over the infinite set of indeterminates {x1, x2, x3, . . .}. Moreover let A denote the
subalgebra of F 〈x1, x2, x3, . . .〉 consisting of polynomials with constant term 0. For
any integer n ≥ 2 let Mn denote the set of all monomials of degree n containing
only indeterminates x1, x2, . . . , xn and let I be the ideal of the algebra A generated
by M =

⋃∞
n=2Mn. Clearly A/I is a locally nilpotent ring, because every finitely

generated subring of A contains polynomials in only finitely many indeterminates.
In addition A/I is nonzero since I does not contain any monomial of degree 1. We
claim that A/I is a prime ring.

Suppose p and q are two polynomials in A such that pAq ⊆ I. Choose k big
enough such that polynomials p and q contain only indeterminates x1, x2, . . . , xk and
deg p, deg q ≤ k. By assumption px2k+2q is an element of I. Since I is generated
by monomials, every term of px2k+2q must lie in I. But the terms of px2k+2q are
all of degree ≤ 2k + 1, so they must lie even in the ideal I ′ of A generated by
M ′ = M2 ∪M3 ∪ . . . ∪M2k+1. Let u be a monomial appearing in p with coefficient
α 6= 0 and v be a monomial appearing in q with coefficient β 6= 0. If u′ is a monomial
appearing in p and v′ is a monomial appearing in q such that ux2k+2v = u′x2k+2v

′

then u = u′ and v = v′, since the indeterminate x2k+2 does not appear in any of the
monomials u, u′, v, v′. This implies that the monomial ux2k+2v appears in px2k+2q
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with coefficient αβ 6= 0, hence ux2k+2v ∈ I ′. So there exists a monomial m ∈ M ′

such that m is a subword of ux2k+2v. But m does not contain the indeterminate
x2k+1, thus m must be a subword of u or v. Hence u ∈ I ′ ⊆ I or v ∈ I ′ ⊆ I. Since u
and v were arbitrary monomials appearing in p and q with nonzero coefficients, we
conclude that p ∈ I or q ∈ I, which shows that I is a prime ideal of A, i.e. A/I is a
prime ring.

The lower nilradical is closely related to nilpotent ideals since it can also be
characterized in the following way. Let R be a ring. For all ordinal numbers α we
define ideals Nα(R) / R inductively as follows. For α = 1 let

N1(R) =
∑
{I / R ; I is nilpotent}.

For an ordinal number α that is a successor of β the ideal Nα(R) / R is uniquely
defined by Nα(R) ⊇ Nβ(R) and by the relation

Nα(R)/Nβ(R) = N1(R/Nβ(R)).

For a limit ordinal number α let

Nα(R) =
⋃
β<α

Nβ(R).

As proved by Levitzki [21], Nil∗(R) = Nα(R) for any ordinal α with cardα >
cardR.

Next we shall define the Jacobson radical of a ring. Given a ring (R,+, ·), define
an operation ◦ on R, called quasi-multiplication, by

a ◦ b = a+ b− ab.

It is easy to see that (R, ◦) is a monoid with identity element 0. An element a ∈ R is
called left quasi-regular if it is left invertible in (R, ◦), i.e. if there exists a′ ∈ R such
that a′ ◦a = 0. In this case we say that a′ is the left quasi-inverse of a. If R is unital
then this is equivalent to 1− a being left invertible in (R, ·) with left inverse 1− a′.
In fact the map f : (R, ◦)→ (R, ·) given by x 7→ 1− x is a monoid homomorphism,
since 1 − a ◦ b = (1 − a)(1 − b). Similarly we define right quasi-regular elements
and right quasi-inverses. An element a ∈ R is called quasi-regular if it is both left
and right quasi-regular. In this case a has a unique inverse in (R, ◦) which we call
the quasi-inverse of a. The set of all quasi-regular elements of R will be denoted by
Q(R). Clearly (Q(R), ◦) is a group, since this is just the group of invertible elements
of the monoid (R, ◦). For every a ∈ Q(R) and every n ∈ Z the n-th power of a
in (Q(R), ◦) will be denoted by a(n) to distinguish it from an, the n-th power of a
in (R, ·). In particular a(0) = 0 and a(−1) is the quasi-inverse of a. If R is unital
then 1− a(−1) = (1− a)−1. An ideal I / R is called quasi-regular if I ⊆ Q(R). The
quasi-inverse of an element of I is again an element of I, thus I is quasi-regular iff
I ⊆ Q(I).
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Definition 2.1.8. The Jacobson radical of R is the largest quasi-regular ideal of R
and is denoted by J(R).

Every nilpotent element is quasi-regular, in fact if xn = 0 then −x−x2−. . .−xn−1

is the quasi-inverse of x. Hence N(R) ⊆ Q(R) and Nil∗(R) ⊆ J(R).

Definition 2.1.9. A ring R is called Jacobson radical if J(R) = R.

There are many examples of rings which are Jacobson radical but not nil. We
mention one here.

Example 2.1.10. Consider R = { 2m
2n−1

; m,n ∈ Z} as a subring of the field of

rational numbers. The quasi-inverse of 2m
2n−1

is easily seen to be 2m
2m−2n+1

, which is
again an element of R. So R is a Jacobson radical ring which is not nil.

It turns out that the Jacobson radical of a ring R contains even all one-sided
quasi-regular ideals of R. This is a consequence of the fact that ab is quasi-regular
if and only if ba is quasi-regular. In fact, if ab is quasi-regular then

(ba)(−1) = b(ab)(−1)a− ba.

The Jacobson radical has many other characterizations which are very useful in
various situations. To present them we need a few more definitions.

Definition 2.1.11. A ring R is called left primitive if there exists a simple faithful
left R-module. An ideal I / R is called left primitive if R/I is a left primitive ring.

By definition a left R-module M is simple if RM 6= 0 and M has only trivial
R-submodules. It is well known that a left R-module M is simple if and only if
M 6= 0 and Rm = M for all 0 6= m ∈M . In particular a primitive ring is nonzero.

Similarly one can define right primitive rings. The notion of primitivity is not
left-right symmetric, because there exist rings which are left primitive but not right
primitive and vice versa (see [35, §27] for an explicit example). Nevertheless we will
simply speak of primitive rings instead of left primitive rings, since we will only
work with left modules.

Suppose M is a simple left R-module and let P be the annihilator of M , i.e.
P = AnnM = {r ∈ R ; rM = 0}. Then P is an ideal of R and M can be made
into an R/P -module with scalar multiplication defined by (r + P )m = rm. In fact
M is a simple faithful R/P -module, so P is a primitive ideal of R. Conversely, if
P is a primitive ideal of R and M is a simple faithful R/P -module, then M can be
made into a simple R-module with scalar multiplication defined by rm = (r+P )m.
Then the annihilator of M as an R-module is just P . This shows that the primitive
ideals of R are precisely the annihilators of simple R-modules.

Now choose a nonzero m in a simple R-module M . Since M is simple we have
Rm = M . Hence the map f : R → M defined by f(r) = rm is a surjective
homomorphism of left R-modules. Let L denote the kernel of f , which is a left ideal
of R. Then R/L ∼= M and since M is simple, L is a maximal left ideal of R. In
addition there exists e ∈ R such that em = m. This implies that (re− r)m = 0 for
every r ∈ R, i.e. re− r ∈ L for every r ∈ R.
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Definition 2.1.12. A left ideal L of R is modular if there exists e ∈ R such that
re− r ∈ L for every r ∈ R.

By the above every simple R-module is isomorphic to R/L for some modular
maximal left ideal L of R. It is not hard to see that the converse is also true.
The annihilator of the R-module R/L is equal to {r ∈ R ; rR ⊆ L}, which is the
largest ideal of R contained in L. This gives the following classical characterization
of primitive ideals of R.

Proposition 2.1.13. An ideal P of R is primitive if and only if there exists a
modular maximal left ideal L of R such that P is the largest ideal of R contained in
L, i.e. P = {r ∈ R ; rR ⊆ L}.

This characterization is important because it does not make any use of modules,
instead, it characterizes primitive ideals within the ring itself.

We mention two more classical results about primitive rings (see [19]). The first
one gives a relation between primitive rings and prime rings.

Proposition 2.1.14. Every primitive ring is a prime ring.

The second one shows that in the category of commutative rings the notion of
primitive rings is equivalent to the notion of fields.

Proposition 2.1.15. A commutative ring is primitive if and only if it is a field.

Now we can state the theorem that gives different characterizations of the Ja-
cobson radical (see [35] and [19] for the full proof).

Theorem 2.1.16. For every ring R the following hold:

(i) J(R) is the intersection of all primitive ideals of R,

(ii) J(R) is the intersection of annihilators of all simple left R-modules,

(iii) J(R) is the intersection of all modular maximal left ideals of R,

(iv) J(R) = {r ∈ R ; Rr is left quasi-regular}.

To summarize, for every ring R we have a chain of inclusions

Nil∗(R) ⊆ L(R) ⊆ Nil∗(R) ⊆ J(R), (2.1)

and in general, each of these inclusions may be strict. It turns out that all these
radicals are semiprime ideals. For additional properties of the radicals defined above
we refer the reader to [13] or [19].

Another class of rings that are closely connected to nilpotent rings is the class
of nil rings of bounded index.

Definition 2.1.17. A ring R is nil of bounded index ≤ n if every element in R is
nilpotent of index ≤ n. A ring R is nil of bounded index if there exists a positive
integer n such that R is nil of bounded index ≤ n.
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Clearly every nilpotent ring is nil of bounded index. The converse is not true in
general as we will see in the example below. However there is a partial converse for
algebras over fields that was proved by Nagata [22].

Theorem 2.1.18. Let A be a nil algebra of bounded index ≤ n over a field of
characteristic 0 or p > n. Then A is nilpotent. In fact, A2n−1 = 0.

Theorem 2.1.18 also gives a good idea of what can go wrong in general and how
to construct a counterexample.

Example 2.1.19. Let R = (Z/2Z)[x1, x2, x3, . . .] denote the algebra of all polyno-
mials in commutative indeterminates x1, x2, x3, . . . over the field Z/2Z. Moreover
let I denote the ideal of R generated by the set {x1, x2, x3, . . .} and J denote the
ideal of R generated by the set {x2

1, x
2
2, x

2
3, . . .}. Clearly u2 ∈ J for all monomials

u ∈ I, since R is commutative. In addition (u+ v)2 = u2 + v2 for any monomials in
u, v ∈ R, since the characteristic of R is 2. Hence p2 ∈ J for every polynomial p ∈ I.
This shows that I/J is nil of bounded index ≤ 2. However I/J is not nilpotent,
since the elements x1, x1x2, x1x2x3, . . . are not contained in J .

Nevertheless the following result of Levitzki [20, Theorem 4] shows that we have
a good approximation of the converse of Theorem 2.1.18.

Theorem 2.1.20. If R is a nil ring of bounded index then Nil∗(R) = R. In partic-
ular R is locally nilpotent.

For the rest of this section let K be a commutative unital ring and R a K-algebra,
possibly noncommutative and nonunital.

An element a ∈ R is algebraic over K if there exists a nonzero polynomial
p ∈ K[x] such that p(0) = 0 and p(a) = 0. If in addition p can be chosen monic
(i.e. the leading coefficient is equal to 1) then a is called integral over K. The
condition p(0) = 0 is necessary only because R may be nonunital, in which case
only polynomials with zero constant term can be evaluated at elements of R. The
set of all algebraic elements of R will be denoted by AK(R), the set of all integral
elements of R will be denoted by IK(R). A K-algebra R is algebraic (integral) over
K if every element in R is algebraic (integral) over K. Note the special case of
the above definitions when R is just a ring and K = Z. In this case we will also
write A(R) = AZ(R) and I(R) = IZ(R). Of course every nilpotent element of R is
integral, so N(R) ⊆ IK(R) ⊆ AK(R).

The following proposition is a classical result from commutative algebra.

Proposition 2.1.21. If R is a commutative K-algebra then IK(R) is a subalgebra
of R.

Let a be an integral element of R. The smallest integer n, for which there exists
a monic polynomial p of degree n such that p(0) = 0 and p(a) = 0, is called the
integral degree of a or just the degree of a. Similarly one defines the algebraic degree
of elements. Note that the algebraic degree and the integral degree of an integral
element need not be equal.
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Definition 2.1.22. An algebra R is integral of bounded degree ≤ n if every element
in R is integral of degree ≤ n. An algebra R is integral of bounded degree if there
exists a positive integer n such that R is integral of bounded degree ≤ n.

Recall that an ideal of the K-algebra R is an ideal of the ring R which is also
closed for scalar multiplication. So when R is a K-algebra the radicals in (2.1) can
a priori be defined in two ways; via ring ideals of R or via algebra ideals of R.
However, since all these radicals are semiprime ideals, these two definitions coincide
by Lemma 1.1.6.

2.2 The Köthe conjecture

One of the most important problems concerning nil rings is the Köthe conjecture.
In 1930 Köthe [16] conjectured

Köthe conjecture 2.2.1. If a ring has no nonzero nil ideals then it has no nonzero
nil one-sided ideals.

The importance of the Köthe conjecture lies in the fact that it would imply that
the upper nilradical Nil∗(R) of a ring R would contain not only all nil ideals but
also all nil one-sided ideals of R. Although the question whether the conjecture is
true is still open, considerable progress has been made since 1930’s on this subject.
There are many well known classes of rings that satisfy the conjecture. These classes
include the class of all commutative rings, the class of all noetherian rings, and the
class of all algebras over uncountable fields. These examples, especially the last
one, suggest that the conjecture might be true. However there are also a few more
recent results which indicate that perhaps a counterexample to the conjecture could
be found. In this section we will present some of these results and examples, along
with some known statements that are equivalent to the Köthe conjecture.

2.2.1 Equivalent statements

There are many known statements that are equivalent to the Köthe conjecture.
We will state these statements as conjectures. So every conjecture stated in this
subsection will be equivalent to the Köthe conjecture. We start with two basic ones.

Conjecture 2.2.2. Every nil one-sided ideal of a ring R is contained in Nil∗(R).

Conjecture 2.2.3. The sum of two nil left ideals of a ring is a nil.

Of course we also have the right-handed version of Conjecture 2.2.3.

Proof of equivalence. Suppose that the Köthe conjecture holds. The ring R/Nil∗(R)
has no nonzero nil ideals, so by Köthe conjecture it has no nonzero nil one-sided
ideals. Hence every nil one-sided ideal ofR is contained inNil∗(R), which is precisely
Conjecture 2.2.2.
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Suppose Conjecture 2.2.2 holds. If L1 and L2 are two nil left ideals of R then
they are contained in Nil∗(R) by Conjecture 2.2.2. So their sum L1 + L2 is also
contained in Nil∗(R), hence it is nil. This implies Conjecture 2.2.3.

Now suppose Conjecture 2.2.3 holds. Let R be a ring. We show that for any
a ∈ R the principal left ideal R1a is nil if and only if the principal right ideal aR1 is
nil. Suppose R1a is nil and take r ∈ R1. Then ra is nilpotent, say (ra)n = 0. Since
(ar)n+1 = a(ra)nr = 0, ar is nilpotent as well. This shows that aR1 is nil. Similarly
the converse holds. Now let N denote the sum of all nil principal left ideals of R.
By the above N is also the sum of all nil principal right ideals of R. In particular
N is a two-sided ideal of R. Every element of N is contained in a finite sum of nil
left ideals of R, which is a nil left ideal of R by Conjecture 2.2.3. Hence N is a nil
ideal of R. This implies the Köthe conjecture.

It turns out that the Köthe conjecture has a lot to do with the problem of
describing the Jacobson radical of polynomial rings. One of the most important
results concerning this problem is the following theorem of Amitsur [2, Theorem 1].

Theorem 2.2.4. If R is a ring then J(R[x]) = N [x] where N = J(R[x]) ∩ R is a
nil ideal of R.

Proof. First we show that J(R[x]) ∩R = 0 implies J(R[x]) = 0.
Suppose J(R[x]) ∩ R = 0 but J(R[x]) 6= 0. We reduce the general case to the

case when R is unital. Since R[x] /R1[x], we have J(R[x]) = J(R1[x])∩R[x]. Since
the only invertible elements in Z[x] are 1 and −1, the only quasi-regular elements
are 0 and 2. Hence J(R1[x]/R[x]) ∼= J((R1/R)[x]) ∼= J(Z[x]) = 0, which implies
J(R1[x]) ⊆ R[x] and consequently J(R[x]) = J(R1[x]). In addition J(R1[x])∩R1 =
J(R[x]) ∩ R1 = J(R[x]) ∩ R. So it suffices to show that J(R1[x]) ∩ R1 = 0 implies
J(R1[x]) = 0, i.e. we may assume that R is unital.

Now let f(x) be a nonzero polynomial in J(R[x]) of minimal degree. The map
g(x) 7→ g(x+ 1) is an automorphism of R[x]. Since the Jacobson radical is invariant
under automorphisms, it follows that f(x + 1) ∈ J(R[x]). Now f(x + 1) − f(x) is
a polynomial in J(R[x]) of smaller degree than f(x), hence it must be 0. Writing
f(x) = anx

n + an−1x
n−1 + . . .+ a0, where an 6= 0, we have

0 = f(x+ 1)− f(x) = nanx
n−1 + . . . ,

hence nan = 0. This implies that nf(x) is a polynomial in J(R[x]) of smaller
degree than f(x), so it must be 0. Let m be the smallest positive integer such that
mf(x) = 0 and let p be a prime divisor of m. Define h(x) = m

p
f(x). Then h(x)

is a nonzero polynomial in J(R[x]) with ph(x) = 0 and h(x + 1) = h(x). Denote
Rp = {r ∈ R ; pr = 0} / R, so h(x) ∈ Rp[x] ∩ J(R[x]) = J(Rp[x]).

We now show that if a polynomial g(x) ∈ Rp[x] satisfies g(x + 1) = g(x) then
g(x) ∈ Rp[x

p − x], i.e. g(x) = ĝ(xp − x) for some polynomial ĝ(x) ∈ Rp[x]. We do
this by induction on the degree of g(x). The ring Rp is an algebra over the field
Z/pZ. The equality g(x+ 1) = g(x) implies that every element of Z/pZ is a zero of
the polynomial g(x)− g(0). So if the degree of g(x) is less than p then g(x)− g(0)
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must be zero. In this case g(x) is a constant polynomial, hence it lies in Rp[x
p− x].

