
UNIVERSITY OF LJUBLJANA
FACULTY OF MATHEMATICS AND PHYSICS

DEPARTMENT OF MATHEMATICS

Sara Kališnik

PERSISTENT HOMOLOGY
AND

DUALITY
Doctoral thesis

ADVISOR : doc. dr. Jaka Smrekar

CO-ADVISOR : prof. dr. Dušan Repovš

Ljubljana, 2013





UNIVERZA V LJUBLJANI
FAKULTETA ZA MATEMATIKO IN FIZIKO

ODDELEK ZA MATEMATIKO

Sara Kališnik

VZTRAJNA HOMOLOGIJA
IN

DUALNOST
Doktorska disertacija

MENTOR : doc. dr. Jaka Smrekar

SOMENTOR : prof. dr. Dušan Repovš

Ljubljana, 2013





Abstract

An important problem with sensor networks is that they do not provide infor-
mation about the regions that are not covered by their sensors. If the sensors in
a network are static, then the Alexander Duality Theorem from classic algebraic
topology is sufficient to determine the coverage of a network. However, in many
networks the nodes change position with time. In the case of dynamic sensor net-
works, we consider the covered and uncovered regions as parametrized spaces with
respect to time. Parametrized homology is a variant of zigzag persistent homology
that measures how the homology of the levelsets of the space changes as we vary the
parameter. We will present a few theorems that extend different versions of classical
Alexander Duality theorem to the setting of parametrized homology theories. This
approach sheds light on the practical problem of ‘wandering’ loss of coverage within
dynamic sensor networks.

Math. Subj. Class. (2000): 55N35, 55U30

Keywords: Alexander duality, persistent homology, zigzag persistence, levelset
zigzag persistence, parametrized homology.



Povzetek

Eden izmed večjih problemov pri preučevanju senzorskih omrežij je, da nudijo le
informacijo o področju, ki ga senzorji pokrivajo. V statičnih senzorskih omrežjih
klasična Aleksandrova dualnost zadošča kot kriterij za pokritost, ampak v mnogo
omrežjih se položaj senzorjev spreminja s časom in ta izrek ni dovolj. V primeru di-
namičnih senzorskih omrežij sta območji pokritosti in nepokritosti parametrizirana
prostora glede na čas. Parametrizirana homologija je različica cikcak vztrajne ho-
mologije, ki meri, kako se homologija nivojnic prostora spreminja, če spreminjamo
parameter. V tej disertaciji bom predstavila parametrizirane ekvivalente nekaj ra-
zličic klasične Aleksandrove dualnosti. Parametrizirana Aleksandrova dualnost nam
tudi pomaga pri razumevanju ‘problema vsiljivca’.

Math. Subj. Class. (2000): 55N35, 55U30

Ključne besede: Aleksandrova dualnost, vztrajna homologija, cikcak vztrajnost,
cikcak vztrajnost za nivojnice, parametrizirana homologija.
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Introduction
The rapid development of information technology in the last few decades has pro-
duced data at an unprecedented rate. Unfortunately, we are unable to take full
advantage of this deluge of information. The quantity of data is typically too large
for a complete analysis and in many cases is not necessarily relevant to the questions
we are trying to answer. One of the key problems in sorting through this mass of
data is determining which datasets should be grouped together. For example, if we
have two images taken by a security camera at different times of day, each showing
a face from a different angle and distance, we need to determine whether it is the
same face. In this situation we are looking for features to distinguish between the
different possibilities as well as for a fast and reliable algorithm to measure them.

Algebraic topology has provided a number of important tools for the analysis of
large data [31, 19]. This is due to the nature of the data. Large datasets are often
given in the form of very long vectors or arrays (for instance, DNA sequences or pixel
arrays). To codify data in the form of a vector, we have to choose coordinates that
are not necessarily natural (intrinsic) to our problem. Since topology studies the
intrinsic properties of geometric objects that do not depend on a particular choice
of coordinates, it allows us to analyze data merely by establishing how ‘close’ two
datasets are to each other. Invariants of topological spaces (for example, homol-
ogy groups) are also useful in this context, because they are insensitive to small
deformations.

Despite their advantages, one of the drawbacks of the invariants of algebraic
topology is their sensitivity to ‘noise’ in the data. In practice, real-valued parameters
cannot be measured exactly, and even very small differences can affect invariants.
Edelsbrunner, Letscher and Zomorodian [22] solved this problem by introducing
persistent homology. Zomorodian and Carlsson then gave this idea a firm theoretical
footing [13].

Developments in persistent homology have allowed these methods to be applied
in many different settings. Among the first was the invention of a computational test
of coverage in sensor networks [26]. Persistent homology is also popular as a basis for
techniques of visualization [18, 23]. The application of persistent homology to shape
analysis led to the introduction of the barcode [11, 12, 10] and of the persistence
diagram [16]. The ability to represent persistent homology through the persistence
diagram contributed to the proof of the stability of persistent homology [16].

The development of zigzag persistence [7] is particularly important. It is the most
general version of one-dimensional persistence, because it admits a classification the-
orem similar to that of persistent homology [13]. This approach is based on Gabriel’s
Representation Theorem. When studying a filtration

{
Xr = p−1

X (r)
}
assigned to a

function pX : X → R, we do not wish to restrict ourselves to considering only in-
clusions, but also want to allow sequences of zigzag inclusions Xr ⊂ p−1

X [r, s] ⊃ Xs.
This is where zigzag persistence comes into play.

Zigzag persistence is commonly described either as a multiset of intervals (a bar-
code) or as a multiset of points in the half plane (a persistence diagram). However,



these descriptions do not distinguish between different types of intervals (for ex-
ample, [p, q], [p, q), (p, q] and (p, q)). In order to capture the homology of spaces
parametrized over R, Chazal et al. [14] introduced decorated real numbers. They
also developed a new approach for expressing persistence. The intuition is that if
we know how many points of the diagram are contained in each rectangle in the half
plane, then we know the diagram itself. Counting the points in the rectangles leads
to the introduction of r-measures. The Equivalence Theorem formally establishes
the correspondence between r-measures and ‘decorated’ persistence diagrams.

A parametrized space is a pair (X, pX), where pX : X → R is a continuous
map on a topological space X. This function defines levelsets Xr = p−1

X (r) and
slices Xb

a = p−1
X ([a, b]) for different intervals [a, b] ⊂ R. Carlsson, de Silva and

Morozov recently introduced levelset zigzag persistence [9] to capture the topology
of a parametrized space. This requires the imposition of reasonable restrictions on
the space X and the function pX (such as assuming a function to be Morse and a
space to be compact).

Carlsson et al. use levelset zigzag persistence in combination with measure theory
to define ‘parametrized homology’ [8]. Let Hj be a singular homology functor. For
a < b < c < d we are interested in determining homological features that persist on
Xc
b , but are absent outside of Xd

a . More precisely, we want to count the number of
indecomposable summands in the zigzag persistent homology of the diagram

Hj(Xb
a) Hj(Xc

b ) Hj(Xd
c )

Hj(Xa) Hj(Xb) Hj(Xc) Hj(Xd),

which persist over the closed interval [b, c], but not over the open interval (a, d).
There are four types of such indecomposable summands. By counting them we
can define four different ‘decorated’ persistence diagrams for X. Parametrized sin-
gular homology of X is a collection of these diagrams over all j. We define other
parametrized homology theories using a similar approach.

In this work we extend different versions of Alexander Duality to the setting
of parametrized homology theories. If X is a subspace of the Cartesian product
Rn × R, and pX : X → R is the projection onto the last coordinate, we can define
a parametrized space Y = Rn × R \ X (together with projection onto the last
coordinate). If the levelsets are compact and locally contractible, an Alexander
Duality isomorphism exists: H̃n−j−1(Yr; k) ∼= Hj(Xr; k) for each r and each field k.
Here H denotes singular cohomology and H̃ reduced singular homology.



Unlike previous attempts to expand Alexander Duality, our approach allows us
to generalize Alexander Duality directly to an appropriate parametrized version.
Edelsbrunner and Kerber operate within extended persistence diagrams [20]. They
consider Alexander Duality to be a statement about two complementary subsets
of the sphere that intersect in an n-manifold. By contrast, we consider it to be a
statement about a subset of a Euclidean space with compact levelsets and slices,
and its complement. An advantage of our approach is that it covers situations that
their theorem leaves out.

One practical application of this research is in sensor networks [29]. The classic
Alexander Duality can only be used to find gaps in static networks. However, in
many networks the sensors move continuously through time. An ‘evasion path’
may exist within dynamic networks, as an intruder could avoid detection by moving
around the domain. Since the covered and uncovered regions are parametrized
spaces with respect to time, the ‘evasion problem’ calls for a parametrized version
of Alexander Duality. This approach allows us to present a test for coverage in
dynamic sensor networks [1].
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Chapter 1

Zigzag Persistence

This chapter reviews the theory of Zigzag persistence. In Section 1.1, we formulate
a few basic definitions from the theory of quiver representations and state Gabriel’s
theorem (for a more complete exposition of this material, see Brion [5]). Section 1.2
is devoted to zigzag modules, a special case of quiver representations [7]. In Sec-
tion 1.3, we state and prove the Diamond Principle [7], which is one of the in-
gredients needed to prove parametrized versions of Alexander duality. In Section
1.4 we present one application of the Diamond Principle, called the Mayer-Vietoris
Diamond Principle [7].

Conventions Throughout this chapter, we consider vector spaces and linear
maps over a fixed field k.

1.1 Quivers
Definition 1.1. A quiver is a quadruple

Q = (Q0, Q1, h, t),

where Q0 is a finite set of vertices, Q1 is a finite set of arrows between them and

h, t : Q1 → Q0

are maps assigning the head and tail to each respective arrow.
A quiver is merely a directed graph. Forgetting the orientations of the arrows

yields the underlying undirected graph of a quiver.
Definition 1.2. A representation V of a quiver Q consists of a collection of finite
dimensional vector spaces Vi indexed by the vertices i ∈ Q0, together with a collection
of linear maps Va : Vt(a) → Vh(a) indexed by the arrows a ∈ Q1.

The total dimension of a quiver representation V is dimkV = ∑
i∈Q0 dimVi.

Every quiver has a zero representation, which assigns to each vertex the zero
space (and consequently to each arrow the zero map). We can also attach a one-
dimensional representation Si to each i ∈ Q0, such that (Si)j = 0 for i 6= j ∈ Q0,
(Si)i = k, and (Si)a = 0 for all a ∈ Q1.
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◦1 ◦2 ◦3
a

b1

b2

c

Figure 1.1: The quiver with vertices 1, 2, 3 and arrows a : 1→ 2, b1 : 2→ 2,
b2 : 2→ 2, c : 3→ 2 is depicted. Vertex 2 is the head and vertex 1 the tail of arrow
a.

V1 V2 V3
VcVa

Vb1

Vb2

Figure 1.2: A representation of the quiver in Figure 1.1 is depicted. It is a collection
of three vector spaces V1, V2 and V3, together with four linear maps Va : V1 → V2,
Vc : V3 → V2, Vb1 : V2 → V2 and Vb2 : V2 → V2.

Definition 1.3. Given representations V = (Vi, Va) and W = (Wi,Wa) of a quiver
Q, a morphism φ : V → W is a collection of linear maps (φi : Vi → Wi | i ∈ Q0)
such that the diagram

Vt(a) Vh(a)

Wt(a) Wh(a)

Va

φt(a)

Wa

φh(a)

commutes for every arrow a ∈ Q1. That is, Wa ◦ φt(a) = φh(a) ◦ Va for all a ∈ Q1.

For any two morphisms φ : V → W and ψ : W → U , the collection of compo-
sitions (ψi ◦ φi)i∈Q0 is a morphism ψ ◦ φ : V → U . This operation is associative
and (IdVi)i∈Q0 is the identity element. Therefore, for each quiver Q and field k,
we can form a category whose objects are representations of Q with morphisms as
defined above. The zero object is the zero representation. We denote this category
by Rep(Q,k).
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Definition 1.4. Let V and W be two representations of the quiver Q. The direct
sum V ⊕W of V and W is a collection of vector spaces

(V ⊕W )i := Vi ⊕Wi

for i ∈ Q0 and linear maps

(V ⊕W )a :=
[
Va 0
0 Wa

]
: Vt(a) ⊕Wt(a) → Vh(a) ⊕Wh(a)

for a ∈ Q1.

If V is isomorphic to a direct sum of nonzero representations W and Z, then V
is called decomposable. Otherwise V is called indecomposable. For example, the
one-dimensional representation Si is indecomposable for each i ∈ Q0.

Any non-zero quiver representation can be decomposed into a finite direct sum
of indecomposable representations. In other words, for any V 6= 0 there exist in-
decomposable representations Wj such that V ∼= W1 ⊕ . . . ⊕Wn. This follows by
induction on the total dimension dimkV . These decompositions, known as Remak
decompositions, are not unique. However, the Krull-Schmidt theorem tells us that
the summands in such a decomposition are unique up to reordering:

Theorem 1.5 (Krull-Remak-Schmidt). Let V be a non-zero quiver representa-
tion. In this case there exists a decomposition V ∼= a1V1 ⊕ . . . ⊕ anVn with the
Vi pairwise non-isomorphic indecomposable representations and each ai ≥ 1. If
V ∼= b1W1 ⊕ . . .⊕ bmWm is another such decomposition, then n = m, and a permu-
tation π of 1, . . . , n exists such that Vi ∼= Wπ(i) for any 1 ≤ i ≤ n, and ai = bπ(i).

Proof. See Barot [2].

A quiver that has only finitely many isomorphism classes of indecomposable
representations is called a quiver of finite type.