Suppose the degree of g(x) is greater or equal to p. By the division algorithm we
have

g(x) = s(x)(xp − x) + t(x)

for some polynomials s(x), t(x) ∈ Rp[x], where the degree of s(x) is less than the
degree of g(x) and the degree of t(x) is less than p. Clearly

g(x+ 1) = s(x+ 1)(xp − x) + t(x+ 1),

thus g(x+ 1) = g(x) implies

(s(x+ 1)− s(x))(xp − x) = −(t(x+ 1)− t(x)).

Since the degree of the right-hand side is less than p, we conclude that s(x+1) = s(x)
and t(x + 1) = t(x). By induction s(x), t(x) ∈ Rp[x

p − x], which implies g(x) ∈
Rp[x

p − x]. In particular, h(x) = ĥ(xp − x) for some polynomial ĥ(x) ∈ Rp[x].
Next we show that if a polynomial g(xp− x) belongs to J(Rp[x]) then it belongs

to J(Rp[x
p−x]). Indeed, let r(x) be an element of the ideal of Rp[x

p−x] generated
by g(xp − x). Clearly r(x + 1) = r(x). Since g(xp − x) ∈ J(Rp[x]), it follows that
r(x) ∈ J(Rp[x]). Let r′(x) be the quasi-inverse of r(x) in Rp[x]. Obviously r′(x+ 1)
is the quasi-inverse of r(x + 1) = r(x), hence r′(x + 1) = r′(x). By the above
r′(x) ∈ Rp[x

p−x], so r(x) is quasi-regular in Rp[x
p−x]. This implies that g(xp−x)

belongs to J(Rp[x
p − x]).

The map g(x) 7→ g(xp − x) is an isomorphism between Rp[x] and Rp[x
p − x],

thus it maps J(Rp[x]) to J(Rp[x
p − x]). By what we have just proved, ĥ(xp −

x) ∈ J(Rp[x
p − x]), hence ĥ(x) ∈ J(Rp[x]) ⊆ J(R[x]). However, unless h(x) is

constant, the degree of ĥ(x) is less than the degree of h(x) and f(x), which is a
contradiction with the choice of f(x). Hence h(x) is constant and so is f(x). But
then 0 6= f(x) ∈ J(R[x]) ∩R which is a contradiction.

Now we treat the general case. Since N ⊆ J(R[x]) we have N [x]R[x] ⊂ NR[x] ⊆
J(R[x]). As an intersection of prime ideals J(R[x]) is a semiprime ideal. Hence it
follows that N [x] ⊆ J(R[x]). The natural isomorphism (R/N)[x] ∼= R[x]/N [x] maps
R/N to (R +N [x])/N [x], hence

J((R/N)[x]) ∩R/N ∼= J(R[x]/N [x]) ∩ (R +N [x])/N [x] =

= J(R[x])/N [x] ∩ (R +N [x])/N [x] =

= (J(R[x]) ∩ (R +N [x]))/N [x] =

= (J(R[x]) ∩R +N [x])/N [x] =

= (N +N [x])/N [x] = 0.

It follows by the above that J(R[x]/N [x]) ∼= J((R/N)[x]) = 0, thus J(R[x]) ⊆ N [x].
We conclude that J(R[x]) = N [x].

To prove that N is a nil ideal, take a ∈ N and consider the element ax. Since it
lies in J(R[x]), it is quasi-regular. Hence there is a polynomial p(x) ∈ R[x], say of
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degree n, such that ax ◦ p(x) = 0, i.e. p(x) = −ax+ axp(x). Using this equality on
its right-hand side repeatedly we get

p(x) = −ax− a2x2 − a3x3 − . . .− an+1xn+1 + an+2xn+2p(x).

Since the degree of p(x) is n and every term in an+2xn+2p(x) is of degree ≥ n + 2
we must have an+1 = 0.

Krempa [17, Theorem 1] characterized via matrix rings when the polynomial
ring R[x] is Jacobson radical.

Theorem 2.2.5. For a ring R the polynomial ring R[x] is Jacobson radical if and
only if the ring Mn(R) is nil for every positive integer n.

With the help of Theorem 2.2.5 Krempa [17] proved that the following statements
are equivalent to the Köthe conjecture. The first two were independently discovered
also by Sands [25].

Conjecture 2.2.6. If R is a nil ring then M2(R) is a nil ring.

Conjecture 2.2.7. If R is a nil ring then Mn(R) is a nil ring for every positive
integer n.

Conjecture 2.2.8. If R is a nil ring then R[x] is Jacobson radical.

Proof of equivalence. Suppose the Köthe conjecture holds and let R be a nil ring.
Let L1 denote the set of all matrices in M2(R) with zero second column and L2 the
set of all matrices in M2(R) with zero first column. Then L1 and L2 are left ideals
of M2(R). Let A = [aij]i,j be an element of L1. Since R is nil, an11 = 0 for some
positive integer n. Hence An is strictly lower triangular and so A2n = 0. This shows
that L1 is nil. Similarly L2 is nil. Hence by Conjecture 2.2.3 M2(R) = L1 + L2 is
also nil.

Suppose Conjecture 2.2.6 holds and let R be a nil ring. Then by an induction
argument M2n(R) is nil for every positive integer n. Since Mn(R) is embedded in
M2n(R), Mn(R) is nil for every positive integer n.

By Theorem 2.2.5 Conjecture 2.2.7 is equivalent to Conjecture 2.2.8, so all that
is left to show is that the Conjecture 2.2.8 implies Conjecture 2.2.2. Suppose Con-
jecture 2.2.8 holds and let L be nil one-sided ideal of a ring R. Then L[x] is a
Jacobson radical ring, hence it is a quasi-regular one-sided ideal of R[x] and conse-
quently contained in J(R[x]). Let I denote the ideal of R generated by L. Then
I[x] ⊆ J(R[x]), hence I[x] is Jacobson radical. By Theorem 2.2.4 I is a nil ring.
This implies L ⊆ I ⊆ Nil∗(R) as required.

Conjecture 2.2.8 connects the Köthe conjecture to polynomial rings. In partic-
ular, if the conjecture was true, it would imply J(R[x]) = Nil∗(R)[x] for any ring
R, i.e. the ideal N in Theorem 2.2.4 would be equal to the upper nilradical of R.
It would thus provide a complete description of the Jacobson radical of polynomial
ring in terms of the base ring. In addition, it follows from [13, Proposition 4.9.1]
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that the upper nilradical of Mn(R) is of the form Mn(I) for some ideal I /R. Hence
Conjecture 2.2.7 would imply Nil∗(Mn(R)) = Mn(Nil∗(R)) for every ring R and
every positive integer n.

More recently a much weaker statement than that of Conjecture 2.2.8 has been
proved to be equivalent to the Köthe conjecture by Smoktunowicz [27]. She proved
that for a nil ring R every primitive ideal in R[x] is of the form I[x] for some ideal
I / R and consequently gave the following.

Conjecture 2.2.9. If R is a nil ring then R[x] is not primitive.

Proof of equivalence. Clearly Conjecture 2.2.8 implies Conjecture 2.2.9. To show
the converse, suppose that R is a nil ring such that R[x] is not Jacobson radical.
Then there exists a primitive ideal in R[x] and by [27, Theorem 1] it is of the form
I[x] for some ideal I / R. Hence (R/I)[x] ∼= R[x]/I[x] is a primitive ring. This
contradicts Conjecture 2.2.9, since R/I is a nil ring.

Ferrero and Puczy lowski [11] investigated when a ring can be a sum of two
subrings of a certain kind and gave the following statement equivalent to the Köthe
conjecture. See [11] for the proof of equivalence.

Conjecture 2.2.10. Let R be a ring such that R = R1 +R2, where R1 and R2 are
subrings of R. If R1 is nilpotent and R2 is nil then R is nil.

Definition 2.2.11. We say that a ring or an algebra R satisfies the Köthe conjecture
if Nil∗(R) contains every nil one-sided ideal of R.

The Köthe conjecture simply states that every ring should satisfy the Köthe
conjecture. Yonghua [42, Corollary 1.1] gave a necessary and sufficient condition for
a ring to satisfy the Köthe conjecture by introducing the concept of Köthe subsets.

Definition 2.2.12. A subset M of a ring R is a Köthe subset if there exists a
maximal nil left ideal L of R such that M = (L+ LR +Nil∗(R))\Nil∗(R).

Proposition 2.2.13. A ring R satisfies the Köthe conjecture if and only if for every
Köthe subset M ⊆ R, R satisfies the ACC for left annihilators of elements of M .

This equivalent condition itself is interesting, however, note that if R satisfies
the Köthe conjecture then only the empty set is a Köthe subset of R.

The next statement has a more group theoretic flavour. Its equivalence with the
Köthe conjecture was established by Fisher and Krempa [12]. For a subgroup G of
the group of automorphisms of a ring R denote by RG the subring of fixed points, i.e.
RG = {r ∈ R ; g(r) = r for all g ∈ G}. An element r ∈ R is an additive |G|-torsion
element if r 6= 0 and |G|r = 0.

Conjecture 2.2.14. Let R be a ring and G a finite subgroup of the group of au-
tomorphisms of R such that R has no additive |G|-torsion. If RG is nil then R is
nil.
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More information on the background of this statement along with the proof of
equivalence can be found in [12]. We give one more statement equivalent to the
Köthe conjecture that is a combination of the previous ones.

Conjecture 2.2.15. Let R be a ring such that R[x] is primitive and let G 6= 1 be a
finite subgroup of the group of automorphisms of R. If RG is nil then R has additive
|G|-torsion.

Proof of equivalence. Suppose the Köthe conjecture holds. Let R and G be as in
Conjecture 2.2.15 and suppose RG is nil but R has no additive |G|-torsion. Then by
Conjecture 2.2.14 R is a nil ring, hence by Conjecture 2.2.9 R[x] is not primitive,
which is a contradiction.

Now we show that Conjecture 2.2.15 implies Conjecture 2.2.9. Suppose R is a nil
ring such that R[x] is primitive. Then R[x] is prime by Proposition 2.1.14, hence R
is prime as well. By Proposition 1.1.7 either R has no additive 2-torsion or 2R = 0.

Suppose R has no additive 2-torsion. Let G′ be the group all diagonal matrices
in M2(Z) with ±1 on the diagonal. Then G′ acts on M2(R) by conjugation. Since R
has no 2-torsion, the kernel of this action is {I,−I}, where I is the identity matrix.
Since the order of G′ is 4, the image G of this action is a group of automorphisms of
M2(R) of order 2. An easy calculation shows that M2(R)G is the set of all diagonal
matrices in M2(R), hence isomorphic to R ⊕ R, which is a nil ring. Since R[x] is
primitive, M2(R)[x] ∼= M2(R[x]) is primitive as well. By Conjecture 2.2.15 M2(R)
has additive 2-torsion, hence so does R, which is a contradiction.

So 2R = 0 and R is an algebra over the field Z/2Z. Let G be the group of
matrices in M3(Z/2Z) generated by

P =

 0 0 1
0 1 0
1 0 1

 and Q =

 1 1 0
0 0 1
1 0 1

 .
It can easily be calculated that P 3 = I, Q7 = I and QP = PQ2. Hence G =
{P iQj ; 0 ≤ i ≤ 2, 0 ≤ j ≤ 6} has order 21. None of the matrices in G are diagonal
except I, thus G acts on M3(R) faithfully by conjugation. Hence we can identify G
with its image under this action. To calculate M3(R)G let

A =

 a b c
d e f
g h i


be an element of M3(R)G. Then

0 = PA− AP =

 g − c h− b i− a− c
d− f 0 −d

a+ g − i b c− g


and

0 = QA− AQ =

 d− c b+ e− a f − b
g − d− f h− d i− e− f
a− i b+ h− g c− h

 .
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It follows from the first equation that b = d = h = f = 0. Consequently it follows
from the second equation that c = g = 0 and a = e = i. This shows that A is a scalar
matrix. So M3(R)G is isomorphic to R, which is a nil ring. As above M3(R)[x] is a
primitive ring, thus Conjecture 2.2.15 implies that M3(R) has additive 21-torsion,
and hence so does R. But this is impossible since 2R = 0.

Krempa has proved that it would be enough to consider the Köthe conjecture
in the class of algebras over fields. More precisely, he proved that the following
statement is equivalent to the Köthe conjecture (see [17] for the proof).

Conjecture 2.2.16. If F is a field and R is an F -algebra then every nil one-sided
ideal of R is contained in Nil∗(R).

We can even restrict ourselves to prime algebras.

Conjecture 2.2.17. If F is a field and R is a prime F -algebra then every nil
one-sided ideal of R is contained in Nil∗(R).

Proof of equivalence. Suppose Conjecture 2.2.17 holds. Let F be a field and R an
arbitrary F -algebra. Suppose there exists a nil one-sided ideal L of R which is not
contained in Nil∗(R). Choose a ∈ L\Nil∗(R). By [17, Lemma 2] there exists a
prime ideal P of R such that a /∈ P and Nil∗(R/P ) = 0 (all the ideals mentioned
here are ideals in the ring sense as well as in the algebra sense, because they are all
semiprime). Since R/P is a prime algebra and (L+P )/P is a nil one-sided ideal in
R/P it follows by Conjecture 2.2.17 that (L+P )/P is contained in Nil∗(R/P ) = 0.
Hence L ⊆ P , but this is a contradiction, since a ∈ L\P . So Conjecture 2.2.17
implies Conjecture 2.2.16. The converse is obvious.

Remark 2.2.18. Conjecture 2.2.17 is a version of Conjecture 2.2.2 for prime alge-
bras over fields. Consequently we can show that the versions of Conjectures 2.2.3,
2.2.6, 2.2.7 and 2.2.8 for prime algebras over fields are also equivalent to the Köthe
conjecture. To see this we just have to follow the proof of the implications Con-
jecture 2.2.2 ⇒ Conjecture 2.2.3 ⇒ Conjecture 2.2.6 ⇒ Conjecture 2.2.7 ⇒ Con-
jecture 2.2.8, referring to the fact that R is prime iff R[x] is prime iff Mn(R) is
prime for some (or for all) n. Since ’R[x] is primitive’ implies ’R is prime’, the
version of Conjecture 2.2.8 for prime algebras over fields clearly implies the version
of Conjecture 2.2.9 for arbitrary algebras over fields. To finish the proof we have to
show that the version of Conjecture 2.2.9 for arbitrary algebras over fields implies
Conjecture 2.2.16. To do this we just have to follow the proof of the implications
Conjecture 2.2.9 ⇒ Conjecture 2.2.8 ⇒ Conjecture 2.2.2, referring to Lemma 1.1.6
when needed.

The version of Conjecture 2.2.6 for prime algebras states that in order to prove
the Köthe conjecture it would be enough to prove that for a prime nil algebra R the
algebra M2(R) is nil as well. Although the notions of prime algebras and nil algebras
are in a way opposite notions in the commutative setting, it is not hard to find
examples of noncommutative prime nil algebras. In fact, the ring in Example 2.1.7
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is a prime nil algebra, which is even locally nilpotent. In 2002 Smoktunowicz [26]
has even constructed a simple nil algebra.

More information on the Köthe conjecture and related problems can be found in
[29] and [30].

2.2.2 Rings that satisfy the Köthe conjecture

Recall that a ring R is said to satisfy the Köthe conjecture if Nil∗(R) contains all
nil one-sided ideals of R. In this subsection we present some classes of rings that
satisfy the Köthe conjecture. It should be pointed out that if a certain class of
rings satisfies the Köthe conjecture it does not necessarily mean that this class will
satisfy any of the other statements equivalent to the Köthe conjecture, since these
statements need not be equivalent within this class. For example the statements ’for
every commutative ring R, R is nil implies M2(R) is nil’ and ’for every commutative
ring R, R is nil implies Mn(R) is nil for all n’ need not be a priori equivalent. So
for a certain class C of rings it is reasonable to ask not only if C satisfies the Köthe
conjecture but also whether C satisfies any of the other statements equivalent to
Köthe conjecture. We shall present some known results on this subject, mainly
focusing on Conjectures 2.2.7 and 2.2.8.

We begin with a few simple observations. It is clear that the class of all com-
mutative rings satisfies the Köthe conjecture. If for a given ring R we have J(R) =
Nil∗(R) then the ring R satisfies the Köthe conjecture. This is because J(R) con-
tains every quasi-regular one-sided ideal of R and any nil one-sided ideal is quasi-
regular. In particular this means that the class of all left (resp. right) artinian rings
satisfies the Köthe conjecture, since for any left artinian ring R the Jacobson radical
J(R) is a nilpotent ideal of R.

A theorem of Levitzki gives an even bigger class of rings that satisfy the Köthe
conjecture, namely the class of left (resp. right) noetherian rings.

Theorem 2.2.19. Let R be a left noetherian ring. Then every nil one-sided ideal
of R is nilpotent. In particular Nil∗(R) = L(R) = Nil∗(R) is the largest nilpotent
ideal of R.

It is well known (see [35, p. 144]) that the Jacobson radical of an algebraic algebra
R over a field F is nil, so J(R) = Nil∗(R) for such an algebra. Hence any algebraic
algebra over a field and in particular any finite dimensional algebra satisfies the
Köthe conjecture.

It is not hard to prove that if R is a locally nilpotent ring then R[x] as well as
Mn(R) are locally nilpotent rings. This implies that locally nilpotent rings satisfy
Conjectures 2.2.7 and 2.2.8. In particular this means that every commutative ring
satisfies Conjectures 2.2.7 and 2.2.8, since every commutative nil ring is locally
nilpotent. Consequently we have the following.

Proposition 2.2.20. If R is a commutative ring then J(R[x]) = Nil∗(R)[x] and
Nil∗(Mn(R)) = Mn(Nil∗(R)) for every positive integer n.
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A ring R is said to satisfy a noncommutative polynomial p ∈ Z〈x1, x2, . . .〉 if
p(a1, a2, . . .) = 0 for all a1, a2, . . . ∈ R. In this case p is called a polynomial identity
in R. A polynomial identity p is called proper if for every r ∈ R there exists a
coefficient n of p such that nr 6= 0 (see [23, Chapter 1] for details). A ring R is
called a PI-ring if it satisfies a proper polynomial identity. Equivalently, R satisfies
a homogeneous multilinear polynomial identity with all coefficients equal to ±1
(see [23, Theorem 4.1]). In particular every commutative ring is a PI-ring since it
satisfies the identity x1x2 − x2x1 = 0. PI-rings are an important generalization of
commutative rings. In a way they are close to being commutative and have many
similar properties as commutative rings. In particular Levitzki [20, Corollary] proved
the following.