Gabriel’s Theorem yields a complete description of this type of quivers:

Theorem 1.6 (Gabriel’s Theorem). A quiver is of finite type if and only if the
underlying undirected graph is a union of Dynkin graphs of type shown below:
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An • • • • •

Dn

• • • • •

•

E6

• • • • •

•

E7

• • • • • •

•

E8

• • • • • • •

•
The number of isomorphism classes of indecomposable representations for the dif-
ferent Dynkin types is as follows:

An Dn E6 E7 E8
1
2n(n+ 1) n(n− 1) 36 69 120.

Proof. See Gabriel [25] or Brion [5].

1.2 Zigzag Persistence
Applied topologists are interested in quiver representations whose underlying graph
is An. Following Carlsson and de Silva [7] we will refer to these as zigzag modules.

Definition 1.7. A zigzag module V is a sequence of finite dimensional vector spaces
and maps

V1 V2 . . . Vn.
p1 p2 pn−1

Each
pi

represents either a forward map
fi

or a backward map
gi

.

The sequence of f ’s and g’s is called the type τ of a zigzag module. For example,
a zigzag module of type τ = ffgg looks like this:

V1 V2 V3 V4 V5.

The length of a zigzag module is the number of vertices in its underlying graph.
For example, the zigzag module depicted above is of length 5. We call the zigzag
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modules of a fixed type τ and length n τ -modules. The category of τ -modules is
denoted τ -Mod. By reversing all the arrows in a τ -module we get a zigzag module
of type τ op.

Remark 1.8. Persistence modules (see Edelsbrunner et al. [21]) are zigzag modules
of type τ = ff . . . f .

Definition 1.9. Let τ be of length n. The interval τ -module Iτ (b, d) with birth time
b and death time d for 1 ≤ b ≤ d ≤ n is a collection of vector spaces

(Iτ (b, d))i =
{

k if b ≤ i ≤ d
0 otherwise .

It has identity maps between adjacent copies of k and zero maps otherwise. When
τ is implicit, we usually suppress it and write I(b, d).

Example 1.10. If τ = ffgg, then I(2, 3) is

0 k k 0 0
0 01 0

Proposition 1.11. Interval τ -modules are indecomposable.

Proof. Interval modules I(b, b) are clearly indecomposable. Now let b < d. Suppose
I(b, d) = V ⊕W . For b ≤ i < d consider adjacent terms k at positions i and i + 1
connected by an identity map. Since k = Vi⊕Wi, one of Vi,Wi is zero. Without loss
of generality we assume that Vi = 0 and Wi = k. It follows that Vi Vi+1 is the
zero map. It follows that Wi Wi+1 is nonzero (otherwise their direct sum would
be a zero map and not the identity map as required) and consequently Wi+1 = k
and Vi+1 = 0. Repeating this argument we get that V is 0. So interval τ -modules
are indecomposable.

We have the following important consequence of Gabriel’s Theorem, which is the
cornerstone of the theory of zigzag persistence.

Theorem 1.12. The indecomposable τ -modules of length n are precisely the interval
τ -modules I(b, d), where 1 ≤ b ≤ d ≤ n. Every τ -module can be written as a direct
sum of the interval τ -modules.

Proof. By Gabriel’s Theorem there are 1
2n(n + 1) indecomposable τ -modules of

length n, so indecomposable τ -modules are precisely the intervals Iτ (b, d), where
1 ≤ b ≤ d ≤ n. The second part of the theorem follows since the underlying graph
of a τ -module of length n is An.

Example 1.13. Let τ = gf . The underlying graph is of type A3, so there are 6
indecomposable representations:
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0 0 k
0 0

, 0 k 0
0 0

, k 0 0
0 0

,

0 k k
0 1

, k k 0
1 0

, k k k
1 1

.

Now consider the τ -module V defined as follows:

k k2 k

x (x, y) y

g1 f2

The interval decomposition of V is I(1, 2)⊕I(2, 3). The summands are k k 0
and 0 k k .

By Theorem 1.12 any τ -module V is a direct sum of interval τ -modules. By the
Krull-Remak-Schmidt Theorem the summands in this decomposition are unique up
to reordering. Thus the multiset of interval τ -modules that appear in the decompo-
sition of V is an isomorphism invariant. We call it zigzag persistence of V . Recall
that a multiset is a pair A = (S,m), where S is a set and m : S → {1, 2, 3, . . .}∪{∞}
is the multiplicity function, which tells us how many times each element of S occurs
in A.
Definition 1.14. Let V be a zigzag module of type τ . By Gabriel’s Theorem there
exist interval τ -modules such that V ∼= I(b1, d1)⊕ . . .⊕ I(bn, dn). The zigzag persis-
tence of V is the multiset

Pers(V ) = {[bj, dj] ⊂ {1, . . . , n} | j = 1, . . . , n}.

An interval [bj, dj] represents a homological feature that is born at time bj and
dies at time dj + 1.

We can represent Pers(V ) graphically as a barcode or as a persistence diagram.

2

1

1 2

3

3

4

4 1 2 3 4

Figure 1.3: Persistence diagram (left) and barcode (right) representations of the
zigzag persistence {[1, 2], [1, 3], [3, 3], [2, 4]} of a zigzag module of length 4.

A barcode is a collection of horizontal line segments [bj, dj] ⊆ [0,∞) measured
against a horizontal axis with labels {1, . . . , n}. A persistence diagram is a multiset
of points in R2 lying on or above the diagonal. We represent each interval [bj, dj] as
a point (bj, dj) in the plane.
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1.3 The Diamond Principle
Consider the following diagram of vector spaces and linear maps between them.

V1 . . . Vk−2 Vk−1

Wk

Uk

Vk+1 Vk+2 . . . Vn
p1 pk−3 pk−2

fk−1 gk

gk−1 fk

pk+1 pk+2 pn−1

We say that the diamond in the center is exact if Im(D1) = Ker(D2) in the following
sequence

Uk Vk−1 ⊕ Vk+1 Wk,
D1 D2

where D1(u) = gk−1(u)⊕ fk(u), and D2(v ⊕ v′) = fk−1(v)− gk(v′).
Let V + and V − denote the upper and lower zigzag modules.

V + = V1 . . . Vk−1 Wk Vk+1 . . . Vn,
p1 pk−2 fk−1 gk pk+1 pn−1

V − = V1 . . . Vk−1 Uk Vk+1 . . . Vn.
p1 pk−2 gk−1 fk pk+1 pn−1

We have the following relation between zigzag persistence of V + and that of V −.

Theorem 1.15 (The Diamond Principle). Given V + and V − as above, suppose
that the middle diamond is exact. There is a partial bijection between Pers(V +) and
Pers(V −). Intervals are matched according to the following rules:

• Intervals of type [k, k] are unmatched,

• Type [b, k] is matched with type [b, k − 1] and vice versa, for b ≤ k − 1,

• Type [k, d] is matched with type [k + 1, d] and vice versa, for d ≥ k + 1,

• Type [b, d] is matched with type [b, d] in all other cases.

Carlsson and de Silva prove the Diamond principle in [7]. We present a differ-
ent proof more suitable for this exposition involving the Bernstein, Gelfand and
Ponomarev reflection functor (BGP reflection functor) [4].
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1.3.1 Reflection Functors
For each vertex k ∈ Q0, we denote the quiver obtained from Q by reversing the
direction of all the arrows a satisfying t(a) = k or h(a) = k by σkQ.

Example 1.16. Let Q be the following quiver

◦1 ◦2

◦3

◦4 ◦5.

Then σ3Q and σ4Q are as follows:

◦1 ◦2

◦3

◦4 ◦5 ◦1 ◦2

◦3

◦4 ◦5.

To define BGP reflection functors, we need the concepts of a sink and a source
in the quiver Q. A vertex k of Q is called a sink if there is no arrow in Q starting
at k. The same vertex is called a source if there is no arrow ending at k.

For example, the quiver Q in Example 1.16 has two sources 3 and 5, and one
sink 4. If k ∈ Q0 is a sink, then it is a source of the quiver σkQ and vice versa.

Let k be a sink in Q. For each representation V = (Vi, Va) ∈ Rep(Q,k), we
define a representation S +

k (V ) = (Wi,Wa) ∈ Rep(σkQ,k) as follows. For all i 6= k,
we set Wi = Vi. We define Wk to be the kernel of the map

ξk :
⊕

a∈Q1,h(a)=k
Vt(a) Vk, (xt(a))a

∑
a

Va(xt(a)).

For an arrow a in σkQ, letWa = Va if t(a) 6= k. If t(a) = k, thenWa is a composition

Wk = Ker ξk
⊕
a∈Q1,h(a)=k Vt(a) Wh(a),

πh(a)

where πh(a) is the canonical projection.
With each morphism φ = (φi) : V → V ′ in Rep(Q,k), we associate a morphism

S +
k (φ) = ψ = (ψi) : S +

k (V ) → S +
k (V ′) in Rep(σkQ,k) by setting ψi = φi, for

i 6= k. We define ψk as a restriction map by the following natural commutative
diagram:

Ker ξk
⊕
a∈Q1,h(a)=k Vt(a) Vk

Ker ξ′k
⊕
a∈Q1,h(a)=k V

′
t(a) V ′k

ξk

ξ′k

φk
⊕

a∈Q1,h(a)=k φt(a)ψk

In this way, we obtain a functor S +
k : Rep(Q,k)→ Rep(σkQ,k).
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Example 1.17. Consider the interval τ -module below

k k 0 0 0.
1 0 0 0

Vertex 3 in the underlying graph is a sink. Applying the S +
3 functor we get

k k k 0 0.
1 1 0 0

We construct S −
k dually. Let the vertex k be a source in Q. To each represen-

tation V = (Vi, Va) ∈ Rep(Q,k) we assign a representation

S −
k (V ) = (Wi,Wa) ∈ Rep(σkQ,k).

For all i 6= k, we set Wi = Vi. We define Wk to be the cokernel of the map

νk : Vk
⊕
a∈Q1,t(a)=k Vh(a), x

⊕
a∈Q1,t(a)=k Va(x).

For an arrow a in σkQ, letWa = Va if h(a) 6= k. If h(a) = k thenWa is a composition

Wt(a)
⊕
a∈Q1,t(a)=k Vh(a) Wk

qk

where qk is the canonical quotient map.
As in the case of S +

k , we can assign to each morphism φ = (φi) : V → V ′ in
Rep(Q,k) a morphism S −

k (φ) = ψ = (ψi) : S −
k (V )→ S −

k (V ′) in Rep(σkQ,k). As
a result we obtain a functor S −

k : Rep(Q,k)→ Rep(σkQ,k).

Example 1.18. Consider the following interval τ -module

k k k 0 0.
1 1 0 0

Vertex 3 in the underlying graph is a source, so we can apply the S −
3 functor. The

resulting quiver representation is

k k 0 0 0.
1 0 0 0

Functors S ± respect the direct sum decomposition.

Proposition 1.19. Let V and V ′ be representations of Q and k either a sink or a
source. Then

S ±
k (V ⊕ V ′) = S ±

k (V )⊕S ±
k (V ′).

Proof. The statement follows from the observation that S ±
k is a functor satisfying

S ±
k (φ⊕ ψ) = S ±

k (φ)⊕S ±
k (ψ) for any pair of morphisms φ, ψ.
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Proposition 1.20. Let V and V ′ be isomorphic representations of Q and k either
a sink or a source. Then

S ±
k (V ) ∼= S ±

k (V ′).
We now state and prove a theorem by Bernstein, Gelfand and Ponomarev [4].

Theorem 1.21. Let Q be a quiver and V a representation of Q.
1. Let k be a sink in Q. Then there is a canonical monomorphism

φ : S −
k S +

k V → V.

Furthermore, φ splits and V is isomorphic to a direct sum of S −
k S +

k V and
various copies of Sk.

2. Let k be a source in Q. Then there is a canonical epimorphism

ψ : V → S +
k S −

k V.

Furthermore, ψ splits and V is isomorphic to a direct sum of S +
k S −

k V and
various copies of Sk.

Proof. 1. The construction gives the following diagram with the top row exact:

0 (S +
k V )k

⊕
a∈Q1,h(a)=k Vt(a) (S −

k S +
k V )k 0

Vk

qk

ξk
φk

Then there is a unique linear map φk : (S −
k S +

k V )k → Vk for which ξk = φk◦qk.
The map φk is injective. We can define a monomorphism φ : S −

k S +
k V → V

as follows
φi =

{
IdVi for all i 6= k
φk otherwise.

Moreover, this monomorphism φ splits and induces an isomorphism

V ∼= S −
k S +

k V ⊕mSk,

where m = dimVk − dim Im ξk.

2. The proof of (2) is similar to (1). Consider the diagram

0 (S +
k S −

k V )k
⊕
a∈Q1,t(a)=k Vh(a) (S −

k V )k 0.

Vk

ξk qk

νk
ψk
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This theorem gives rise to the following useful corollary.

Corollary 1.22. Let k be a sink in Q. The functors S +
k and S −

k induce mutually
inverse bijections between the isomorphism classes of indecomposable representations
of Q and the isomorphism classes of indecomposable representations of σkQ. The
exception is the representation Sk, which is annihilated by these functors.

In the special case of zigzag modules we have:

Corollary 1.23. Let k be a sink in the underlying graph of a τ -module V . The
functors S +

k and S −
k induce mutually inverse bijections between the isomorphism

classes of interval modules of Q and the isomorphism classes of interval modules of
σkQ. The exception is the interval Iτ [k, k], which is annihilated by these functors:

Iτ (k, k), Iσkτ (k, k) 0
Iτ (b, k − 1) Iσkτ (b, k) for b ≤ k − 1
Iτ (k + 1, d) Iσkτ (k, d) for d ≥ k + 1

Iτ (b, d) Iσkτ (b, d) in other cases.