Theorem 2.2.21. If R is a PI-ring then Nil∗(R) = L(R) = Nil∗(R) and R satisfies
the Köthe conjecture.

So if a PI-ring is nil then it is locally nilpotent. Hence PI-rings also satisfy
Conjectures 2.2.7 and 2.2.8.

Another class of rings that satisfy the Köthe conjecture is the class of monomial
algebras. The usual definition of a monomial algebra requires that this algebra is
unital, however when speaking about nil algebras one would like to exclude the unit,
since it is not a nilpotent element. To this end we use the following definition. Let F
be a field, X a nonempty set, and F 〈X〉 the free unital F -algebra over X. Let F0〈X〉
denote the ideal of F 〈X〉 generated by X, i.e. the ideal of all polynomials with zero
constant term. Let I be an ideal of F0〈X〉 generated by some set of monomials in
F0〈X〉. The factor algebra F0〈X〉/I is called a monomial algebra. Observe that I is
also an ideal of F 〈X〉. The factor algebra F 〈X〉/I will be called a unital monomial
algebra. Clearly (F0〈X〉/I)1 ∼= F 〈X〉/I, in particular all the radicals of F0〈X〉/I
and F 〈X〉/I defined in section 2.1 coincide. The fact that monomial algebras satisfy
the Köthe conjecture was proved by Beidar and Fong [5] in the most general case.
In the case of characteristic 0 the result is due to Jaspers and Puczy lowski.

Theorem 2.2.22. If R is a monomial algebra then J(R) = Nil∗(R) = L(R).

The original result is stated for unital monomial algebras, however it is clear from
the above that the same holds for arbitrary monomial algebras. Theorem 2.2.22 im-
plies that monomial algebras satisfy the Köthe conjecture as well as Conjectures 2.2.7
and 2.2.8.

Perhaps the most fascinating results concerning the truth of Köthe conjecture
are the results of Amitsur [1], [2] on algebras over uncountable fields.

Theorem 2.2.23. For an algebra R over an uncountable field the following hold:

(i) Nil∗(R) contains all nil one-sided ideals of R,

(ii) if R is nil then Mn(R) is nil for every positive integer n,

(iii) if R is nil then R[x] is nil.
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Note that the conclusion of Theorem 2.2.23 (iii) is much stronger than that of
Conjecture 2.2.8. In view of Conjecture 2.2.17, Theorem 2.2.23 implies that the only
remaining source of possible counterexamples to the Köthe conjecture are effectively
prime algebras over countable fields. For algebras over countable fields the situation
is much different. In particular the stronger conclusion of Theorem 2.2.23 (iii) is not
true for algebras over countable fields as proved by Smoktunowicz [28].

Theorem 2.2.24. For every countable field F there exists a nil F -algebra R such
that R[x] is not nil.

A little later an even stronger example was found by Puczy lowski and Smok-
tunowicz [24].

Theorem 2.2.25. For every countable field F there exists an F -algebra R such that
R[x] is Jacobson radical but not nil.

The examples of Theorems 2.2.24 and 2.2.25 and the methods behind their con-
structions suggest that a counterexample to the Köthe conjecture could perhaps be
constructed using similar methods. The idea behind the construction is as follows.
Let F be a countable field and A the algebra of all polynomials in F 〈x, y, z〉 with zero
constant term. Then the elements of A can be enumerated, say A = {p1, p2, p3, . . .}.
Let I be the ideal of A generated by {pm1

1 , pm2
2 , pm3

3 , . . .} for some positive integers
m1,m2,m3, . . .. Clearly the algebra A/I is nil (and this is essentially the only way to
construct a nil algebra if the field is countable). In [28] it was essentially proved that
if the sequence m1,m2,m3, . . . increases rapidly enough then the algebra (A/I)[u, v]
is not nil. Consequently either A/I or (A/I)[u] is the example for Theorem 2.2.24.

2.2.3 The Jacobson radical of polynomial rings

Recall that if the Köthe conjecture was true, it would imply J(R[x]) = Nil∗(R)[x]
for every ring R. Since we do not know if this is the case it is natural to try
to find alternative descriptions of the Jacobson radical of polynomial rings. By
Theorem 2.2.4 the radical J(R[x]) is of the form N [x] where N = J(R[x]) ∩ R is a
nil ideal of R. It is clear that N contains the Levitzki radical of R, since the ring
L(R)[x] is locally nilpotent. Hence L(R) ⊆ N ⊆ Nil∗(R). The next theorem gives
additional information about the ideal N .

Theorem 2.2.26. For any ring R we have J(R[x]) = N [x], where

N =
⋂
{P / R ; P prime ideal and J((R/P )[x]) = 0}.

This result follows from a more general theory of radicals of polynomial rings
(see [13, §4.9]). Since we are only interested in a special case of this theory, namely
the Jacobson radical, we give a more direct proof.

Lemma 2.2.27. If J(R[x]) = N [x] and g /∈ N [x] then there exists a prime ideal
P / R such that J(R[x]/P [x]) = 0 and g /∈ P [x].
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Proof. Since g /∈ N [x] = J(R[x]) there exists h ∈ R[x]g which is not left quasi-
regular. For this h we must have {f ◦ h ; f ∈ R[x]} ∩N [x] = ∅, since f ◦ h ∈ N [x]
for some f ∈ R[x] would imply that f ◦ h is left quasi-regular and consequently h
would be left quasi-regular as well. By Zorn’s lemma there exists an ideal P / R
which is maximal with respect to the property {f ◦ h ; f ∈ R[x]} ∩ P [x] = ∅.

Suppose I and J are ideals of R such that P  I, P  J and IJ ⊆ P . By the
maximality of P there exist f1, f2 ∈ R[x] such that f1 ◦ h ∈ I[x] and f2 ◦ h ∈ J [x].
Define q = f1 + f2 − f1 ◦ h ◦ f2 ∈ R[x]. Then

q ◦ h = q + h− qh = (f1 + f2 − f1 ◦ h ◦ f2) + h− (f1 + f2 − f1 ◦ h ◦ f2)h =

= (f1 + h− f1h) + (f2 + h− f2h)− (f1 ◦ h ◦ f2 + h− (f1 ◦ h ◦ f2)h) =

= f1 ◦ h+ f2 ◦ h− (f1 ◦ h ◦ f2) ◦ h = f1 ◦ h+ f2 ◦ h− (f1 ◦ h) ◦ (f2 ◦ h) =

= (f1 ◦ h)(f2 ◦ h),

so q ◦ h ∈ I[x]J [x] ⊆ IJ [x] ⊆ P [x], which is a contradiction. This shows that P is a
prime ideal of R.

By [2, Theorem 1] we have J((R/P )[x]) = (M/P )[x] for some ideal M / R with
P ⊆M . Suppose M 6= P . Then by the maximality of P there exists f ∈ R[x] such
that f ◦ h ∈M [x]. This implies that f ◦ h+ P [x] is left quasi-regular in R[x]/P [x],
hence there exists t ∈ R[x] such that t ◦ f ◦ h ∈ P [x], which is a contradiction. So
M = P and J(R[x]/P [x]) ∼= J((R/P )[x]) = 0.

If g ∈ P [x] then h ∈ P [x] and hence 0 ◦ h = h ∈ P [x] which is a contradiction.
So g /∈ P [x].

Proof of Theorem 2.2.26. Denote S =
⋂
{P /R ; P prime ideal and J((R/P )[x]) =

0} / R. By [2, Theorem 1] we have J(R[x]) = N [x] for some ideal N / R. If P is
an ideal of R with J(R[x]/P [x]) ∼= J((R/P )[x]) = 0 then N [x] = J(R[x]) ⊆ P [x],
hence N ⊆ P . This implies N ⊆ S. If g /∈ N [x] then by Lemma 2.2.27 there exists a
prime ideal P /R such that J(R[x]/P [x]) = 0 and g /∈ P [x], which implies g /∈ S[x].
Hence S[x] ⊆ N [x] and so S ⊆ N .

Recall that the Köthe conjecture claims that if R is a nil ring then R[x] should
be Jacobson radical. In particular the ring R[x] should have no primitive ideals.
Smoktunowicz [27, Theorem 1] has proved that if R is a nil ring then any primitive
ideal in R[x] (if it exists) is of the form I[x] for some ideal I /R. A natural question
arises whether this can be generalized to arbitrary rings. Of course it is not true
that for every ring R every primitive ideal of R[x] is of the form I[x], however, we
can ask whether there exists at least one primitive ideal of this form (provided that
R[x] is not Jacobson radical). Unfortunately the answer is still negative.

Example 2.2.28. Let R be a commutative ring which is not nil. Then by Proposi-
tion 2.2.20 the ring R[x] is not Jacobson radical. However, R[x] contains no primitive
ideals of the form I[x] with I / R. Indeed, if I[x] was a primitive ideal in R[x] then
(R/I)[x] ∼= R[x]/I[x] would be a field by Proposition 2.1.15. But this is impossible
unless I = R, which is not the case.
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Nevertheless Lemma 2.2.27 shows that slightly less is true, namely for every ring
R, if R[x] is not Jacobson radical then there exists a ideal I /R such that I is prime
and (R/I)[x] has zero Jacobson radical.

The following proposition gives another interesting property of the Jacobson
radical of polynomial rings.

Proposition 2.2.29. If R is a ring and S ⊆ R a subring then J(R[x]) ∩ S[x] ⊆
J(S[x]).

Proof. Suppose p(x) ∈ J(R[x]) ∩ S[x] and let u(x) be an element of the ideal of
S[x] generated by p(x). We have to show that u(x) is quasi-regular in S[x]. Since
p(x) ∈ J(R[x]) and S is a subring of R we have u(x) ∈ J(R[x]). Let v(x) ∈ R[x] be
the quasi-inverse of u(x), so u(x) + v(x)− u(x)v(x) = u(x) + v(x)− v(x)u(x) = 0.
Denote u(x) = u0 + u1x+ u2x

2 + . . . and v(x) = v0 + v1x+ v2x
2 + . . ., where uj = 0

and vj = 0 for j big enough. Then the equalities above imply

ui + vi −
∑
k+l=i

ukvl = ui + vi −
∑
k+l=i

vluk = 0

for all i ≥ 0. In particular u0 + v0 − u0v0 = u0 + v0 − v0u0 = 0, i.e. v0 is the
quasi-inverse of u0. In addition

vi − u0vi = −ui +
∑
k+l=i
l 6=i

ukvl

for all i ≥ 1, hence

u0 ◦ vi = u0 + vi − u0vi = u0 − ui +
∑
k+l=i
l 6=i

ukvl

for all i ≥ 1. Quasi-multiplying by v0 from the left we get

vi = v0 ◦ (u0 − ui +
∑
k+l=i
l 6=i

ukvl)

for all i ≥ 1. This means that for i ≥ 1 the element vi lies in the subring generated by
{v0, v1, v2, . . . , vi−1, u0, u1, u2, . . .}. Inductively it follows that all vi lie in the subring
generated by {v0, u0, u1, u2, . . .}. By Theorem 2.2.4 the element u0 is nilpotent, hence
its quasi-inverse v0 is a polynomial in u0. Therefore all vi lie in the subring generated
by {u0, u1, u2, . . .}. Since ui ∈ S for all i, vi ∈ S for all i as well. This shows that
v(x) ∈ S[x], hence u(x) is quasi-regular in S[x]. Consequently p(x) ∈ J(S[x]).

Corollary 2.2.30. The Jacobson radical of a polynomial ring over any ring is a
union of Jacobson radical polynomial rings over finitely generated rings.
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Proof. Let R be a ring. By Theorem 2.2.4 we have J(R[x]) = N [x] for some ideal
N / R. If S is a finitely generated subring of N then S[x] is Jacobson radical by
Proposition 2.2.29. Clearly J(R[x]) is a union of S[x] when S runs through all
finitely generated subrings of N .

When considering the truth of Conjecture 2.2.8 we can in fact restrict ourselves
to finitely generated rings and algebras.

Proposition 2.2.31. The Köthe conjecture is equivalent to the statement ’if F is a
countable field and R is a finitely generated prime nil F -algebra then R[x] is Jacobson
radical’.

Proof. Consider the following statements:

(A) If R is a nil algebra then R[x] is Jacobson radical.

(B) If R is a finitely generated nil algebra then R[x] is Jacobson radical.

(C) If R is a finitely generated prime nil algebra then R[x] is Jacobson radical.

By Remark 2.2.18 statement (A) is clearly equivalent to the Köthe conjecture. Also
(A) obviously implies (B) and (B) implies (C). Hence it is enough to prove the
implications (C) ⇒ (B) ⇒ (A), since by Theorem 2.2.23 the statement (C) is true,
if the field is uncountable.

Suppose (C) holds. Let R be a finitely generated nil algebra such that R[x] is
not Jacobson radical. Then there exists a primitive algebra ideal P /R[x]. If M is a
simple faithful R[x]/P -module then (R[x]/P )m = M for every 0 6= m ∈ M . Hence
M is simple and faithful also as a module over the ring R[x]/P . This shows that P
is primitive also as a ring ideal. By Theorem [27, Theorem 1] we have P = I[x] for
some ring ideal I / R. Clearly I is also an algebra ideal. Hence (R/I)[x] ∼= R[x]/P
is a primitive algebra. In particular by Proposition 2.1.14 this implies that R/I
is a prime algebra. In addition it is finitely generated and nil. Hence (R/I)[x]
is Jacobson radical, which is in contradiction with (R/I)[x] being primitive unless
I = R, which is not the case. This proves (B).

Suppose (B) holds. Let R be a nil algebra such that R[x] is not Jacobson radical.
Then there exists f(x) ∈ R[x] which is not quasi-regular. Let S be the subalgebra of
R generated by the coefficients of f(x). Then S is a finitely generated nil F -algebra,
hence S[x] is Jacobson radical by (B). This is a contradiction since f(x) ∈ S[x] is
not quasi-regular even in R[x], let alone in S[x]. So (B) implies (A).

2.3 π-algebraicity

Let R be a ring or an algebra. Every nilpotent element of R is quasi-regular and of
course algebraic. In addition the quasi-inverse of a nilpotent element is a polyno-
mial in this element. In the present section we will be interested in the connections
between these three notions; nilpotency, algebraicity, and quasi-regularity. In par-
ticular we will investigate how close algebraic elements are to being nilpotent and
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how close quasi-regular elements are to being nilpotent. We are motivated by the
following two questions:

Q1. Algebraic rings and algebras are usually thought of as nice and well behaved.
For example an algebraic algebra over a field with no zero divisors is a divi-
sion algebra. On the other hand nil rings and algebras, which are of course
algebraic, are bad and hard to deal with. It is thus natural to ask what makes
the nil rings and algebras bad among all the algebraic ones.

The answer for algebras over fields is well known, namely they are Jacobson
radical. We generalize this to algebras over certain principal ideal domains and in
particular to rings.

Q2. Can nilpotent elements among all quasi-regular elements be characterized by
the property ”quasi-inverse of a is a polynomial in a”?

It is somewhat obvious that element-by-element this will not be possible, however
we will be able to characterize the upper nilradical in this way.

Most of the results of this section are contained in [32].

2.3.1 π-algebraic elements

In this section K will always denote a commutative unital ring, F a field, and R
an algebra over K or F . The two questions from the introduction of this section
motivate the following definition, which will play a crucial role in our considerations.

Definition 2.3.1. An element a of a K-algebra R is π-algebraic (over K) if there
exists a polynomial p ∈ K[x] such that p(0) = 0, p(1) = 1 and p(a) = 0. In this
case we will also say that a is π-algebraic with polynomial p. A subset S ⊆ R is
π-algebraic if every element in S is π-algebraic. The set of all π-algebraic elements
of a K-algebra R will be denoted by πK(R).

Note the special case of the above definition when R is just a ring and K = Z. In
this case we will also write π(R) = πZ(R). The crucial condition in this definition is
the condition p(1) = 1. The condition p(0) = 0 is there simply because R may not
be unital, in which case only polynomials with zero constant term can be evaluated
at an element of R.

We first present some basic properties of π-algebraic elements along with some
examples. For the definitions and notations see section 2.1.

Lemma 2.3.2. If R is a K-algebra then N(R) ⊆ πK(R) ⊆ AK(R) ∩ Q(R). If
R is an F -algebra then N(R) ⊆ πF (R) = AF (R) ∩ Q(R). The quasi-inverse of a
π-algebraic element is a polynomial in this element.
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Proof. Obviously every nilpotent element is π-algebraic and every π-algebraic ele-
ment is algebraic. Suppose a ∈ R is π-algebraic with polynomial p. Then P (x) =
1− (1−p(x))/(1−x) is again a polynomial with P (0) = 0 (and proper coefficients).
Hence we may define a′ = P (a). Since x ◦ P (x) = x + P (x) − xP (x) = p(x), we
have a ◦ a′ = 0. Similarly we get a′ ◦ a = 0. Hence a′ in the quasi-inverse of a
and it is a polynomial in a. Now suppose R is an F -algebra and a is an element of
AF (R)∩Q(R). Let r ∈ F [x] be the minimal polynomial of a (if R is not unital then
r(0) must be zero) and let a′ be the quasi-inverse of a. Suppose r(1) = 0. Then
r(x) = (1− x)q(x) = q(x)− xq(x) for some polynomial q ∈ F [x] of degree less then
that of r. If R is not unital then q(0) = 0, so we may evaluate q at a in any case.
Hence 0 = r(a)−a′r(a) = q(a)−aq(a)−a′q(a)+a′aq(a) = q(a)−(a′ ◦a)q(a) = q(a),
which is a contradiction since r was the minimal polynomial for a. Thus r(1) is an
invertible element of F and hence the element a is π-algebraic with polynomial
p(x) = r(1)−1r(x)x.

We shall see in the examples that the inclusion πK(R) ⊆ AK(R)∩Q(R) may be
strict.

Lemma 2.3.3. If R is a unital K-algebra then 2− πK(R) ⊆ πK(R). In particular
0, 2 ∈ πK(R) and 1 /∈ πK(R). If R is a unital F -algebra then 2 − πF (R) ⊆ πF (R).
In addition F\{1} ⊆ πF (R) and 1 /∈ πF (R).