1.3.2 Proving the Diamond Principle
To prove the Diamond Principle we will need the following lemma.

Lemma 1.24. Let

W+ = V1 . . . Vk−1 Wk Vk+1 . . . Vn,
p1 pk−2 fk−1 −gk pk+1 pn−1

and

V − = V1 . . . Vk−1 Uk Vk+1 . . . Vn.
p1 pk−2 gk−1 fk pk+1 pn−1

We define D1(u) = gk−1(u)⊕ fk(u) and D2(v ⊕ v′) = fk−1(v)− gk(v′). Assume that
Im(D1) = Ker(D2). Then S +

k W
+ ⊕mI(k, k) ∼= V −.

Proof. First we see that

S +
k W

+ = V1 . . . Vk−1 Ker(D2) Vk+1 . . . Vn,
p1 pk−2 πVk−1 πVk+1 pk+1 pn−1

where πVk−1 and πVk+1 are canonical projections. Since Im(D1) = Ker(D2), we have
the following isomorphism of τ -modules:

V1 . . . Vk−1 Ker(D2) Vk+1 . . . Vn.

V1 . . . Vk−1 Im(D1) Vk+1 . . . Vn
p1 pk−2 πVk−1 πVk+1 pk+1 pn−1

p1 pk−2 πVk−1 πVk+1 pk+1 pn−1

Id Id Id Id Id Id Id
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From linear algebra we know that Uk ∼= Im(D1)⊕Ker(D1). This induces an isomor-
phism between τ -modules

V1 . . . Vk−1 Im(D1) Vk+1 . . . Vn⊕
0 . . . 0 Ker(D1) 0 . . . 0.

V1 . . . Vk−1 Uk Vk+1 . . . Vn
p1 pk−2 gk−1 fk pk+1 pn−1

0 0 0 0 0 0

p1 pk−2 πVk−1 πVk+1 pk+1 pn−1

Id⊕0 Id⊕0 Id⊕0 ∼ = Id⊕0 Id⊕0 Id⊕0

I(k, k) span the lower quiver. It follows that S +
k W

+ ⊕ mI(k, k) ∼= V −, where
m = dim KerD1.

Proof of the Diamond Principle. The map φ = (φi) where

φi =
{

IdVi for i 6= k + 1
− IdVk+1 otherwise

is an isomorphism of τ -modules V + and W+. Zigzag persistence is an isomorphism
invariant, so Pers(V +) = Pers(W+). The quiver W+ is decomposable by Gabriel’s
theorem, therefore bi, di exist for 1 ≤ i ≤ n such that

W+ ∼= ⊕1≤i≤nI(bi, di).

It follows from Lemma 1.24 and Proposition 1.19 that

V − ∼= S +
k W

+ ⊕mI(k, k)
∼= S +(⊕1≤i≤nI(bi, di))⊕mI(k, k)
∼= ⊕1≤i≤nS +I(bi, di)⊕mI(k, k)

By Corollary 1.23 we have a partial bijection between Pers(V −) and Pers(W+) (and
consequently Pers(V +)). The intervals change as follows:

• Intervals of type [k, k] are unmatched,

• Type [b, k] is matched with type [b, k − 1] and vice versa, for b ≤ k − 1,

• Type [k, d] is matched with type [k + 1, d] and vice versa, for d ≥ k + 1,

• Type [b, d] is matched with type [b, d] in all other cases.

This finishes the proof of the Diamond Principle.
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1.4 The Mayer-Vietoris Diamond Principle
We can apply the Diamond Principle to the following diagram of topological spaces
and continuous maps.

X1 . . . Xk−2 A

A ∪B

A ∩B

B Xk+2 . . . Xn

p1 pk−3 pk−2 pk+1 pk+2 pn−1

Let X+ denote the upper and X− the lower zigzag diagram contained in this picture.
Applying the singular homology functor Hj with coefficients in k to X+, we get a
zigzag module that we denote by Hj(X+). We denote by Pers(H∗(X+)) the collection
of Pers(Hj(X+)) over all j. We use a similar notation for zigzag modules associated
with X−.

Theorem 1.25 (The Mayer-Vietoris Diamond Principle). Given X+ and X− (see
above) there is a bijection between Pers(H∗(X+)) and Pers(H∗(X−)). Intervals are
matched according to the following rules:

• [k, k] ∈ Pers(Hj+1(X+)) is matched with [k, k] ∈ Pers(Hj(X−)).

In the remaining cases, the matching preserves homological dimension:

• Type [b, k] is matched with type [b, k − 1] and vice versa, for b ≤ k − 1,

• Type [k, d] is matched with type [k + 1, d] and vice versa, for d ≥ k + 1,

• Type [b, d] is matched with type [b, d] in all other cases.

+1

Proof. We apply the homology functor Hj to the diagram. According to the Mayer-
Vietoris theorem

. . . Hj(A ∩B) Hj(A)⊕Hj(B) Hj(A ∪B) . . .
D1 D2

is an exact sequence. Therefore the diamond in the center is exact. By the Diamond
Principle we have a partial bijection between Pers(H∗(X+)) and Pers(H∗(X−)) which
accounts for all intervals except those of type [k, k].
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To get the bijection between intervals of type [k, k], we consider the connecting
homomorphism in the same Mayer-Vietoris sequence:

. . . Hj+1(A ∪B) Hj(A ∩B) . . .
D2 D1∂

∂ induces an isomorphism between the Coker(D2) and Ker(D1). Since the [k, k] sum-
mands of Pers(H∗(X+)) span Coker(D2), and the [k, k] summands of Pers(H∗(X−))
span Ker(D1), the statement follows.



Chapter 2

Parametrized Spaces and Levelset
Zigzag Persistence

In this chapter, we use the theory of zigzag persistence to identify homological
features of some well-behaved parametrized spaces extending over a range of values
of the parameter. Section 2.1 is a collection of basic definitions and statements about
parametrized spaces. In Section 2.2 we show how to model a parametrized space by
a zigzag diagram and present a construction called ‘levelset zigzag persistence’ [9].

2.1 Category of Parametrized Spaces
Definition 2.1. A parametrized space is a pair X = (X, pX), where X is a topo-
logical space and pX : X → R is a continuous function.

Definition 2.2. A morphism of parametrized spaces f : X → Y is a continuous
map f : X → Y such that pY ◦ f = pX .

Proposition 2.3. If f : X → Y is a morphism between parametrized spaces X and
Y, and g : Y → Z is a morphism between parametrized spaces Y and Z, then g ◦ f
is a morphism between parametrized spaces X and Z.

The composition of parametrized morphisms is associative. Furthermore, for a
parametrized space X, IdX : X → X is the identity morphism. Thus the class of
parametrized spaces has the structure of a category.

Proposition 2.4. Let X and Y be parametrized spaces. If X and Y are isomorphic
as parametrized spaces, then X and Y are homeomorphic as topological spaces.

Proof. Since X and Y are isomorphic as parametrized spaces, there exist continuous
maps f : X → Y and g : Y → X such that pY ◦f = pX , pX ◦g = pY , g ◦f = IdX and
f ◦ g = IdY . These last two equations show that X and Y are homeomorphic.

Definition 2.5. Let X and Y be parametrized spaces. A parametrized embedding
f : X ↪→ Y is an embedding f : X ↪→ Y such that pY ◦ f = pX .
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Let (X, pX) be a parametrized space. The function pX defines levelsets Xa = p−1
X (a)

and slices XI for intervals I ⊆ R. To make it immediately clear what interval
we are referring to when building zigzags with different slices, we sometimes write
Xb
a = p−1

X ([a, b]).

2.2 Levelset Zigzag Persistence
Let X = (X, pX) be a parametrized space.

Given a discretization
a = s0 ≤ . . . ≤ sn = b

of the interval [a, b] ⊆ R we build a zigzag diagram that models the slice Xb
a:

Xs1
s0 Xs2

s1
. . . X

sn−1
sn−2 Xsn

sn−1

Xs0 Xs1 Xs2 Xsn−2 Xsn−1 Xsn .

Now we apply the j-dimensional homology functor Hj to obtain:

Hj(Xs1
s0 ) Hj(Xs2

s1 ) . . . Hj(Xsn−1
sn−2 ) Hj(Xsn

sn−1)

Hj(Xs0) Hj(Xs1) Hj(Xs2) Hj(Xsn−2) Hj(Xsn−1) Hj(Xsn).

We denote this diagram of vector spaces by Hj(X{s0,s1,...,sn}). We want to be able to
analyze how the homology changes as we vary the parameter. In order to do so, we
have to restrict ourselves to a smaller class of parametrized spaces.

Definition 2.6. A parametrized space X = (X, pX) is of Morse-type if there is a
finite set of real-valued indices a1 < a2 < . . . < an called homological critical values,
such that over each open interval

I ∈ {(−∞, a1), (a1, a2), . . . , (an−1, an), (an,∞)}

the slice over I is homeomorphic to a product of the form Y × I, with pX being
the projection onto the factor I. Additionally, each slice XI has a finitely-generated
homology. Finally, each homeomorphism Y ×I → XI should extend to a continuous
function Y × I → XI , where I is the closure of I in R.

Example 2.7. X is a compact manifold and pX is a Morse function.

If we allow X to be non-compact, then in order for (X, pX) to be of Morse-
type, we need to impose some restrictions on its behavior at infinity. We say that a
parametrized space is cylindrical at infinity if an a > 0 exists such that X∞a is iso-
morphic to Xa×[a,∞) and X−a−∞ to X−a×(−∞,−a] in the category of parametrized
spaces.
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Example 2.8. X is a manifold without boundary which is cylindrical at infinity,
and pX is a proper Morse function with finitely many critical points.

Now assume that X is of Morse-type. We select a set of indices si which satisfy

−∞ < s0 < a1 < s1 < a2 < . . . < sn−1 < an < sn <∞.

Since all slices XI have a finitely-generated homology, Hj(X{s0,s1,...,sn}) is a zigzag
module.

Definition 2.9. Let X be of Morse-type and si for i = 0, 1, . . . , n as above. The lev-
elset zigzag persistence of X in dimension j is the zigzag persistence of Hj(X{s0,s1,...,sn}).
The collection of these over all j is the levelset zigzag persistence of X.

This definition is independent of the choice of intermediate values si, because of
the product structure between critical values. We now need to determine how the
intervals in the levelset zigzag persistence of X relate to the homological features of
X. Consider, for example,

Hj(Xsi+1
si )

Hj(Xsi) Hj(Xsi+1).

Suppose an interval in the levelset zigzag persistence of X restricted to these three
indices is . This means that we have a j-cycle that persists over the interval
(ai, ai+2). If it is , this means that there is a j-cycle that does not exist beyond
ai+1. This cycle corresponds to an interval of the form [−, ai+1]. The restriction

indicates a j-cycle that is born at ai+1 and corresponds to an interval [ai+1,−].
Lastly, we consider intervals whose restriction to the three indices is a point ,

or . The first interval comes from a j-cycle that is only present at ai+1,
while the second appears only after ai+1. The corresponding interval in this case is
(ai+1,−). In the third case the corresponding j-cycle is only present up to ai+1 and
the interval is (−, ai+1).

We translate between the notation of intervals that appear in the levelset zigzag
persistence of X and critical values as follows:

[2i+2, 2j+2] ↔ [ai, aj] for 1 ≤ i ≤ j ≤ n,
[2i+2, 2j+1] ↔ [ai, aj) for 1 ≤ i < j ≤ n+ 1,
[2i+3, 2j+2] ↔ (ai, aj] for 1 ≤ i ≤ j ≤ n,
[2i+3, 2j+1] ↔ (ai, aj) for 1 ≤ i < j ≤ n+ 1.

Here a0 = −∞ and an+1 =∞.
We have seen that each interval, of any of the four types, may be labelled by a

corresponding point (ai, aj) ∈ R2. The multiset of these points labelled by homo-
logical dimension is called the levelset zigzag persistence diagram.
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a1 a2 a3 a4 a5s1 s2 s3 s4

H0

H1

Figure 2.1: A Morse function on a 2-manifold with boundary.

Example 2.10. Consider the surface X in Figure 2.1. Let pX be a projection onto
the horizontal axis. The parametrized space (X, pX) is of Morse-type. The levelset
zigzag persistence intervals in H0 and H1 expressed in critical value notation are
depicted below the picture of the surface.



Chapter 3

Decorated Persistence Diagrams
and Measures

Persistence is commonly described either as a multiset of intervals (a barcode) or as
a multiset of points in the half plane (a persistence diagram). Since the latter does
not distinguish between different types of intervals (for example, [p, q], [p, q), (p, q]
and (p, q)), we introduce decorated points (Section 3.1). In Section 3.2 we establish
a correspondence between finite rectangle measures and the decorated persistence
diagrams in the half plane (the Equivalence Theorem)[14]. In Section 3.3 we extend
this theorem to reach points at infinity.

3.1 Decorated Persistence Diagrams

Chazal et al. [14] introduced decorated real numbers to keep track of all possible
interval topologies (open, closed, half-open). They are written as ordinary real
numbers but with a superscript + (plus) or − (minus). We can represent every
decorated point as a point in the half plane with a tick specifying the decoration:
We adopt the following notation:

[p, q) is written (p−, q−) and drawn
[p, q] is written (p−, q+) and drawn
(p, q) is written (p+, q−) and drawn
(p, q] is written (p+, q+) and drawn

We require p < q, except for the one point interval [p, p]. The notation for an
arbitrary interval is (p∗, q∗).

Let R = [a, b] × [c, d], where a < b < c < d, be a rectangle. Let (p∗, q∗) be a
decorated point. Then (p∗, q∗) ∈ R if [b, c] ⊂ (p∗, q∗) ⊂ (a, d). This happens exactly
when the point (p, q) and its decoration tick are contained in the closed rectangle
R:
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a b

c

d

Definition 3.1. A decorated persistence diagram is a locally finite multiset of dec-
orated points in the half plane.