Proof. If a is π-algebraic with polynomial p then 2−a is π-algebraic with polynomial
q(x) = p(2 − x)x. We always have 0 ∈ πK(R), hence 2 ∈ πK(R). The identity
element is never π-algebraic since it is not quasi-regular. If R is a unital F -algebra
and λ 6= 1 is a scalar then λ is π-algebraic with polynomial p(x) = (1 − λ)−1(x −
λ)x.

Next we give a few examples.

Example 2.3.4. For a finite ring R, π(R) = Q(R) and J(R) = Nil∗(R). To verify
the first part observe that (Q(R), ◦) is a finite group, say of order n. So for every
a ∈ Q(R) we have a(n) = 0, hence every a ∈ Q(R) is π-algebraic with polynomial
p(x) = x(n) = 1− (1− x)n. The second part is well known and it also follows from
the first part and Theorem 2.3.16.

Example 2.3.5. For any field F , πF (F ) = F\{1} = Q(F ) by Lemma 2.3.3. In
particular πQ(Q) = Q\{1} = Q(Q). On the other hand we will show that π(Q) =
{1 + 1

n
; n ∈ Z\{0}}. Indeed, if n is a nonzero integer then 1 + 1

n
is π-algebraic

over Z with polynomial p(x) = (1−n(x− 1))x. Conversely, suppose a
b
∈ Q (a and b

coprime) is π-algebraic with polynomial P ∈ Z[x] of degree d. Then Q(x) = bdP (x
b
)

is a polynomial with integer coefficients. Hence a−b divides Q(a)−Q(b) = bdP (a
b
)−

bdP (1) = −bd. Since a and b are coprime, this is only possible if a − b = ±1 (any
prime that would divide a−b would divide b and hence a). Thus a

b
= 1± 1

b
as needed.

Obviously A(Q) = Q, so the inclusion π(Q) ⊆ A(Q) ∩ Q(Q) from Lemma 2.3.2 is
strict here.
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Example 2.3.6. Let F ⊆ E be fields and Mn(E) the ring of n × n matrices over
E. Then

N(Mn(E)) = matrices with eigenvalues 0,

πF (Mn(E)) = matrices with eigenvalues in F\{1},
Q(Mn(E)) = matrices with eigenvalues in E\{1},

where F ⊆ E are algebraic closures of F and E. A matrix is quasi-regular iff it has
no eigenvalue equal to 1. So in view of Lemma 2.3.2, to verify the above, we only
need to prove that

AF (Mn(E)) = matrices with eigenvalues in F .

If A ∈ Mn(E) is algebraic over F , it clearly has eigenvalues in F . So suppose
A ∈ Mn(E) has eigenvalues λ1, λ2, . . . , λn ∈ F . For every i = 1, 2, . . . , n, let pi be
the minimal polynomial of λi over F . Then the minimal polynomial mA of A over
E divides P (x) =

∏n
i=1 pi(x), hence P (A) = 0. Since P has coefficients in F , A is

algebraic over F .

The following proposition gives a connection between π-algebraic and integral
elements.

Proposition 2.3.7. Let R be a K-algebra and a an element of R. The following
are equivalent:

(i) a is π-algebraic,

(ii) a is quasi-regular and a(−1) is integral,

(iii) a is quasi-regular and a(−1) is a polynomial in a.

Proof. By Lemma 2.3.2 (i) implies (iii). On the other hand, if a(−1) = P (a) where
P is a polynomial in K[x], then a + P (a) − aP (a) = 0, so a is π-algebraic with
polynomial (x+P (x)−xP (x))x. It remains to prove the equivalence of (i) and (ii).

For a polynomial p ∈ K[x] define p̂(x) = (x − 1)deg pp( x
x−1

), which is again a
polynomial in K[x]. Notice that p̂(1) equals the leading coefficient of p and the
leading coefficient of p̂ equals p(1) if p(1) 6= 0. In addition p̂(0) = 0 iff p(0) = 0.

We may assume that R is unital, otherwise we just adjoin a unit to R. Let a be a
quasi-regular element. Then the inverse of 1−a is 1−a(−1), so the term x

x−1
evaluated

at a equals−a(1−a(−1)) = −a+aa(−1) = a(−1). Thus p̂(a) = (a−1)deg pp(a(−1)). This
shows that p̂(a) = 0 iff p(a(−1)) = 0, since 1− a is invertible. Similarly p̂(a(−1)) = 0
iff p(a) = 0.

If p is a monic polynomial such that p(0) = 0 and p(a(−1)) = 0 then a is π-
algebraic with polynomial p̂. If a is π-algebraic with polynomial p then p̂ is a monic
polynomial such that p̂(0) = 0 and p̂(a(−1)) = 0, so a(−1) is integral.

In particular Proposition 2.3.7 states that πK(R) = (Q(R)∩IK(R))(−1) (compare
with Lemma 2.3.2). In what follows we will see that there is a strong connection
between π-algebraic elements and nilpotent elements, in case K satisfies certain
properties given by the following definition.



2.3 π-algebraicity 63

Definition 2.3.8. We shall say that a principal ideal domain K is special if there
is no nonconstant polynomial p ∈ K[x] with p(0) 6= 0 such that p(k) would be
invertible in K for all k ∈ K coprime to p(0).

There is a simple condition that a special PID always satisfies.

Proposition 2.3.9. If K is a special PID then J(K) = 0. In particular, if K is
not a field then K has infinitely many nonassociated irreducible elements.

Proof. Let K be a special PID. Suppose J(K) 6= 0 and take 0 6= a ∈ J(K). Since K
is commutative and unital, this implies that 1−ak is invertible in K for every k ∈ K.
But then the polynomial p(x) = 1− ax contradicts the definition of a special PID.
Hence J(K) = 0. Since K is commutative and unital, J(K) is just the intersection
of all maximal ideals of K by Theorem 2.1.16. If K is not a field then the maximal
ideals of K are the principal ideals generated by the irreducible elements. If there
are only finitely many such ideals then their intersection is nonzero.

Proposition 2.3.9 has a partial converse.

Proposition 2.3.10. If K is a PID that has finite group of units and is not a field
then the following are equivalent:

(i) K has infinitely many nonassociated irreducible elements,

(ii) J(K) = 0,

(iii) K is special.

Proof. It follows by Proposition 2.3.9 and its proof that (i) and (ii) are equivalent
and (iii) implies (ii).

(i)⇒ (iii): Let p be a polynomial inK[x] with p(0) 6= 0 such that p(k) is invertible for
all k ∈ K coprime to p(0). Since p(0) 6= 0 and K has infinitely many nonassociated
irreducible elements, there are infinitely many elements in K that are coprime to
p(0). Since there are only finitely many invertible elements inK, there exist infinitely
many elements k ∈ K coprime to p(0) such that p(k) is the same for all these k,
say p(k) = u where u is invertible. But then the polynomial p(x)− u has infinitely
many zeros, so it must be zero. Hence p is a constant polynomial.

For general PIDs the condition J(K) = 0 is not sufficient for K to be special.
The simplest counterexample is given by any field that is not algebraically closed
(see Proposition 2.3.12), however fields are rather extremal among all PID, since
they have no irreducible elements. Hence we give another counterexample which is
not a field.

Example 2.3.11. Let S ⊆ Z be a multiplicatively closed subset generated by all
primes p with p = 2 or p ≡ 1 (mod 4) and let K = S−1Z be the localization of Z at
S. Then K has infinitely many nonassociated irreducible elements, represented by
the primes p with p ≡ 3 (mod 4), hence J(K) = 0. Now let p(x) = x2 + 1. To see
that K is not special, we will show that p(k) is invertible in K for all k ∈ K. For
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k = m
n
∈ K we have p(k) = m2+n2

n2 . To see that this is invertible in K we need to
show that any prime dividing m2 + n2 is contained in S. Suppose p is a prime with
p ≡ 3 (mod 4) that divides m2 + n2. Then m2 ≡ −n2 (mod p). Since n ∈ S, this
implies that both m and n are coprime to p. Hence we have

1 ≡ mp−1 ≡ (m2)
p−1
2 ≡ (−n2)

p−1
2 ≡ (−1)

p−1
2 np−1 ≡ (−1)

p−1
2 ≡ −1 (mod p).

This is a contradiction since p 6= 2, which finishes the proof.

Here are some examples of special PIDs.

Proposition 2.3.12.

(i) A field is a special PID if and only if it is algebraically closed.

(ii) The ring of integers Z and the ring of Gaussian integers Z[i] are special PIDs.

(iii) For any field F the polynomial ring F [x] is a special PID.

Proof. (i): Let F be a field that is a special PID. If p ∈ F [x] is a nonconstant
polynomial then either p(0) = 0 or there exists λ ∈ F such that p(λ) is not invertible,
i.e. p(λ) = 0. So F is algebraically closed. Clearly any algebraically closed field is
a special PID.

(ii): This follows from Proposition 2.3.10.

(iii): Let F be a field and P (y) a nonconstant polynomial in (F [x])[y] with P (0) 6= 0.
Let P (y) = p0(x) + p1(x)y + . . . + pn(x)yn where p0(x) 6= 0, pn(x) 6= 0, and n ≥ 1.
Denote di = deg pi and d = max{di ; i = 0, 1, 2, . . . , n}, where the degree of the zero
polynomial is equal to −∞. Now let p(x) = p0(x)xd+1 + 1. Then p(x) is coprime
to p0(x) = P (0). The degree of pi(x)p(x)i is equal to di + i(d0 + d + 1). Since
d0, dn, d 6= −∞ we have dn+n(d0 +d+1) ≥ n(d0 +d+1) > d+(n−1)(d0 +d+1) ≥
di + i(d0 + d + 1) for all i < n. This implies that the degree of P (p(x)) is equal to
dn + n(d0 + d+ 1) ≥ 1, hence P (p(x)) is not invertible in F [x].

The next proposition was our main motivation for the introduction of special
PIDs.

Proposition 2.3.13. Let K be a special PID and R a K-algebra. If a is an element
of R such that Ka ⊆ πK(R) then there exists 0 6= k ∈ K such that ka is nilpotent.
In particular, if R has no K-torsion then a is nilpotent.

Proof. For a nonzero polynomial f ∈ K[x], let δ(f) denote the greatest common
divisor of all coefficients of f . First we show that for any π-algebraic element r
there exists a nonzero polynomial f ∈ K[x] and a nonzero element c ∈ K such that
f(1) = 1, cf(r) = 0, and f divides (within K[x]) any polynomial that annihilates r.
So let r ∈ R be π-algebraic with polynomial h ∈ K[x]. Choose a nonzero polynomial

p ∈ K[x] of minimal degree such that p(r) = 0 and let c = δ(p) and f(x) = p(x)
c
∈

K[x]. So cf(r) = 0 and δ(f) = 1. Suppose P ∈ K[x] is a polynomial with P (r) = 0.
By the division algorithm there exists 0 6= k ∈ K and polynomials s, t ∈ K[x] with
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deg t < deg f = deg p such that kP (x) = s(x)f(x) + t(x) (divide in D[x], where
D is the field of fractions of K, and multiply by a common denominator of all
fractions). Multiplying by c we get ckP (x) = cs(x)f(x) + ct(x) = s(x)p(x) + ct(x).
The minimality of p now implies ct(x) = 0, hence t(x) = 0 and so kP (x) = s(x)f(x).
By Gauss’s lemma this implies δ(s) = kδ(P ) up to association, so k divides δ(s).

Thus the polynomial s(x)
k

has integer coefficients and P (x) = s(x)
k
f(x), i.e. f divides

P . In particular f divides h, so there is a polynomial S such that h(x) = S(x)f(x).
Evaluating at 1 we get 1 = S(1)f(1), so f(1) is invertible in K. We may assume
that f(1) = 1, otherwise we just multiply f by f(1)−1 = S(1).

By the above for any k ∈ K there exists 0 6= ck ∈ K and 0 6= fk ∈ K[x]
such that fk(1) = 1, ckfk(ka) = 0, and fk divides any polynomial that annihilates
ka. Let k 6= 0. Then f1 divides ckfk(kx), since ckfk(kx) annihilates a. Similarly
c1k

deg f1f1(
x
k
) is a polynomial in K[x] that annihilates ka, so fk divides c1k

deg f1f1(
x
k
).

This in particular implies that all these polynomials have the same degree, so there
exists dk ∈ K such that c1k

deg f1f1(
x
k
) = dkfk(x). We have fk(1) = 1, hence δ(fk) =

1. Consequently c1δ(k
deg f1f1(

x
k
)) = dk up to association. If k is coprime to the

leading coefficient of f1 then δ(kdeg f1f1(
x
k
)) = 1 since δ(f1) = 1. For such k we

have c1 = dk up to association, hence c1 divides dk and uk = dk

c1
is invertible. In

addition kdeg f1f1(
x
k
) = ukfk(x). Evaluating at 1 we get kdeg f1f1(

1
k
) = uk. Now

p(x) = xdeg f1f1(
1
x
) is a polynomial in K[x] with p(0) equal to the leading coefficient

of f1. Hence we have proved above that p(k) is invertible for every k 6= 0 coprime to
p(0). If 0 is coprime to p(0) then p(0) is automatically invertible. Since K is a special
PID, it follows that p is a constant polynomial. Hence there is a constant c ∈ K
such that f1(

1
x
) = c

xdeg f1
and therefore f1(x) = cxdeg f1 . Consequently c1ca

deg f1 = 0,
thus c1ca is nilpotent. Clearly c1c 6= 0.

The conclusions of Proposition 2.3.13 are not necessarily true if K is not a special
PID. In particular, they are not true if K is a field which is not algebraically closed.

Example 2.3.14. Let F be a field which is not algebraically closed and p a non-
constant polynomial over F which has no zeros in F . Let a be a zero of p in the
algebraic closure of F . Then for every nonzero λ ∈ F the element λa is π-algebraic
with polynomial p(λ−1)−1p(λ−1x)x, however there is no 0 6= λ ∈ F such that λa
would be nilpotent.

2.3.2 π-algebraic rings and algebras

The aim of this subsection is to answer questions Q1 and Q2. By Lemma 2.3.2 every
π-algebraic algebra is algebraic and Jacobson radical so the following proposition is
a restatement of the well known fact that any algebraic Jacobson radical algebra
over a field is nil (see for example [35, p. 144]). In fact, every algebraic element in
the Jacobson radical of an algebra over a field is nilpotent and its index is equal to
its degree.

Proposition 2.3.15. Every π-algebraic F -algebra is nil.
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Next we extend this result to algebras over special PIDs and in particular to
rings.

Theorem 2.3.16. If K is a special PID then every π-algebraic K-algebra is nil.

Proof. We shall first prove this for the particular case of rings, since we would like
to point out that the result for rings can be derived from the results of Watters [38].
So suppose R is a π-algebraic ring. Let a be an element of R, S the subring of R
generated by a, and s ∈ S. Since s is π-algebraic, s(−1) is a polynomial in s by
Proposition 2.3.7. Hence s(−1) ∈ S. This implies that S is Jacobson radical. Since
a(−1) is π-algebraic, a is integral by Proposition 2.3.7. Thus the additive group
(S,+) is finitely generated (by the powers of a). By [38] the ring S is nilpotent,
hence the element a is nilpotent. This shows that R is nil.

The above proof cannot be imitated in the general case since one of the tools
used in [38] was Dirichlet’s theorem on primes in arithmetic progressions.

Now suppose R is a π-algebraic K-algebra where K is a special PID. Suppose
the element a ∈ R is not nilpotent. A standard application of Zorn’s lemma shows
that there exists a prime ideal P / R that does not contain any power of a. Since
R/P is a prime K-algebra, it follows by Proposition 1.1.7 that either R/P has no
K-torsion or there exists an irreducible element k ∈ K, such that k(R/P ) = 0. In
the first case Proposition 2.3.13 implies that a is nilpotent modulo P , which is a
contradiction. In the second case R/P is an algebra over the field K/kK, which
is π-algebraic even over K/kK, so Proposition 2.3.15 implies that a is nilpotent
modulo P , which is again a contradiction. Hence R must be nil.

Theorem 2.3.17. If K is a special PID then every integral Jacobson radical K-
algebra is nil.

Proof. This follows directly from Proposition 2.3.7 and Theorem 2.3.16.

An algebraic Jacobson radical K-algebra need not be nil. In fact the ring in
Example 2.1.10 is an algebraic Jacobson radical ring which is not nil. So the integral
condition in Theorem 2.3.17 is crucial.

This answers question Q1 in two ways: the fact that distinguishes nil rings and
algebras from all other algebraic ones is firstly that they are integral and Jacobson
radical and secondly that the polynomials ensuring algebraicity in the nil case have
the sum of their coefficients equal to 1. It is perhaps interesting that this rather
large family of polynomials with the sum of coefficients equal to 1 produces the same
effect as the rather restrictive family {x, x2, x3, x4, . . .}.

Observe that by Lemma 2.3.2 in an algebraic division algebra over a field only
the identity is not π-algebraic. So if only one element in an algebra is not π-algebraic
then the algebra may be very nice instead of nil.

Definition 2.3.18. A K-algebra R is π-algebraic of bounded degree ≤ n if every
element of R is π-algebraic with some polynomial of degree ≤ n. R is π-algebraic
of bounded degree if there exists an integer n such that R is π-algebraic of bounded
degree ≤ n.
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It follows from the proof of Proposition 2.3.7 that a K-algebra is π-algebraic of
bounded degree ≤ n if and only if it is Jacobson radical and integral of bounded
degree ≤ n. The following natural question arises. Let K be a special PID. If a
K-algebra R is π-algebraic of bounded degree, is it nil of bounded index? It is clear
from the comment before Proposition 2.3.15 and the proof of Proposition 2.3.13 that
the answer is positive for algebras over arbitrary fields and for algebras over K with
no K-torsion.

Corollary 2.3.19. If R is a π-algebraic F -algebra of bounded degree ≤ n or a π-
algebraic K-algebra of bounded degree ≤ n with no K-torsion, where K is a special
PID, then R is nil of bounded index ≤ n.

Perhaps surprisingly, the answer for general K-algebras is negative as the follow-
ing example shows.

Example 2.3.20. Let K be a special PID which is not a field. Then by Propo-
sition 2.3.9 K has infinitely many nonassociated irreducible elements. Choose a
countable set of nonassociated irreducible elements {p1, p2, p3, . . .} and let R =⊕∞

i=1 piK/p
i
iK. Clearly R is nil but not of bounded index. Let a = (ai)i be an

element of R. By the Chinese remainder theorem there is an element k ∈ K such
that k ≡ ai (mod pii) for all i with ai 6= 0. Then a is a zero of the monic polynomial
x2 − kx. This shows that R is integral of bounded degree ≤ 2, hence it is also
π-algebraic of bounded degree ≤ 2.