3.2 The Equivalence Theorem
Chazal et al. [14] introduce a new approach for expressing persistence that is espe-
cially well-suited for a continuous parameter. The basic idea is that if we know how
many points of the diagram are contained in each rectangle in the half plane, then
we know the diagram itself. R-measures are the result of counting the points in the
rectangles.

Let H = {(p, q) ∈ R2 | p < q} be the open half plane. The set of rectangles in
H is

Rect(H ) = {[a, b]× [c, d] ⊂H | a < b < c < d}.

Definition 3.2. A rectangle measure or r-measure on H is a function

µ : Rect(H )→ {0, 1, 2, 3, . . .} ∪ {∞}

that is additive under vertical and horizontal splitting. This means that
µ(R) = µ(R1) + µ(R2), whenever

R = R1 R2 or R = R1
R2

.

A rectangle measure is not a true measure in the classical sense. Instead, we
combine and decompose rectangles in the sense of tiling theory.

Proposition 3.3. Let µ be an r-measure on H .

1. µ is finitely additive. More precisely, if R ∈ Rect(H ) can be written as a
union R = R1 ∪R2 ∪ . . . Rk of rectangles with disjoint interiors, then

µ(R) = µ(R1) + . . . µ(Rk).
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2. µ is monotone. If S ⊆ R, then µ(S) ⊆ µ(R).

Proof. We can prove (1) inductively using the vertical and horizontal splitting prop-
erties of µ.

For (2) consider the decomposition of R depicted below:

S

The claim follows since µ is nonnegative and finitely additive.

Finite r-measures correspond exactly to decorated persistence diagrams [14].

Theorem 3.4 (The Equivalence Theorem in H ). There is a bijective correspon-
dence between:

• Finite r-measures µ on H . Here ‘finite’ means that µ(R) <∞ for every
R ∈ Rect(H ).

• Locally finite multisets A of decorated points in H . Here ‘locally finite’ means
that card(A|R) <∞ for every R ∈ Rect(H ).

The measure µ corresponding to a multiset A satisfies the formula

µ(R) = card(A|R)

for every R ∈ Rect(H ).

Proof of the Equivalence Theorem (⇑). Let A be a locally finite multiset of deco-
rated points in H . We define µ : Rect(H )→ {0, 1, 2, 3, . . .} ∪ {∞} by

µ(R) = card(A|R).

This µ is finite since A is a locally finite multiset. To show that µ is additive we
assume that R splits horizontally into R1 and R2. Each decorated point in R belongs
either to R1 or R2, but it cannot belong to both. It follows that

µ(R) = card(A|R) = card(A|R1) + card(A|R2) = µ(R1) + µ(R2).

We can use a similar proof when R splits vertically.

Proving the other direction of the Equivalence Theorem (⇓) is more difficult. We
construct the locally finite multiset A determined by the measure µ by computing
multiplicities. The multiplicity of (p∗, q∗) with respect to µ is

mµ(p∗, q∗) = min{µ(R) | (p∗, q∗) ∈ R,R ∈ Rect(H )}.
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Alternatively, we can pick a nested sequence R1 ⊃ R2 ⊃ R3 ⊃ . . . of closed rectangles
that contain (p∗, q∗) such that ∩nRn = (p, q) (see Figure 3.1). Then

mµ(p∗, q∗) = lim
n→∞

µ(Rn).

To see that this equation holds, first observe that for every rectangle R that contains
(p∗, q∗) a large enough i exists such that Ri ⊂ R. The sequence {µ(Ri)} is non-
increasing, because µ is monotone. Since it is also bounded below by 0, the minimum
is its limit. So

mµ(p∗, q∗) ≤ minµ(Ri) = lim
i→∞

µ(Ri) ≤ µ(R)

for any R containing (p∗, q∗). Taking the minimum over all R, the right side becomes
mµ(p∗, q∗). By the Sandwich Theorem lim

i→∞
µ(Ri) = mµ(p∗, q∗).

min lim

Figure 3.1: Computing multiplicities.

Proof of the Equivalence Theorem (⇓). Let µ be a finite r-measure. For each deco-
rated point (p∗, q∗) ∈H , we compute its multiplicity. If this multiplicity is greater
or equal to 1, we include ((p∗, q∗),mµ(p∗, q∗)) in the multiset A. We claim that this
A is a unique locally finite multiset that satisfies

µ(R) = card(A|R). (3.1)

• Local finiteness follows since µ is a finite r-measure.

• Next we show that A satisfies Equation (3.1). We set

ν(R) = card(A|R) =
∑

(p∗,q∗)∈R
mµ(p∗, q∗).

The second equation follows by the definition of multiplicity. We must show
that ν = µ. We prove this by induction on k = µ(R).
Base case
Let µ(R) = 0. For every (p∗, q∗) ∈ R we have

0 ≤ mµ(p∗, q∗) ≤ µ(R) = 0.

Consequently, ν(R) = 0.
Inductive step
Suppose that µ(R) = ν(R) for every rectangle R with µ(R) < k. Let R0 be a
rectangle with µ(R0) = k. We must show that ν(R0) = k.
We split R0 into four equal quadrants S1, S2, S3, S4 (see picture).
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S3

S1 S2

S4

By finite additivity of measures µ and ν

µ(R0) = µ(S1) + µ(S2) + µ(S3) + µ(S4),
ν(R0) = ν(S1) + ν(S2) + ν(S3) + ν(S4).

If every quadrant satisfies µ(Si) < k, then µ(R0) = ν(R0) by induction. If
an i exists such that µ(Si) = k, then µ(Sj) = 0 for j 6= i and consequently
ν(Sj) = 0. We set R1 = Si. It suffices to show that ν(R1) = k. We repeat the
argument and subdivide Ri into four equal quadrants. The proof is complete if
all four quadrants satisfy the inductive hypothesis. If not, we find a quadrant
Ri with µ(Ri) = k. We have to show that ν(Ri) = k.
If this iteration does not terminate, we obtain a sequence of closed rectangles
R0 ⊇ R1 ⊇ R2 . . . with µ(Ri) = k for all i = 1, 2, . . .. Since the diameters of
the rectangles tend to zero, their intersection is a single point (r, s).
We now compute multiplicities of all points (p∗, q∗) ∈ R0. Suppose that
(p, q) 6= (r, s). Since ∩iRi = (r, s), an Ri must exist such that (p∗, q∗) /∈ Ri.
Consequently (p∗, q∗) /∈ Rj for j ≥ i. The multiplicity of such a point is 0.
So the only points with potentially nonzero multiplicity are (r∗, s∗). Their
number depends on how the nested sequence of rectangles converges to its
limit.

Let us assume that (r, s) lies in the interior of every rectangle Ri. In this case
(r+, s+), (r+, s−), (r−, s+), and (r−, s−) all belong to every Ri. We divide each
Ri into 4 rectangles R++

i , R+−
i , R−+

i , and R−−i (see picture below).

R−+
i R++

i

R+−
iR−−i
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Taking limits over these four decreasing families of rectangles, we get

mµ(r+, s+) = lim
i→∞

µ(R++
i ), mµ(r−, s+) = lim

i→∞
µ(R−+

i ),
mµ(r+, s−) = lim

i→∞
µ(R+−

i ), mµ(r−, s−) = lim
i→∞

µ(R−−i ).