Nevertheless the following holds for arbitrary algebras over special PIDs.

Proposition 2.3.21. Let K be a field or a special PID. If R is a K-algebra which
is π-algebraic of bounded degree then Nil∗(R) = R.

Proof. Suppose P is a prime ideal of R. If K is a field then R/P is again a π-
algebraic K-algebra of bounded degree. If K is a special PID then as in the proof
of Theorem 2.3.16 R/P is either an algebra over some field or a K-algebra with no
K-torsion and it is again π-algebraic of bounded degree. In any case R/P is nil of
bounded index by Corollary 2.3.19. Thus by Theorem 2.1.20 we have Nil∗(R/P ) =
R/P , but on the other hand Nil∗(R/P ) = 0, since P is a prime ideal. So P = R,
which shows that Nil∗(R) = R.

Now we address question Q2.

Corollary 2.3.22. Let R be a K-algebra, where K is a field or a special PID. Then
the following hold:

(i) Nil∗(R) is the largest π-algebraic ideal of R,

(ii) Nil∗(R) is the largest integral quasi-regular ideal of R,

(iii) Nil∗(R) is the largest quasi-regular ideal of R such that the quasi-inverse of
each element is a polynomial in this element.
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Proof. If I is an ideal of R satisfying any of the above conditions then I is π-algebraic
by Proposition 2.3.7 and thus nil by Proposition 2.3.15 or Theorem 2.3.16. Hence
Nil∗(R) is the largest such ideal.

Corollary 2.3.23. If R is an integral ring then J(R) = Nil∗(R).

Corollary 2.3.24. The Köthe conjecture is equivalent to the statement ’if R is a
nil ring then M2(R) is an integral ring’.

Proof. By Theorem 2.3.17 the given statement is clearly equivalent to Conjec-
ture 2.2.6, since M2(R) is Jacobson radical if R is nil.

Corollary 2.3.25. Every integral ring satisfies the Köthe conjecture.

2.3.3 The structure of π(R)

In this subsection we investigate the structure of the set of all π-algebraic elements of
an algebra. We restrict ourselves to algebras over fields and to rings. By Lemma 2.3.2
we know that N(R) ⊆ π(R) ⊆ Q(R) and (Q(R), ◦) is a group. It is thus natural to
ask under what conditions N(R) and π(R) are (normal) subgroups of Q(R) and more
generally, what can be said about the structure of π(R). In general π(R) will not be
closed under ◦. We will give a concrete example later on (see Example 2.3.28), but
the reason for this is that the algebraic elements of R do not have any structure in
general (they do not form a ring). However if R is commutative π(R) will be closed
under ◦. From here on Q(R) will always be considered a group with operation ◦.

Lemma 2.3.26. If r is a quasi-regular element of a ring or an F -algebra R then
the map x 7→ r ◦ x ◦ r(−1) is an automorphism of R.

The proof of this lemma is an easy calculation. In fact if R is unital then
r ◦ x ◦ r(−1) = (1− r)x(1− r(−1)) = (1− r)x(1− r)−1, so the map is just the usual
conjugation by 1− r.

Proposition 2.3.27.

(i) If R is a ring or an F -algebra then N(R) is closed under conjugation and
inversion. If R is commutative then N(R) is a subgroup of Q(R).

(ii) If R is an F -algebra, then πF (R) is closed under conjugation and inversion.
If R is commutative then πF (R) is a subgroup of Q(R).

(iii) If R is a ring, then π(R) is closed under conjugation. If R is commutative
then π(R) is a submonoid of Q(R).

Proof. Let a ∈ R, r ∈ Q(R), and let p be a polynomial. Then by Lemma 2.3.26
r◦p(a)◦r(−1) = p(r◦a◦r(−1)), so r◦a◦r(−1) is annihilated by the same polynomials
as a. This shows that N(R) and π(R) (resp. πF (R)) are closed under conjugation.
The inverse of a nilpotent element is a polynomial in this element, so it is again
nilpotent. Thus N(R) is closed under inversion. If R is commutative then N(R) is
a subring of R, so it is closed under ◦ as well.
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Let R be an F -algebra. If R is commutative then AF (R) is a subalgebra of R.
Thus AF (R) is closed under ◦ and by Lemma 2.3.2 so is πF (R). If a ∈ πF (R) then
the quasi-inverse of a is a polynomial in a, so it is algebraic and hence contained in
AF (R) ∩Q(R) = πF (R).

If R is a ring then by Proposition 2.3.7 π(R)(−1) = I(R)∩Q(R). If R is commu-
tative then I(R) is a subring of R by Proposition 2.1.21 and hence closed under ◦.
So π(R)(−1) is closed under ◦ and thus so is π(R).

Unfortunately for a ring R the set π(R) need not be closed under inversion. For
example the quasi-inverse of 1 + 1

2
∈ π(Q) is 1 + 2 and it is not contained in π(Q).

In fact we know that π(R)(−1) = I(R) ∩Q(R).

Example 2.3.28. Let F be an algebraically closed field and E = F (x) the field of
rational functions over F . By Example 2.3.6 πF (M2(E)) consists of matrices with
eigenvalues in F\{1}. Take matrices

A =

[
0 x
0 0

]
and B =

[
0 0
1 0

]
,

which both lie in πF (M2(E)), since they are nilpotent. Then

A ◦B =

[
−x x
1 0

]
does not have eigenvalues in F , since its trace is −x /∈ F . So πF (M2(E)) is not
closed under ◦.

Let R be either a ring or an F -algebra. For a subset S of Q(R) let 〈S〉 denote
the normal subgroup of Q(R) generated by S. By Proposition 2.3.27 we have:

〈N(R)〉 = finite quasi-products of elements of N(R),

〈πF (R)〉 = finite quasi-products of elements of πF (R),

〈π(R)〉 = finite quasi-products of elements of π(R) ∪ π(R)(−1),

〈π(R) ∩ π(R)(−1)〉 = finite quasi-products of elements of π(R) ∩ I(R).

Example 2.3.29. From Example 2.3.5 it is easy to calculate that we have 〈π(Q)〉 =
Q(Q) = Q\{1} and 〈π(Q) ∩ π(Q)(−1)〉 = {0, 2}.

Example 2.3.30. Recall that a complex matrix A is called unipotent if I − A is
nilpotent, where I denotes the identity matrix. In [39] it was shown that a complex
matrix is a finite product of unipotent matrices iff it has determinant 1. This shows
that 〈N(Mn(C))〉 = {A ∈Mn(C) ; det(I − A) = 1}.

Note that any quasi-regular ideal of R and in particular any nil ideal of R is a
normal subgroup of Q(R).

Proposition 2.3.31. If R is a ring and I a nil ideal of R then:

(i) Q(R/I) ∼= Q(R)/I,
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(ii) 〈N(R/I)〉 ∼= 〈N(R)〉/I,

(iii) 〈π(R/I)〉 ∼= 〈π(R)〉/I,

(iv) 〈π(R/I) ∩ π(R/I)(−1)〉 ∼= 〈π(R) ∩ π(R)(−1)〉/I.

Proof. The canonical map f : R→ R/I preserves the operation ◦, since it is a ring
homomorphism. It obviously maps Q(R) to Q(R/I), N(R) to N(R/I), π(R) to
π(R/I), and π(R)∩ π(R)(−1) to π(R/I)∩ π(R/I)(−1). If r+ I ∈ Q(R/I) then r ◦ r′
and r′ ◦ r are elements of I for some r′ ∈ R, so they are quasi-regular. Hence r is
quasi-regular in R. If r + I ∈ N(R/I) then rn ∈ I for some n, so r is nilpotent. If
r+ I is π-algebraic with polynomial p then p(r) ∈ I, so p(r)n = 0 for some n. Hence
r is π-algebraic with polynomial p(x)n. Similarly if r + I ∈ π(R/I) ∩ π(R/I)(−1)

then r ∈ π(R) ∩ π(R)(−1). Obviously I ⊆ Q(R), N(R), π(R), π(R) ∩ π(R)(−1) so f
induces all the isomorphisms in the proposition.

Of course the same holds for πF (R) if R is an F -algebra. In particular it follows
from the proof that π(R) is a normal subgroup of Q(R) iff π(R/I) is a normal
subgroup of Q(R/I).

Next we investigate what can be said about addition. We will need the following
proposition which may be of independent interest.

Proposition 2.3.32. Let R be a unital ring and K a commutative subring of R
with 1 ∈ K such that R\K ⊆ R−1. If K is a finite ring or a ring with factorization
then one of the following holds:

(i) R = K,

(ii) R is a local ring with maximal ideal m ⊆ K and K is a local ring with maximal
ideal m,

(iii) R is a division ring.

Proof. Suppose that R 6= K and R is not a division ring. Then there exist r ∈
R\K ⊆ R−1 and 0 6= a ∈ K\R−1. We will prove that K−1 = K ∩ R−1. If K is
a finite ring then for every x ∈ K there exist positive integers k and n such that
xn = xn+k. So if x is invertible in R then xk = 1, hence it is also invertible in
K. Now suppose K has factorization. Then we may assume that the element a is
irreducible. Let x be arbitrary element of K that is invertible in R and set y = x−1a.
Then y is not invertible in R, since a is not. But R\K ⊆ R−1, so y ∈ K. Thus
a = xy is a factorization of a in K. Since a was irreducible and y is not invertible,
x must be invertible in K. Now let m be the set of all elements of K that are not
invertible in K. Since R\K ⊆ R−1, m is also the set of all non-invertible elements
of R. If x ∈ m and k ∈ K then xk is not invertible in K, otherwise x would be
invertible due to the commutativity of K. So mK ⊆ m. If x, y ∈ m then by the
above x and y are not invertible in R. By the choice of r this implies that xr and
yr are not invertible in R, so xr, yr ∈ K. Thus (x − y)r ∈ K. But x − y ∈ K and
r /∈ K, hence x − y cannot be invertible in K, so x − y ∈ m. This proves that m
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in an ideal in K, so K is local with maximal ideal m. Now let x ∈ m and s ∈ R,
so by the above x is not invertible in R. If s ∈ K then sx, xs ∈ m by what we have
just proved. If s /∈ K then s is invertible in R. So sx and xs are not invertible in
R, hence sx, xs ∈ m. This shows that m is also an ideal of R and R is local with
maximal ideal m.

Remark 2.3.33. There exist examples where case (ii) of Proposition 2.3.32 occurs
in a nontrivial way. Take for example R = E[[x]] and K = F + E[[x]]x ⊆ R where
F  E are fields. Every nonunit in K is contained in E[[x]]x and factors as xng(x)
for some nonnegative integer n and some g(x) of the form α1x + α2x

2 + α3x
3 + . . .

with α1 6= 0.

Theorem 2.3.34. Let R be a ring. For any subgroup S of Q(R) the following are
equivalent:

(i) S is closed under addition,

(ii) S is closed under multiplication,

(iii) S is a subring of R.

Proof. Assume that R is unital. Let x, y ∈ Q(R) be arbitrary. Then x ◦ x(−1) = 0
implies x = −x(−1) +xx(−1) = −(1−x)x(−1) and similarly y = −y(−1)(1− y). Hence

xy = (1− x)x(−1)y(−1)(1− y) = (1− x)
(
x(−1) + y(−1) − x(−1) ◦ y(−1)

)
(1− y) =

= (1− x)
((

1− x(−1) ◦ y(−1)
)
−
(
1− (x(−1) + y(−1))

))
(1− y) =

= (1− x)
(

(1− x(−1))(1− y(−1))−
(
1− (x(−1) + y(−1))

))
(1− y) =

= (1− x)(1− x(−1))(1− y(−1))(1− y)− (1− x)
(
1− (x(−1) + y(−1))

)
(1− y) =

= 1− (1− x)
(
1− (x(−1) + y(−1))

)
(1− y) =

= x ◦ (x(−1) + y(−1)) ◦ y.

A direct calculation shows that xy = x ◦ (x(−1) + y(−1)) ◦ y holds even if R is not
unital. Replacing x with x(−1) and y with y(−1) in this equation we get x(−1)y(−1) =
x(−1) ◦ (x+y)◦y(−1). If we quasi-multiply by x from the left and by y from the right
we get x+ y = x ◦ (x(−1)y(−1)) ◦ y. The two equations we have derived show that (i)
and (ii) are equivalent.

Assume that R is unital and 2 is invertible. Then 1 − 2 = −1 is quasi-regular
and (−1)(−1) = 1− (1− (−1))−1 = 1

2
. By one of the above equations we have

−x = x(−1) = x ◦ (x(−1) + (−1)(−1)) ◦ (−1) = x ◦
(
x(−1) +

1

2

)
◦ (−1) =

= x ◦
(
x(−1) +

1

2
− 1 + x(−1) +

1

2

)
= x ◦ (2x(−1)).
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A direct calculation again shows that −x = x◦ (2x(−1)) holds even if R is not unital.
Hence (i) implies that S is closed under negation as well, which implies (iii). Clearly
(iii) implies (i).

Corollary 2.3.35. Let F be a field of characteristic 0 and R a commutative F -
algebra. If πF (R) is closed under addition then πF (R) = N(R).

Proof. Since R is commutative, πF (R) is a subgroup of Q(R) by Proposition 2.3.27.
If πF (R) is closed under addition then it is a subring of R by Theorem 2.3.34. Let
a ∈ R be π-algebraic with polynomial p and let λ be a nonzero scalar. Since F is
of characteristic 0 there exists a positive integer n such that nλ−1 is not a zero of
p. Hence n−1λa is π-algebraic with polynomial p(nλ−1)−1p(nλ−1x). Since πF (R) is
closed under addition and λa is a multiple of n−1λa, λa is π-algebraic as well. So
πF (R) is in fact a subalgebra of R. Thus πF (R) is nil by Proposition 2.3.15 and
πF (R) = N(R) follows.

Proposition 2.3.36. Let R be a commutative ring. If π(R) is closed under addition
then π(R) = N(R).

Proof. Suppose π(R) is closed under addition. First we show that π(R) is closed also
under negation. If a is π-algebraic then Na ⊆ π(R) since π(R) is closed under addi-
tion. Observe that in the proof of Proposition 2.3.12 that Z is a special PID, we can
conclude that the polynomial p is constant even if p(n) is invertible only for positive
integers n coprime to p(0). This means that the conclusion of Proposition 2.3.13
is true even if we only assume Na ⊆ π(R). Hence there exists a positive integer
n such that na is nilpotent. Consequently −na is nilpotent and hence π-algebraic.
Since π(R) is closed under addition, −a = −na + (n − 1)a is π-algebraic as well.
By Proposition 2.3.27 the commutativity of R implies that π(R) is closed under ◦.
Since xy = x + y − x ◦ y, π(R) is closed under multiplication as well. So π(R) is a
π-algebraic subring of R, hence it is nil by Theorem 2.3.16.

Corollary 2.3.37. Let p be a prime number, F an algebraic field extension of the
prime field Z/pZ, and R a commutative F -algebra. If πF (R) is closed under addition
then πF (R) = N(R).

Proof. Since F is algebraic over Z/pZ, we have AF (R) = AZ/pZ(R), so πF (R) =
πZ/pZ(R) by Lemma 2.3.2. Now let a ∈ R be π-algebraic over Z/pZ with polynomial

f̂ and let f be a polynomial with integer coefficients that represents f̂ such that
f(0) = 0. Since f̂(1) = 1, there exists an integer k such that f(1) = kp + 1. If we
set F (x) = f(x) − kpx then F (0) = 0, F (1) = 1 and F (a) = 0, since pa = 0. So a
is π algebraic over Z. Hence πZ/pZ(R) ⊆ π(R) and clearly π(R) ⊆ πZ/pZ(R). This
implies πF (R) = π(R) and so πF (R) = N(R) by Proposition 2.3.36.

It remains an open question, whether Corollary 2.3.37 holds over arbitrary fields
of prime characteristic.
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This was one extremal situation; when the set of all π-algebraic elements forms
a nil subring or subalgebra. The other extremal situation is when there are no
nilpotent elements. As we have mentioned before in an algebraic division algebra
there are no nonzero nilpotent elements although all elements except the unit are π-
algebraic. Next we investigate when something similar happens in general algebras.
The question is whether πF (R)∪{1} will form a division ring for a unital F -algebra
R. We can ask a similar question for rings, however it seems more natural to consider
the set 〈π(R)〉 ∪ (Z · 1) instead of 〈π(R)〉 ∪ {1}, since the elements in (Z · 1)\{1}
need not be automatically π-algebraic. In certain situations, though, these two sets
are in fact the same.

Theorem 2.3.38. Let R be a unital ring of characteristic 0. For any subgroup S
of Q(R) with {0, 2}  S the following are equivalent:

(i) S ∪ Z is closed under addition,

(ii) S ∪ Z is a division subring of R,

(iii) S ∪ {1} is a division subring of R.

Proof. Obviously (ii) implies (i). Also (iii) implies (ii), since in this case S ∪ {1} =
S ∪ Z.

(i)⇒ (ii): If x ∈ S∪Z then 2◦x = 2−x ∈ S∪Z, since 2 ∈ S∩Z. So if x ∈ S∪Z
then −x = 2− (2 + x) ∈ S ∪ Z by (i). Thus S ∪ Z is closed under negation. S and
Z are closed under ◦. If x ∈ S and n ∈ Z then x ◦ n = n ◦ x = n+ x− nx ∈ S ∪ Z,
since nx is a multiple of x or −x and S ∪ Z is closed under addition. So S ∪ Z is
closed under ◦ and hence also under multiplication, since xy = x + y − x ◦ y. This
shows that S ∪ Z is a subring of R. Now every element in S is quasi-regular with
quasi-inverse in S, thus every element in 1 − S is invertible in S ∪ Z. Since S ∪ Z
is a subring, we have 1 − S\Z = S\Z. So every element in S\Z is invertible in
S ∪ Z. By Proposition 2.3.32 either S ⊆ Z or S ∪ Z is a division ring. Suppose
S ⊆ Z. Then the quasi-inverse of every element in S ⊆ Z lies again in S ⊆ Z, so
S ⊆ Q(Z) = {0, 2}, which contradicts our assumption.

(ii) ⇒ (iii): It is enough to show that Z\{1} ⊆ S. Let n ∈ Z\{1}. If n = 0 or
n = 2 then n ∈ S by assumption. So suppose n 6= 0, 2. Since S∪Z is a division ring,
1− n is invertible and since n 6= 0, 2 and the characteristic of R is 0, (1− n)−1 /∈ Z.
Thus 1− (1− n)−1 ∈ S and so (1− (1− n)−1)(−1) = 1− (1− n) = n ∈ S, since S is
a subgroup of Q(R).

Theorem 2.3.39. Let R be a unital ring of prime characteristic p. For any subgroup
S of Q(R) the following are equivalent:

(i) S ∪ Z/pZ is closed under addition,

(ii) S ∪ Z/pZ is a division subring of R.

Proof. In this case S ∪ Z/pZ is automatically closed under negation, since −x =
(p − 1)x is a multiple of x. The proof is now the same as that of Theorem 2.3.38
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except for the case S ⊆ Z/pZ, but in this case S ∪Z/pZ = Z/pZ is automatically a
division ring.

Corollary 2.3.40. Let F be a field and R a unital commutative F -algebra. If
πF (R) ∪ {1} is closed under addition then it is a subfield of R.

Proof. This follows directly from Proposition 2.3.27 and Theorems 2.3.38 and 2.3.39,
since (Z · 1)\{1} ⊆ πF (R) by Lemma 2.3.3.

Corollary 2.3.41. Let R be a unital commutative ring of prime or 0 characteristic
with π(R) 6= {0, 2}. If π(R) ◦ π(R)(−1) ∪ (Z · 1) is closed under addition then it is a
subfield of R.

Proof. The commutativity of R implies 〈π(R)〉 = π(R) ◦ π(R)(−1). Since 2 ∈ π(R)
by Lemma 2.3.3, the result follows from Theorems 2.3.38 and 2.3.39.
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Dalǰsi povzetek

1 Prakolobarji

Prakolobarji sodijo med najpomembneǰse tipe kolobarjev v moderni matematiki, saj
so najprimerneǰsa posplošitev komutativnih celih kolobarjev v kontekst nekomuta-
tivnih kolobarjev. Pomembni so v mnogih različnih področjih matematike, kot so na
primer algebraična geometrija, teorija radikalov, teorija polinomskih in funkcijskih
identitet in mnoga druga.

Definicija 1.1. Kolobar R je prakolobar, če je R 6= 0 in za vsaka ideala I, J / R, za
katera je IJ = 0, velja I = 0 ali J = 0. Ideal P kolobarja R je praideal, če je R/P
prakolobar.

Ni težko dokazati, da je P / R praideal natanko tedaj, ko za vsaka elementa
a, b ∈ R, za katera je aRb = 0, velja a = 0 ali b = 0.

Praideali in prakolobarji imajo veliko ugodnih lastnosti. Omenimo jih nekaj, ki
jih bomo potrebovali. Prva taka lastnost je, da sta levi in desni anihilator prakolo-
barja vedno enaka nič. Druga lastnost se nanaša na zvezo med ideali v kolobarjih
in ideali v algebrah. Vsaka algebra R nad komutativnim enotskim kolobarjem je v
posebnem kolobar. Vsak praideal kolobarja R je avtomatično zaprt za množenje s
skalarjem in je zato tudi ideal algebre R. Za splošne ideale to ne velja. V poljubnem
kolobarju, ali splošneje v poljubni algebri nad glavnim kolobarjem, je množica vseh
torzijskih elementov lahko zelo zapletena. To je mnogokrat ovira pri posploševanju
rezultatov iz algeber nad komutativnimi obsegi na algebre nad glavnimi kolobarji. V
prakolobarjih in praalgebrah so torzijski elementi veliko bolj obvladljivi. Na primer,
če je v prakolobarju na = 0 za nek element a 6= 0 in neko naravno število n, potem
bo nb = 0 za vsak element b. Nazadnje omenimo še, da je lastnost biti prakolobar
mnogokrat lahko nadomestek za obstoj enote v kolobarju. Za dodatne lastnosti
prakolobarjev naslavljamo bralca na [19].

Prakolobarji so med drugim primerni tudi za konstrukcije raznoraznih kolobarjev
kvocientov. Glavno vlogo v teh konstrukcijah igrajo tako imenovani gosti ideali.

Definicija 1.2. Desni ideal J kolobarja R je gost, če za vsaka a, b ∈ R, kjer je b 6= 0,
obstaja r ∈ R, da velja br 6= 0 in ar ∈ J .

S pomočjo gostih desnih idealov konstruiramo prvi kolobar kvocientov, ki je v
nekem smislu največji. Naj bo R prakolobar in označimo z S množico vseh parov
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(f ; J), kjer je J gost desni ideal kolobarja R in f : J → R homomorfizem desnih
R-modulov. Definirajmo relacijo ∼ na S, kjer je (f ; J) ∼ (g;K) natanko tedaj, ko
se f in g ujemata na J ∩ K. Ni težko preveriti, da je ∼ ekvivalenčna relacija na
S. Ekvivalenčni razred elementa (f ; J) ∈ S označimo z [f ; J ], množico vseh ekvi-
valenčnih razredov v S pa s Qmr(R). Na Qmr(R) definiramo seštevanje in množenje
s predpisoma

[f ; J ] + [g;K] = [f + g; J ∩K],

[f ; J ] · [g;K] = [f ◦ g; g−1(J)],

kjer f ◦ g označuje kompozitum preslikav f and g. Ti dve operaciji zadoščata vsem
aksiomom kolobarja.

Definicija 1.3. Kolobar Qmr(R) imenujemo maksimalen desni kolobar kvocientov
kolobarja R.

Kolobar Qmr(R) je prvi konstruiral Utumi [36] leta 1956 v zgoraj opisani ob-
liki. Za drugačen, bolj homološki pristop h konstrukciji, naslavljamo bralca na [18,
§13], kjer je tudi razloženo, zakaj ta kolobar imenujemo maksimalen desni kolobar
kvocientov. Izkaže se, da je maksimalen desni kolobar kvocientov prakolobarja spet
prakolobar, operator Qmr pa je idempotenten, kar pomeni, da je Qmr(Qmr(R)) =
Qmr(R) (glej [4, Proposition 2.1.10]).

V nadaljevanju bomo definirali Martindalove kolobarje kvocientov poimenovane
po W.S. Martindalu, ki jih je vpeljal leta 1969. V nasprotju z maksimalnimi kolobarji
kvocientov, so ti definirani s pomočjo dvostranskih idealov. Če je R prakolobar,
potem je dvostranski ideal I / R gost kot desni ideal natanko tedaj, ko je neničeln.
Za prakolobar R definiramo

Qr(R) = {q ∈ Qmr(R) ; qI ⊆ R za nek 0 6= I / R}

in
Qs(R) = {q ∈ Qmr(R) ; qI ∪ Iq ⊆ R za nek 0 6= I / R}.

Ni težko preveriti, da sta Qr(R) in Qs(R) podkolobarja v Qmr(R).

Definicija 1.4. Kolobar Qr(R) imenujemo Martindalov desni kolobar kvocientov
kolobarja R, kolobar Qs(R) pa imenujemo Martindalov simetrični kolobar kvocientov
kolobarja R.

Na analogen način definiramo maksimalen levi kolobar kvocientov Qml(R) in
Martindalov levi kolobar kvocientov Ql(R) kot podkolobar v Qml(R). Izkaže se, da
je analog kolobarja Qs(R) znotraj Qml(R) izomorfen kolobarju Qs(R), torej lahko na
Qs(R) gledamo tudi kot na podkolobar v Qml(R). Kolobarje Qmr, Q

r(R) in Qs(R)
lahko definiramo tudi aksiomatično (glej [4, Proposition 2.1.7, 2.2.1 in 2.2.3]).

Zaradi simetrije kolobar Qs(R) od kolobarja R podeduje veliko več strukture kot
kolobarja Qr(R) in Qmr(R). Na primer, če je R prakolobar z involucijo, potem lahko
involucijo na enoličen način razširimo do involucije na Qs(R) (glej [4, Proposition
2.5.4]).
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Definicija 1.5. Center kolobarja Qs(R) označimo s C(R) in imenujemo razširjeni
centroid kolobarja R.

Izkaže se, da se C(R) ujema s centri ostalih zgoraj definiranih kolobarjev kvo-
cientov (glej [4, Remark 2.3.1]). Za vsak prakolobar R je C(R) v resnici komutativen
obseg. Nekaj konkretnih primerov različnih kolobarjev kvocientov lahko bralec najde
v [18].

V nadaljevanju bomo obravnavali konkretna primera ohranjevalcev na prakolo-
barjih. Teorija ohranjevalcev je že desetletja aktivno raziskovalno področje z apli-
kacijami v mnogih vejah matematike in matematične fizike. Ohlapno rečeno je
ohranjevalec preslikava med dvema kolobarjema, ki ohranja določeno lastnost, rela-
cijo ali podmnožico. Cilj teorije je opisati, kako preslikave, ki ohranjajo neko last-
nost, izgledajo. Najtemeljiteje raziskani ohranjevalci so ohranjevalci na matričnih
algebrah. Klasični primeri so ohranjevalci komutativnosti, ohranjevalci ranga, ohra-
njevalci sosednosti, ohranjevalci determinante, ohranjevalci spektra, ohranjevalci
obrnljivih elementov in drugi.

Najprej se bomo posvetili ohranjevalcem ničelnega produkta.

Definicija 1.6. Naj bosta A in B kolobarja. Preslikava θ : A→ B ohranja ničelni
produkt, če je θ(x)θ(y) = 0 za vse x, y ∈ A, za katere je xy = 0. Pravimo tudi, da je
θ ohranjevalec ničelnega produkta.

Ohranjevalce ničelnega produkta so obravnavali mnogi avtorji v mnogih različnih
kontekstih. Omenimo najprej rezultat za matrične algebre, iz katerega je razvidno,
kakšna je pričakovana oblika ohranjevalca ničelnega produkta. Rezultat so dokazali
Chebotar idr. [9, Corollary 2.4].

Izrek 1.7. Naj bo F algebraično zaprt komutativen obseg karakteristike nič in θ :
Mn(F ) → Mr(F ) linearna preslikava, ki ohranja ničelni produkt, kjer sta n in r
naravni števili, za kateri velja n ≥ 2 ter n ≥ r. Potem je množenje na Im θ trivialno
ali pa je n = r in obstaja obrnljiva matrika A ∈ Mn(F ) ter skalar λ ∈ F , da velja
θ(X) = λAXA−1 za vse X ∈Mn(F ).

Torej, če množenje na Im θ ni trivialno, potem je preslikava θ skalarni večkratnik
homomorfizma algeber. Tudi v splošnem je pričakovana oblika ohranjevalca ničelne-
ga produkta podobna, se pravi, homomorfizem pomnožen s centralnim elementom.
Ker pogosto zahtevamo, da je preslikava surjektivna, je pripadajoči centralni element
ponavadi obrnljiv. Vsaka taka preslikava očitno ohranja ničelni produkt.

Ohranjevalci ničelnega produkta so bili obravnavani tudi v drugih kontekstih.
Wong [41] je karakteriziral bijektivne semilinearne ohranjevalce ničelnega produkta
na enostavnih končno razsežnih algebrah in tudi na določenem razredu primitivnih
algeber. Ajauro in Jarozs [3] sta obravnavala ohranjevalce ničelnega produkta
na podalgebrah Banachove algebre omejenih linearnih operatorjev in na prostorih
zveznih funkcij z vrednostmi v operatorskih algebrah. Cui in Hou [10] sta karak-
terizirala surjektivne omejene linearne ohranjevalce ničelnega produkta na von Neu-
mannovih algebrah. Chebotar idr. [9] so karakterizirali surjektivne omejene linearne
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ohranjevalce ničelnega produkta na enotskih C∗-algebrah in na nekaterih standard-
nih operatorskih algebrah. Leta 2004 so Chebotar idr. [8] posplošili nekatere od
zgornjih rezultatov z obravnavo bijektivnih aditivnih ohranjevalcev ničelnega pro-
dukta na prakolobarjih z netrivialnimi idempotenti. Med drugim so dokazali nasled-
nji izrek ([8, Theorem 1]).

Izrek 1.8. Naj bosta A in B prakolobarja in θ : A → B bijektivna aditivna presli-
kava, ki ohranja ničelni produkt. Denimo, da Qmr(A) vsebuje netrivialen idempotent
e, za katerega velja eA ∪ Ae ⊆ A.

(i) Če je 1 ∈ A, potem velja θ(xy) = λθ(x)θ(y) za vse x, y ∈ A, kjer je θ(1) ∈
Z(B) in λ = 1/θ(1) ∈ C(B). V posebnem, če je θ(1) = 1, potem je θ izomor-
fizem kolobarjev.

(ii) Če je degB ≥ 3, potem obstaja tak λ ∈ C(B), da velja θ(xy) = λθ(x)θ(y) za
vse x, y ∈ A.

Ker izrek opisuje ohranjevalce ničelnega produkta na razredu splošnih kolobarjev,
je potreben dodaten pogoj obstoja netrivialnega idempotenta, ki zagotovi, da v
kolobarju A obstaja dovolj ničelnih produktov. V nasprotnem bi lahko bil A cel
kolobar in v tem primeru bi vsaka aditivna preslikava na prazno ohranjala ničelni
produkt.

Wang [37] je pokazal, da tehnična predpostavka degB ≥ 3 v Izreku 1.8 ni
potrebna. Poleg tega je Brešar [6] predpostavko, da je A prakolobar, zamenjal s
šibkeǰso predpostavko, ki implicira, da A vsebuje necentralen idempotent. V nasle-
dnjem izreku še dodatno posplošimo te rezultate, tako da obravnavamo surjektivne
(ne nujno injektivne) aditivne ohranjevalce ničelnega produkta. Ta rezultat je vse-
bovan v [33].

Izrek 1.9. Naj bo A kolobar, B pa prakolobar. Naj bo θ : A → B surjektivna
aditivna preslikava, ki ohranja ničelni produkt. Nadalje, naj bo R enotski kolobar,
ki vsebuje A kot podkolobar, in e idempotent v R, za katerega velja eA ∪ Ae ⊆ A.
Označimo f = 1 − e. Če je e ∈ A, f ∈ A ali A =

∑
A2, potem velja ena od

naslednjih možnosti:

(i) θ(eA+ Ae+ AeA) = 0,

(ii) θ(fA+ Af + AfA) = 0,

(iii) obstaja 0 6= λ ∈ C(B), da velja θ(xy) = λθ(x)θ(y) za vse x, y ∈ A.

Potrebno je omeniti, da Izrek 1.9 nekaj pove le v primeru, ko idempotent e
deluje netrivialno na A, tj. ne kot 0 ali 1. To na nek način pomeni, da mora biti
idempotent e smiselno povezan s kolobarjem A. V Izreku 1.8 je bil na primer e
element maksimalnega desnega kolobarja kvocientov kolobarja A.

V določenih situacijah lahko zagotovimo, da bo izpolnjen pogoj (iii) iz Izreka 1.9.
Denimo, da e deluje netrivialno na A. Potem sta eA + Ae +

∑
AeA in fA +

Af +
∑
AfA neničelna ideala v A. Torej, če je A enostaven kolobar ali pa če je
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θ injektivna preslikava, potem bo izpolnjen pogoj (iii). To v posebnem pokaže, da
v [6, Corollary 4.3] ni potrebna nobena dodatna predpostavka na kolobar A razen
obstoja netrivialnega idempotenta.

Vsaka preslikava θ, ki ustreza pogoju (iii) iz Izreka 1.9, res ohranja ničelni pro-
dukt. Po drugi strani pa pogoja (i) oziroma (ii) nista zadostna, da bi preslikava θ
ohranjala ničelni produkt. Kljub temu, enostaven primer pokaže, da sta zaključka
v (i) oziroma (ii) optimalna.

Zgled 1.10. Naj bo T kolobar, S cel kolobar, B prakolobar in A = S⊕T . Vložimo
kolobarja S in T v enotska kolobarja S1 in T 1. Potem je kolobar A vložen v R =
S1 ⊕ T 1 in e = (1, 0) ∈ R je idempotent, za katerega velja eA + Ae + AeA = S in
fA + Af + AfA = T . Za poljubno (aditivno surjektivno) preslikavo φ : S → B
s φ(0) = 0 preslikava θ : A → B, definirana s θ(s, t) = φ(s) za vse s ∈ S, t ∈ T ,
ohranja ničelni produkt in izpolnjuje pogoj (ii) iz Izreka 1.9. To pokaže, da sta
pogoja (i) oziroma (ii) iz Izreka 1.9 največ kar lahko izluščimo iz obstoja enega
samega idempotenta.

Pogoj (ii) iz Izreka 1.9 med drugim implicira, da velja θ(x) = θ(exe) za vse x ∈ A.
Seveda tudi zožitev preslikave θ na podkolobar eAe ⊆ A ohranja ničelni produkt.
Toda to ne zreducira problema na podkolobar eAe, saj preslikava θ(x) = ψ(exe) ne
ohranja nujno ničelnega produkta, tudi če ga preslikava ψ : eAe→ B ohranja.

V nadaljevanju bomo obravnavali varianto ohranjevalcev ničelnega produkta za
kolobarje z involucijo. Involucija je antiavtomorfizem reda ≤ 2.

Definicija 1.11. Naj bosta A in B kolobarja z involucijo. Preslikava θ : A → B
ohranja ničle xy∗, če je θ(x)θ(y)∗ = 0 za vse x, y ∈ A, za katere je xy∗ = 0. Pravimo
tudi, da je θ ohranjevalec ničel xy∗.

Ohranjevalci ničel xy∗ niso bili tako temeljito raziskani kot ohranjevalci ničelnega
produkta, saj so se v literaturi pojavili šele pred kratkim. Kljub temu je nekaj znanih
rezultatov s tega področja. Spet najprej omenimo osnoven rezultat za matrike, ki
ga je dokazal Swain [34, Corollary 5].

Izrek 1.12. Naj bo F komutativen obseg, ∗ involucija na Mn(F ), kjer je n ≥ 2
naravno število, in θ : Mn(F ) → Mn(F ) bijektivna linearna preslikava, ki ohranja
ničle xy∗. Potem obstajata obrnljivi matriki B,U ∈Mn(F ), pri čemer je U∗ = U−1,
da velja θ(X) = BXU za vse X ∈Mn(F ).

Preslikavo θ lahko zapǐsemo tudi v obliki θ(X) = CU−1XU za vse X ∈Mn(F ),
kjer je C = BU ∈ Mn(F ). Taka preslikava θ je torej kompozitum ∗-homomorfizma
algebre Mn(F ) in levega množenja z nekim elementom iz Mn(F ). V splošni situaciji
je pričakovana oblika ohranjevalca ničel xy∗ enaka, se pravi, ∗-homomorfizem po-
množen z leve z nekim elementom kolobarja. Ker pogosto zahtevamo, da je presli-
kava surjektivna (ali celo bijektivna), je pripadajoči element ponavadi obrnljiv.

Swain [34] je obravnaval ohranjevalce ničel xy∗ tudi na prakolobarjih z involucijo.
Karakteriziral je bijektivne aditivne preslikave θ : A → A, ki ohranjajo ničle xy∗,
v primeru, ko je A enotski prakolobar z involucijo, ki je generiran z idempotenti.
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Primeri kolobarjev, ki so generirani z idempotenti, so enostavni kolobarji z netrivi-
alnimi idempotenti in kolobarji n× n matrik nad enotskimi kolobarji, kjer je n ≥ 2
(glej [6] za podrobnosti). Predpostavka, da je kolobar generiran z idempotenti, je
dokaj močna, toda, kot je že Swain omenil, bo morda težko priti do podobne karak-
terizacije v poljubnih prakolobarjih z involucijo, ki vsebujejo netrivialen idempotent.

V zadnjem desetletju se je v literaturi pojavilo tudi nekaj sorodnih problemov.
Wong [40] je na primer obravnaval linearne preslikave θ na C∗-algebrah, za katere
velja θ(x)θ(y)∗ = θ(x)∗θ(y) = 0 za vse x, y, za katere je xy∗ = x∗y = 0. Takim
preslikavam je rekel ohranjevalci disjunktnosti. Obravnavani so bili tudi ohranjevalci
ničel nekaterih drugih ∗-polinomov, kot je na primer xy − yx∗ (glej [7]).

Med omenjenima problemoma ohranjevalcev na kolobarjih z in brez involucije
je ena bistvena razlika. Pogoj za ohranjevalce ničelnega produkta je popolnoma
simetričen, medtem ko pogoj za ohranjevalce ničel xy∗ ni simetričen, saj ∗ nastopa
le na desni strani. Ta izguba simetrije v kontekstu kolobarjev z involucijo ima
določene posledice. Kot prvo, razred pričakovanih rešitev je tukaj nekoliko večji.
V obeh situacijah so pričakovane rešitve morfizmi pomnoženi z nekim elementom
kolobarja, toda v kontekstu brez involucije je ta element centralen, medtem ko je v
kontekstu z involucijo lahko poljuben. Poleg tega so rezultati v kontekstu z involu-
cijo ponavadi manj splošni in pogosto so potrebne dodatne predpostavke, da lahko
karakteriziramo ohranjevalce ničel xy∗. Na primer, v prej omenjenem Swainovem
rezultatu o prakolobarjih z involucijo (glej [34]), je bila dodatna predpostavka to,
da je kolobar generiran z idempotenti. Naš cilj v preostanku tega poglavja bo pred-
staviti nekaj rezultatov, v katerih se izognemo tej močni dodatni predpostavki in
raje dodamo predpostavke na preslikavo samo. Večina teh rezultatov je zajetih v
[33].

Najprej pokažemo, kako lahko problem ohranjevalcev ničel xy∗ v resnici za-
gledamo kot posplošitev problema ohranjevalcev ničelnega produkta. Naj bosta
A in B kolobarja z involucijo ter θ : A → B poljubna preslikava. Definirajmo pre-
slikavo φ : A → B s predpisom φ(x) = θ(x∗)∗ za vse x ∈ A. Potem preslikava θ
ohranja ničle xy∗ natanko tedaj, ko velja θ(x)φ(y) = 0 za vse x, y ∈ A, za katere
je xy = 0. Ta pogoj je posplošitev pogoja za ohranjevalce ničelnega produkta, saj
vsebuje dve preslikavi namesto le ene. Dejstvo, da je preslikava φ tesno povezana
s preslikavo θ v naših dokazih ne igra pomembneǰse vloge, zato lahko večino rezul-
tatov formuliramo za poljubne pare preslikav θ in φ. To bomo storili izrecno le v
najzanimiveǰsem primeru.

Naš prvi rezultat pokaže, da lahko podobno kot v primeru brez involucije, v [34,
Theorem 4] izpustimo predpostavko o injektivnosti preslikave.

Trditev 1.13. Naj bo A enotski kolobar z involucijo, ki je generiran z idempotenti,
in B prakolobar z involucijo. Naj bo θ : A → B surjektivna aditivna preslikava,
ki ohranja ničle xy∗. Potem obstaja ∗-homomorfizem h : A → Qs(B), da velja
θ(x) = θ(1)h(x) za vse x ∈ A.
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Naš glavni rezultat opǐse pare preslikav θ in φ, ki zadoščajo pogoju

θ(x)φ(y) = 0 natanko tedaj, ko xy = 0. (1.2)

Izrek 1.14. Naj bo A enotski prakolobar z netrivialnim idempotentom in B prakolo-
bar. Naj bosta θ, φ : A→ B taki surjektivni aditivni preslikavi, da za vsaka x, y ∈ A
velja θ(x)φ(y) = 0 natanko tedaj, ko velja xy = 0. Potem je θ(1) obrnljiv v Qr(B),
φ(1) obrnljiv v Ql(B) in obstaja injektiven homomorfizem h : A→ Qs(B), da velja
θ(x) = θ(1)h(x) in φ(x) = h(x)φ(1) za vse x ∈ A.

Zaključki Izreka 1.14 so hkrati tudi zadostni, da preslikavi θ in φ zadoščata
pogoju (1.2). Kot posledico Izreka 1.14, dobimo naslednji izrek.

Izrek 1.15. Naj bo A enotski prakolobar z involucijo, ki vsebuje netrivialen idem-
potent, in B prakolobar z involucijo. Naj bo θ : A → B taka surjektivna adi-
tivna preslikava, za za vsaka x, y ∈ A velja θ(x)θ(y)∗ = 0 natanko tedaj, ko velja
xy∗ = 0. Potem je θ(1) obrnljiv v Qr(B) in obstaja injektiven ∗-homomorfizem
h : A→ Qs(B), da velja θ(x) = θ(1)h(x) za vse x ∈ A.

Dodatna predpostavka, da θ ohranja ničle xy∗ tudi v obratno smer, nam je
omogočila, da smo se znebili predpostavke, da je kolobar A generiran z idempotenti.
Ni težko preveriti, preslikava θ iz Izreka 1.15 zadošča identiteti

θ(xy∗) = θ(x)θ(y)∗r za vse x, y ∈ A,

kjer je r inverz elementa θ(1)∗ v Ql(B). To je še ena oblika, iz katere je razvidno,
da taka preslikava tudi res ohranja ničle xy∗ v obe smeri.

Izrek 1.15 torej karakterizira preslikave, ki ohranjajo ničle xy∗ v obe smeri. Osta-
ja vprašanje, kaj lahko povemo o preslikavah na kolobarjih z netrivialnimi idempo-
tenti, ki ohranjajo ničle xy∗. Naslednji rezultat opǐse take preslikave v posebnem
primeru, ko je θ(1) centralen element v B. V posebnem je to res, če privzamemo,
da je tudi B enotski kolobar in velja θ(1) = 1. Označimo z Ie ideal generiran z
elementom e.

Trditev 1.16. Naj bo A enotski kolobar z involucijo, ki vsebuje netrivialen idem-
potent e, in B prakolobar z involucijo. Naj bo θ : A → B surjektivna aditivna
preslikava, ki ohranja ničle xy∗, in denimo, da je θ(1) ∈ Z(B). Potem velja ena od
naslednjih možnosti:

(i) θ(Ie ∩ I1−e + Ie∗ ∩ I1−e∗) = 0,

(ii) θ(xy∗) = λθ(x)θ(y)∗ za vse x, y ∈ A, kjer je λ = 1/θ(1)∗ ∈ C(B).

Če v Izreku 1.16 dodatno predpostavimo še, da je θ injektivna preslikava, potem
pogoj (i) implicira Ie∩I1−e = 0. Ker je Ie+I1−e = A, to pomeni, da je A = Ie⊕I1−e.
Če je A prakolobar, se to ne more zgoditi in zato taka preslikava avtomatično zadošča
pogoju (ii).
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2 Nilkolobarji

Element a kolobarjaR je nilpotent, če je an = 0 za neko naravno število n. Najmanǰse
naravno število n, za katerega je an = 0, imenujemo indeks nilpotentnosti elementa
a ali kar indeks elementa a. Množico vseh nilpotentnih elementov kolobarja R
označimo z N(R).

Definicija 2.1. Kolobar R je nilkolobar, če je vsak njegov element nilpotent. V tem
primeru pravimo tudi, da je kolobar R nil.

Podobno je ideal I / R nilideal, če je vsak njegov element nilpotent. V vsakem
kolobarju R je vsota vseh nilidealov spet nilideal in je zato to največji nilideal
kolobarja R.

Definicija 2.2. Zgornji nilradikal kolobarja R je največji nilideal kolobarja R in ga
označimo z Nil∗(R).

Kolobar R je lokalno nilpotenten, če je vsak končno generiran podkolobar S ⊆ R
nilpotenten, tj. Sn = 0 za neko naravno število n. Ideal I / R je lokalno nilpoten-
ten, če je lokalno nilpotenten kot kolobar. Vsota vseh lokalno nilpotentnih idealov
kolobarja R je spet lokalno nilpotenten ideal.

Definicija 2.3. Levitzkijev radikal kolobarja R (imenovan tudi lokalno nilpotenten
radikal) je največji lokalno nilpotenten ideal kolobarja R in ga označimo z L(R).

Definicija 2.4. Spodnji nilradikal kolobarja R (imenovan tudi praradikal) je presek
vseh praidealov kolobarja R in ga označimo Nil∗(R). V posebnem je Nil∗(R) = R,
če kolobar R nima praidealov.

Za poljuben kolobar (R,+, ·) definiramo operacijo ◦ on R s predpisom

a ◦ b = a+ b− ab.

Operaciji ◦ pravimo kvazimnoženje. Ni težko preveriti, da je (R, ◦) monoid z enoto
0. Element a ∈ R je kvaziregularen, če je obrnljiv v (R, ◦), tj. če obstaja a′ ∈ R, da
velja a′ ◦a = a◦a′ = 0. V tem primeru elementu a′ pravimo kvaziinverz elementa a.
Če ima kolobar R enoto, je slednje ekvivalentno temu, da je 1 − a obrnljiv v (R, ·)
z inverzom 1 − a′. Množico vseh kvaziregularnih elementov kolobarja R označimo
s Q(R). (Q(R), ◦) je očitno grupa, saj je to grupa obrnljivih elementov monoida
(R, ◦). Za vsak a ∈ Q(R) in vsak n ∈ Z označimo z a(n) n-to potenco elementa a
v grupi (Q(R), ◦). V posebnem je a(0) = 0 in a(−1) je kvaziinverz elementa a. Ideal
I / R je kvaziregularen, če je I ⊆ Q(R).

Definicija 2.5. Jacobsonov radikal kolobarja R je največji kvaziregularen ideal kolo-
barja R in ga označimo z J(R).

Vsak nilpotenten element je kvaziregularen, namreč če je xn = 0, potem je
−x−x2− . . .−xn−1 kvaziinverz elementa x. Torej velja N(R) ⊆ Q(R) in Nil∗(R) ⊆
J(R). Izkaže se, da Jacobsonov radikal kolobarja R vsebuje celo vse enostranske
kvaziregularne ideale kolobarja R.
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Definicija 2.6. Kolobar R je Jacobsonovo radikalen, če je J(R) = R.

Jacobsonov radikal kolobarja R lahko opǐsemo tudi s pomočjo primitivnih ide-
alov. Kolobar R je primitiven, če obstaja enostaven zvest levi R-modul. Ideal I / R
je primitiven, če je R/I primitiven kolobar. Jacobsonov radikal J(R) je enak pre-
seku vseh primitivnih idealov kolobarja R. Izkaže se, da je vsak primitiven ideal
praideal, vsak komutativen primitiven kolobar pa je obseg (glej [19]).

Omenimo še, da za vsak kolobar R velja

Nil∗(R) ⊆ L(R) ⊆ Nil∗(R) ⊆ J(R). (2.3)

V splošnem je vsaka od teh vsebovanosti lahko stroga. Primere kolobarjev, ki to
pokažejo, lahko bralec najde v [13] in [19].

Definicija 2.7. Kolobar R je nil omejenega indeksa ≤ n, če je vsak element v R
nilpotent indeksa ≤ n. Kolobar R je nil omejenega indeksa, če obstaja naravno
število n, da je R nil omejenega indeksa ≤ n.

Naj bo K komutativen enotski kolobar in R poljubna K-algebra. Element a ∈ R
je algebraičen nad K, če obstaja neničeln polinom p ∈ K[x], za katerega velja
p(0) = 0 in p(a) = 0. Če obstaja polinom p s temi lastnostmi, ki je hkrati moničen
(tj. vodilni koeficient je enak 1), potem pravimo, da je element a celosten nad K.
Množico vseh algebraičnih elementov algebre R označimo z AK(R), množico vseh
celostnih elementov pa z IK(R). K-algebra R je algebraična (celostna) nad K, če
je vsak element v R algebraičen (celosten) nad K. V primeru, ko je K = Z, bomo
pisali tudi A(R) = AZ(R) in I(R) = IZ(R). Seveda je vsak nilpotenten element tudi
celosten, torej velja N(R) ⊆ IK(R) ⊆ AK(R).

Naj bo a celosten element algebre R. Najmanǰse naravno število n, za katerega
obstaja moničen polinom p stopnje n z lastnostmi p(0) = 0 in p(a) = 0, imenujemo
stopnja celostnosti elementa a ali kar stopnja elementa a. Podobno kot nilkolobar
omejenega indeksa definiramo tudi celostno algebro omejene stopnje.

Eden najpomembneǰsih problemov s področja nilkolobarjev je Köthejeva do-
mneva. Leta 1930 je Köthe [16] domneval naslednje.

Köthejeva domneva 2.8. Kolobar, ki nima neničelnih nilidealov, nima niti neni-
čelnih nil enostranskih idealov.

Köthejeva domneva je pomembna, ker bi iz nje sledilo, da zgornji nilradikal
Nil∗(R) kolobarja R vsebuje celo vse nil enostranske ideale kolobarja R. Čeprav
je vprašanje o resničnosti Köthejeve domneve še vedno odprto, je bil od leta 1930
narejen preceǰsnji napredek na tem področju. Znanih je veliko razredov kolobarjev,
ki zadoščajo Köthejevi domnevi. Med take kolobarje spadajo komutativni kolobarji
ter splošneje kolobarji s polinomsko identiteto (Levitzki [20]), levo artinski kolobarji
in celo levo noetherski kolobarji (Levitzki). Poleg tega so take tudi algebraične
(in v posebnem končno dimenzionalne) algebre nad komutativnimi obsegi ([35, str.
144]) ter monomske algebre (Beidar in Fong [5]). Morda najbolj pomemben primer
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algeber, ki zadoščajo Köthejevi domnevi, so algebre nad neštevnimi komutativni-
mi obsegi (Amitsur [1], [2]). Vsi ti primeri, še posebej zadnji, nakazujejo, da bi
Köthejeva domneva lahko bila resnična. Toda obstaja tudi nekaj bolj nedavnih
rezultatov, ki namigujejo, da bi bilo morda mogoče najti protiprimer k domnevi.

Znanih je veliko izjav, ki so ekvivalentne Köthejevi domnevi. Te izjave bomo for-
mulirali kot domneve, torej vsaka domneva v nadaljevanju bo ekvivalentna Köthejevi
domnevi. Začnimo z dvema bolj osnovnima.

Domneva 2.9. Vsak nil enostranski ideal poljubnega kolobarja R je vsebovan v
Nil∗(R).

Domneva 2.10. Vsota dveh nil levih idealov poljubnega kolobarja je nil.

Izkaže se, da ima Köthejeva domneva veliko opraviti s problemom opisa Jacob-
sonovega radikala polinomskih kolobarjev. Najpomembneǰsi rezultat, ki govori o
tem problemu, je naslednji Amitsurjev izrek [2, Theorem 1].

Izrek 2.11. Za vsak kolobar R je J(R[x]) = N [x], kjer je N = J(R[x])∩R nilideal
v R.

Krempa [17, Theorem 1] je s pomočjo matričnih kolobarjev karakteriziral kdaj
je kolobar R[x] Jacobsonovo radikalen.

Izrek 2.12. Za kolobar R je polinomski kolobar R[x] Jacobsonovo radikalen natanko
tedaj, ko je Mn(R) nilkolobar za vsako naravno število n.

S pomočjo Izreka 2.12 je Krempa [17] dokazal, da so naslednje izjave ekvivalentne
Köthejevi domnevi. Prvi dve je neodvisno odkril tudi Sands [25].

Domneva 2.13. Za vsak nilkolobar R je tudi M2(R) nilkolobar.

Domneva 2.14. Za vsak nilkolobar R je tudi Mn(R) nilkolobar za vsako naravno
število n.

Domneva 2.15. Za vsak nilkolobar R je kolobar R[x] Jacobsonovo radikalen.

Opomba 2.16. Domneva 2.15 poveže Köthejevo domnevo s polinomskimi kolo-
barji. Natančneje, če bi bila domneva resnična, potem bi za vsak kolobar R veljalo
J(R[x]) = Nil∗(R)[x] (primerjaj z Izrekom 2.11). S tem bi torej dobili popoln opis
Jacobsonovega radikala kolobarja polinomov R[x] s pomočjo baznega kolobarja R.
Poleg tega iz [13, Proposition 4.9.1] sledi, da je zgornji nilradikal kolobarja Mn(R)
oblike Mn(I) za nek ideal I / R. Torej, če bi bila Domneva 2.14 resnična, potem bi
za vsak kolobar R veljalo Nil∗(Mn(R)) = Mn(Nil∗(R)) za vsako naravno število n.

Leta 2005 je Smoktunowicz [27] podala naslednjo veliko šibkeǰso izjavo od Do-
mneve 2.15, ki je še vedno ekvivalentna Köthejevi domnevi.

Domneva 2.17. Za vsak nilkolobar R kolobar R[x] ni primitiven.
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Naslednja izjava ima bolj grupno teoretičen priokus. Njeno ekvivalentnost s
Köthejevo domnevo sta dokazala Fisher in Krempa [12]. Za podgrupo G grupe
avtomorfizmov kolobarja R označimo z RG podkolobar fiksnih točk pri delovanju G
na R, tj. RG = {r ∈ R ; g(r) = r za vse g ∈ G}. Element r ∈ R je aditivna
|G|-torzija, če je r 6= 0 in |G|r = 0.

Domneva 2.18. Naj bo R kolobar in G končna podgrupa grupe avtomorfizmov kolo-
barja R, tako da R nima aditivne |G|-torzije. Če je RG nilkolobar, potem je tudi R
nilkolobar.

Več informacij o ozadju te izjave lahko bralec najde v [12]. Naš naslednji rezultat
podaja še eno izjavo ekvivalentno Köthejevi domnevi, ki je kombinacija preǰsnjih.

Domneva 2.19. Naj bo R kolobar, za katerega je R[x] primitiven kolobar, in G 6= 1
končna podgrupa grupe avtomorfizmov kolobarja R. Če je RG nilkolobar, potem ima
R aditivno |G|-torzijo.

Krempa [17] je dokazal, da je dovolj obravnavati Köthejevo domnevo v razredu
algeber nad komutativnimi obsegi.

Domneva 2.20. Vsak nil enostranski ideal poljubne algebre R nad poljubnim ko-
mutativnim obsegom F je vsebovan v Nil∗(R).

Z naslednjo izjavo dokažemo, da se lahko omejimo celo na praalgebre.

Domneva 2.21. Vsak nil enostranski ideal poljubne praalgebre R nad poljubnim
komutativnim obsegom F je vsebovan v Nil∗(R).

Amitsur [1], [2] je dokazal, da vse algebre nad neštevnimi komutativnimi obsegi
zadoščajo Köthejevi domnevi, zato se lahko še dodatno omejimo na algebre nad
števnimi komutativnimi obsegi.

Opomba 2.22. Domneva 2.21 je verzija Domneve 2.9 za praalgebre nad komuta-
tivnimi obsegi. Posledično lahko pokažemo, da so tudi verzije Domnev 2.10, 2.13,
2.14 in 2.15 za praalgebre nad komutativnimi obsegi ekvivalentne Köthejevi dom-
nevi.

Več informacij o Köthejevi domnevi in sorodnih problemih lahko bralec najde v
[29] in [30].

Sodeč po Opombi 2.16 je naravno poskušati poiskati alternativen opis Jacob-
sonovega radikala polinomskih kolobarjev. Naslednji izrek, ki je del splošneǰse teorije
radikalov polinomskih kolobarjev (glej [13, §4.9]), podaja en tak opis.

Izrek 2.23. Za poljuben kolobar R velja J(R[x]) = N [x], kjer je

N =
⋂
{P / R ; P praideal in J((R/P )[x]) = 0}.

V naslednji trditvi podamo še eno zanimivo lastnost Jacobsonovega radikala
polinomskih kolobarjev, ki za splošneǰse kolobarje ne velja.

Trditev 2.24. Za vsak podkolobar S kolobarja R velja J(R[x]) ∩ S[x] ⊆ J(S[x]).
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Kot posledico dobimo naslednje.

Posledica 2.25. Jacobsonov radikal kolobarja polinomov nad poljubnim kolobarjem
je unija Jacobsonovo radikalnih kolobarjev polinomov nad končno generiranimi kolo-
barji.

Pri obravnavi resničnosti Domneve 2.15 se lahko v resnici omejimo na končno
generirane kolobarje oziroma algebre.

Trditev 2.26. Köthejeva domneva je ekvivalentna izjavi ’za vsak števen komuta-
tiven obseg F in vsako končno generirano nil praalgebro R nad F je algebra R[x]
Jacobsonovo radikalna’.

V nadaljevanju nas bodo zanimale povezave med pojmi nilpotentnost, alge-
braičnost in kvaziregularnost. Naša motivacija izhaja iz naslednjih dveh vprašanj:

Q1. Algebraične kolobarje in algebre ponavadi štejemo med kolobarje in algebre,
ki imajo lepe lastnosti. Na primer, algebraična algebra nad komutativnim
obsegom, ki je brez deliteljev niča, je obseg. Po drugi stani pa nilkolobarje in
nilalgebre, ki so seveda tudi algebraični, štejemo med kolobarje in algebre, s
katerimi je težko delati. Zato se naravno pojavi vprašanje, zakaj so nilkolobarji
in nilalgebre slabi med vsemi algebraičnimi.

Odgovor za algebre nad komutativnimi obsegi je dobro znan, namreč ker so Ja-
cobsonovo radikalne. Ta rezultat bomo posplošili na algebre nad določenimi glavnimi
kolobarji in v posebnem na kolobarje.

Q2. Ali lahko nilpotentne elemente med vsemi kvaziregularnimi elementi karakteri-
ziramo z lastnostjo ’kvaziinverz elementa a je polinom v a’?

Po elementih to dokaj očitno ne bo mogoče,lahko pa bomo na ta način karakteri-
zirali zgornji nilradikal. Večina teh rezultatov je vsebovanih v [32].

Od tu dalje bomo s K vedno označevali enotski komutativen kolobar, z F ko-
mutativen obseg, z R pa algebro nad K ali F . Zgornji dve vprašanji motivirata
naslednjo definicijo, ki go igrala glavno vlogo v naši obravnavi.

Definicija 2.27. Element a K-algebre R je π-algebraičen (nad K), če obstaja poli-
nom p ∈ K[x], za katerega velja p(0) = 0, p(1) = 1 in p(a) = 0. V tem primeru
pravimo tudi, da je element a π-algebraičen s polinomom p. Podmnožica S ⊆ R je
π-algebraična, če je vsak njen element π-algebraičen. Množico vseh π-algebraičnih
elementov K-algebre R označimo s πK(R).

V posebnem, ko je R le kolobar in K = Z, bomo pisali tudi π(R) = πZ(R).
Naslednja lema podaja zvezo med nilpotentnimi, π-algebraičnimi in kvaziregularni-
mi elementi.

Lema 2.28. Za vsako K-algebro R velja N(R) ⊆ πK(R) ⊆ AK(R)∩Q(R). Za vsako
F -algebro R velja N(R) ⊆ πF (R) = AF (R) ∩ Q(R). Kvaziinverz π-algebraičnega
elementa je polinom v tem elementu.
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Oglejmo si nekaj primerov.

Zgled 2.29. Za vsak končen kolobar R velja π(R) = Q(R) in J(R) = Nil∗(R).

Zgled 2.30. Za vsak komutativen obseg F velja πF (F ) = F\{1} = Q(F ). V
posebnem je πQ(Q) = Q\{1} = Q(Q), po drugi strani pa velja π(Q) = {1 + 1

n
; n ∈

Z\{0}}.

Zgled 2.31. Naj bosta F ⊆ E komutativna obsega in Mn(E) algebra n× n matrik
nad E. Potem velja

N(Mn(E)) = matrike z lastnimi vrednostmi 0,

πF (Mn(E)) = matrike z lastnimi vrednostmi v F\{1},
Q(Mn(E)) = matrike z lastnimi vrednostmi v E\{1},

kjer F ⊆ E označujeta algebraični zaprtji obsegov F in E.

Naslednja trditev podaja natančno zvezo med π-algebraičnimi in celostnimi ele-
menti.

Trditev 2.32. Naj bo a element K-algebre R. Naslednje trditve so ekvivalentne:

(i) a je π-algebraičen,

(ii) a je kvaziregularen in a(−1) je celosten,

(iii) a je kvaziregularen in a(−1) je polinom v a.

Trditev 2.32 med drugim pove, da velja πK(R) = (Q(R)∩ IK(R))(−1) (primerjaj
z Lemo 2.28). Videli bomo, da obstaja tudi tesna zveza med π-algebraičnimi in
nilpotentnimi elementi (glej Trditev 2.36), čim kolobar K zadošča določeni lastnosti
podani z naslednjo definicijo.

Definicija 2.33. Pravimo, da je glavni kolobar K poseben, če ne obstaja nekon-
stanten polinom p ∈ K[x] s p(0) 6= 0, za katerega bi bil p(k) obrnljiv v K za vse
k ∈ K, ki so tuji p(0).

Vsak poseben glavni kolobar zadošča naslednjemu pogoju.

Trditev 2.34. Za vsak poseben glavni kolobar K velja J(K) = 0. V posebnem, če je
K poseben glavni kolobar, ki ni obseg, potem ima K neskončno mnogo neasociiranih
nerazcepnih elementov.

Tukaj je nekaj primerov posebnih glavnih kolobarjev.

Trditev 2.35.

(i) Komutativen obseg je poseben glavni kolobar natanko tedaj, ko je algebraično
zaprt.

(ii) Kolobar celih števil Z in kolobar Gaussovih števil Z[i] sta posebna glavna kolo-
barja.
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(iii) Za vsak komutativen obseg F je kolobar polinomov F [x] poseben glavni kolobar.

Naslednja trditev podaja zvezo med π-algebraičnimi in nilpotentnimi elementi,
ki je ključnega pomena.

Trditev 2.36. Naj bo K poseben glavni kolobar in R poljubna K-algebra. Če za
element a ∈ R velja Ka ⊆ πK(R), potem obstaja 0 6= k ∈ K, da je ka nilpotent. V
posebnem, če R nima K-torzije, potem je a nilpotent.

Zaključki Trditve 2.36 ne veljajo nujno, če K ni poseben glavni kolobar. Ne
veljajo na primer, če je K komutativen obseg, ki ni algebraično zaprt.

Zgled 2.37. Naj bo F komutativen obseg, ki ni algebraično zaprt in p ∈ F [x]
nekonstanten polinom, ki nima ničel v F . Naj bo a neka ničla polinoma p v alge-
braičnem zaprtju obsega F . Potem je za vsak 0 6= λ ∈ F element λa π-algebraičen
s polinomom p(λ−1)−1p(λ−1x)x, toda ne obstaja 0 6= λ ∈ F , za katerega bi bil λa
nilpotent.

S pomočjo Trditve 2.36 dokažemo naslednja dva izreka, ki odgovorita na vpraša-
nje Q1 na dva različna načina.

Izrek 2.38. Če je K poseben glavni kolobar, potem je vsaka π-algebraična K-algebra
nilalgebra.

Morda je zanimivo, da ima ta razmeroma velika družina polinomov z vsoto koefi-
cientov 1 enak učinek kot razmeroma majhna družina polinomov {x, x2, x3, x4, . . .}.

Izrek 2.39. Če je K poseben glavni kolobar, potem je vsaka celostna Jacobsonovo
radikalna K-algebra nilalgebra.

Pogoj celostnosti v Izreku 2.39 je nujen, saj algebraična Jacobsonovo radikalna
K-algebra ni nujno nilalgebra. Tako je na primer kolobar R = { 2m

2n−1
; m,n ∈ Z}

kot podkolobar racionalnih števil algebraičen nad Z in Jacobsonovo radikalen, toda
ni nilkolobar.

Definicija 2.40. K-algebra R je π-algebraična omejene stopnje ≤ n, če je vsak
element v R π-algebraičen s polinomom stopnje ≤ n. K-algebra R je π-algebraična
omejene stopnje, če obstaja naravno število n, da je R π-algebraična omejene stopnje
≤ n.

Postavi se naslednje naravno vprašanje. Če je K-algebra R π-algebraična ome-
jene stopnje, ali je potem tudi nil omejenega indeksa? Delen odgovor na to vprašanje
podaja naslednja posledica.

Posledica 2.41. Naj bo R π-algebraična F -algebra omejene stopnje ≤ n, kjer je F
komutativen obseg, ali π-algebraična K-algebra omejene stopnje ≤ n brez K-torzije,
kjer je K poseben glavni kolobar. Potem je R nilalgebra omejenega indeksa ≤ n.

Odgovor za splošne K-algebre je morda presenetljivo negativen, kot pokaže
naslednji primer.
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Zgled 2.42. Naj bo K poseben glavni kolobar, ki ni komutativen obseg. Po
Trditvi 2.34 ima K neskončno mnogo neasociiranih nerazcepnih elementov. Izberimo
števno množico neasociiranih nerazcepnih elementov {p1, p2, p3, . . .} in postavimo
R =

⊕∞
i=1 piK/p

i
iK. K-algebra R je očitno nilalgebra, ki pa ni omejenega indeksa.

Naj bo a = (ai)i poljuben element algebre R. Po Kitajskem izreku o ostankih ob-
staja element k ∈ K, za katerega velja k ≡ ai (mod pii) za vse i, za katere je ai 6= 0.
Torej je element a celosten, saj je ničla polinoma x2− kx. To pomeni, da je algebra
R celostna omejene stopnje ≤ 2 in posledično tudi π-algebraična omejene stopnje
≤ 2.

Kljub temu za poljubno algebro nad posebnim glavnim kolobarjem velja nekoliko
šibkeǰsi zaključek.

Trditev 2.43. Naj bo K komutativen obseg ali poseben glavni kolobar. Potem za
vsako π-algebraično K-algebro R omejene stopnje velja Nil∗(R) = R.

Naslednja posledica odgovori na vprašanje Q2.

Posledica 2.44. Naj bo R poljubna K-algebra, kjer je K komutativen obseg ali
poseben glavni kolobar. Potem velja naslednje:

(i) Nil∗(R) je največji π-algebraičen ideal v R,

(ii) Nil∗(R) je največji celosten kvaziregularen ideal v R,

(iii) Nil∗(R) je največji kvaziregularen ideal v R, za katerega je kvaziinverz vsakega
elementa polinom v tem elementu.

Posledica 2.44 nam da še naslednje.

Posledica 2.45. Za vsak celosten kolobar R velja J(R) = Nil∗(R).

Posledica 2.46. Vsak celosten kolobar zadošča Köthejevi domnevi.

Za konec bomo raziskali strukturo množice vseh π-algebraičnih elementov alge-
bre. Omejili se bomo na algebre nad komutativnimi obsegi in na kolobarje.

Ker je πK(R) podmnožica v Q(R), se je naravno vprašati ali je πK(R) podgrupa
(edinka) v grupi (Q(R), ◦). Izkaže se, da je πK(R) vedno zaprta za konjugiranje.
V splošnem πK(R) ni zaprta za operacijo ◦, toda če je R komutativna, potem je
πK(R) zaprta za ◦. Če je K = F komutativen obseg, potem je πF (R) zaprta tudi za
invertiranje. Skratka, če je R komutativna algebra nad komutativnim obsegom F ,
potem je πF (R) podgrupa v Q(R). Za kolobar R množica π(R) ni nujno zaprta za
invertiranje, vemo namreč že, da velja π(R)(−1) = I(R) ∩Q(R) (glej Trditev 2.32).

Poglejmo si, kaj lahko povemo o seštevanju. Naslednji izrek podaja tesno poveza-
vo med operacijami seštevanja, množenja in kvazimnoženja.

Izrek 2.47. Naj bo R kolobar. Za vsako podgrupo S grupe Q(R) so naslednje trditve
ekvivalentne:

(i) S je zaprta za seštevanje,

(ii) S je zaprta za množenje,
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(iii) S je podkolobar v R.

Izkaže se, da lahko s pomočjo kvazimnoženja množenje dejansko izrazimo s
seštevanjem in obratno. Za vsaka x, y ∈ Q(R) namreč veljata formuli

xy = x ◦ (x(−1) + y(−1)) ◦ y in x+ y = x ◦ (x(−1)y(−1)) ◦ y.

Izrek 2.47 nam pomaga dokazati naslednje posledice.

Posledica 2.48. Naj bo F komutativen obseg karakteristike 0 in R komutativna
F -algebra. Če je πF (R) zaprta za seštevanje, potem je πF (R) = N(R).

Trditev 2.49. Naj bo R komutativen kolobar. Če je π(R) zaprta za seštevanje,
potem je π(R) = N(R).

Posledica 2.50. Naj bo p praštevilo, F algebraična razširitev obsega Z/pZ in R
komutativna F -algebra. Če je πF (R) zaprta za seštevanje, potem je πF (R) = N(R).

Vprašanje ali Posledica 2.50 velja za poljubne komutativne obsege praštevilske
karakteristike ostaja odprto. Opazimo lahko, da veljajo tudi obrati teh trditev, saj
je v komutativnem množica N(R) celo ideal v R.

Zgornje posledice obravnavajo ekstremen primer, ko v inkluziji N(R) ⊆ π(R)
velja enakost. Druga ekstremna situacija nastopi, ko je v algebri veliko π-algebra-
ičnih elementov a malo nilpotentov. Na primer v obsegu, ki je algebraičen nad
svojim centrom, je vsak element razen enote π-algebraičen, neničelnih nilpotentov
pa ni. Zanima nas, kdaj se nekaj podobnega zgodi v splošnih algebrah. Vprašanje,
ki si ga zastavimo je, kdaj bo πF (R) ∪ {1} obseg, če je R enotska F -algebra. Nanj
nam pomagata odgovoriti naslednja izreka.

Izrek 2.51. Naj bo R enotski kolobar karakteristike 0. Za vsako podgrupo S grupe
Q(R), za katero velja {0, 2}  S, so naslednje trditve ekvivalentne:

(i) S ∪ Z zaprta za seštevanje,

(ii) S ∪ Z je podobseg v R,

(iii) S ∪ {1} je podobseg v R.

Izrek 2.52. Naj bo R enotski kolobar praštevilske karakteristike p. Za vsako pod-
grupo S grupe Q(R) so naslednje trditve ekvivalentne:

(i) S ∪ Z/pZ je zaprta za seštevanje,

(ii) S ∪ Z/pZ je podobseg v R.

S pomočjo teh dveh izrekov dokažemo naslednji posledici.

Posledica 2.53. Naj bo F komutativen obseg in R enotska komutativna F -algebra.
Če je πF (R) ∪ {1} zaprta za seštevanje, potem je podobseg v R.

Posledica 2.54. Naj bo R enotski komutativen kolobar ničelne ali praštevilske karak-
teristike, za katerega velja π(R) 6= {0, 2}. Če je π(R) ◦ π(R)(−1) ∪ (Z · 1) zaprta za
seštevanje, potem je podobseg v R.