Since these are decreasing values of nonnegative integers, they eventually sta-
bilize. Therefore, for large i

ν(R0) = mµ(r+, s+) + mµ(r+, s−) + mµ(r−, s+) + mµ(r−, s−)
= µ(R++

i ) + µ(R+−
i ) + µ(R−+

i ) + µ(R−−i )
= µ(Ri)
= k.

The proof is similar in the cases where only 1 or 2 of the decorated points
belong to every Ri.

• Lastly, we show uniqueness. Suppose m’µ is some other multiplicity function
on H for which

µ(R) = ν ′(R) =
∑

(p∗,q∗)∈R
m’µ(p∗, q∗).

We need to show that mµ = m’µ.
Let (p∗, q∗) ∈ H . We pick a nested family of rectangles Ri of which each
contains (p∗, q∗) at its corner. Since µ is a finite measure, (p∗, q∗) is the only
decorated point with positive multiplicity mµ or m’µ in Ri for sufficiently large
i.
Then

mµ(p∗, q∗) = ν(R) = µ(R) = ν ′(R) = m’µ(p∗, q∗)

and consequently mµ = m’µ.

Corollary 3.5. If µ and ν are finite r-measures in the half plane that satisfy

µ(R) = ν(R)

for all R ∈ Rect(H ), then the associated decorated persistence diagrams are the
same.

3.3 The Diagram at Infinity
The decorated point notation extends to infinite intervals. Since real intervals are
open at infinity, the symbols ∞ and −∞ implicitly carry the superscripts ∞+ and
−∞− even though they are usually omitted. For instance, (−∞−, q) means (−∞, q).
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To represent an infinite interval as a decorated point, we work in the extended
half-plane

H = H ∪ {−∞} × R ∪ R× {∞} ∪ {(−∞,∞)},
which we can drawn schematically as a triangle.

To access the full persistence diagram that includes the points at infinity, we
define µ on infinite rectangles. We replace Rect(H ) with a larger class Rect(H )
of:

finite rectangles R = [a, b]× [c, d],
horizontal strips H = (−∞, b]× [c, d],
vertical strips V = [a, b]× [c,∞),
quadrants Q = (−∞, b]× [c,∞),

with a < b < c < d.

Definition 3.6. A rectangle measure or r-measure on H is a function

µ∞ : Rect(H )→ {0, 1, 2, 3, . . .} ∪ {∞}

that is additive under vertical and horizontal splitting.

R = R1 R2 H = H1 R2 V = V1 V2 Q = Q1 V2

R = R1
R2

H = H1
H2

V = V1
R2

Q = Q1
H2

Theorem 3.7 (The Equivalence Theorem in H ). There is a bijective correspon-
dence between:

• Finite r-measures µ∞ on H . Here ‘finite’ means that µ∞(R) <∞ for every
R ∈ Rect(H ).

• Locally finite multisets A of decorated points in H . Here ‘locally finite’ means
that card(A|R) <∞ for every R ∈ Rect(H ).

The measure µ∞ corresponding to a multiset A satisfies the formula

µ∞(R) = card(A|R)

for every R ∈ Rect(H ).

Proof. The following transformation of the plane

x′ = arctan x, y′ = arctan y

identifies R2 with the rectangle [−π
2 ,

π
2 ]× [−π

2 ,
π
2 ]. This claim follows since the proof

of the Equivalence Theorem in H is invariant under this reparametrization of the
plane.
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Corollary 3.8. If µ∞ and ν∞ are finite r-measures in the extended half plane that
satisfy

µ∞(R) = ν∞(R)

for all R ∈ Rect(H ), then the associated decorated persistence diagrams are the
same.

We compute the multiplicities of points at infinity with respect to a finite r-
measure µ∞, using the following formulas:

mµ∞(−∞, q−) = minµ∞((−∞, b]× [c, q]),
mµ∞(−∞, q+) = minµ∞((−∞, b]× [q, d]),
mµ∞(p−,∞) = minµ∞([a, p]× [c,∞)),
mµ∞(p+,∞) = minµ∞([p, b]× [c,∞)),
mµ∞(−∞,∞) = minµ∞((−∞, b]× [c,∞)).



Chapter 4

Parametrized Homology Theories

In Chapter 2 we make use of ‘levelset zigzag persistence’ to determine how the ho-
mology of a parametrized space X changes as we vary the parameter. However,
there we restrict ourselves to parametrized spaces for which the topology changes
at only a finite set of ‘critical values.’ While this strategy may be appropriate when
working with real-world data, it excludes some common theoretical situations. We
now present a more flexible approach using measure theory [8]. In Section 4.1 we
develop a number of parametrized homology theories (for example, parametrized sin-
gular homology, parametrized cohomology, etc). In Section 4.2 we identify sufficient
conditions for a parametrized space to have a well-defined parametrized homology
theory. The chapter finishes with a few examples.

4.1 Parametrized Homology Theories

4.1.1 Parametrized Singular Homology
Given a rectangle R = [a, b] × [c, d] with −∞ < a < b < c < d < ∞, our goal is to
count the homological features of X that persist over the closed [b, c], but not over the
open interval (a, d). We assume that all slices and levelsets have finite-dimensional
homology groups taken with coefficients in a field k.

Consider the following diagram of spaces and inclusion maps.

Xb
a Xc

b Xd
c

Xa Xb Xc Xd

We denote it by X{a,b,c,d}. We apply j-dimensional homology to obtain:

Hj(Xb
a) Hj(Xc

b ) Hj(Xd
c )

Hj(Xa) Hj(Xb) Hj(Xc) Hj(Xd).
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This is a representation of a quiver of type A7. We denote it by Hj(X{a,b,c,d}).
It is decomposable by Gabriel’s Theorem. There are four types of indecomposable
summands that meet b and c, but not a and d. By counting each of these summands,
we get four quantities presented in the notation introduced by Chazal et al. [14]:

jµ
\\
X(R) = 〈 | Hj(X{a,b,c,d})〉,

jµ
∨
X(R) = 〈 | Hj(X{a,b,c,d})〉,

jµ
∧
X(R) = 〈 | Hj(X{a,b,c,d})〉,

jµ
//

X(R) = 〈 | Hj(X{a,b,c,d})〉.

Here represents I[2, 5] and 〈 | Hj(X{a,b,c,d})〉 denotes the num-
ber of times the summand appears in the interval decomposition of
Hj(X{a,b,c,d}). When the zigzag module is clear from the context, we write 〈 〉
instead of 〈 | Hj(X{a,b,c,d})〉.

These four quantities are functions on Rect(H ) and we refer to them as pre-
measures.

Definition 4.1. A parametrized space X has a well-defined parametrized homology if
the four pre-measures above are finite r-measures. By the Equivalence Theorem each
determines a decorated persistence diagram. Let Dgm∗j(X) be the diagram determined
by jµ

∗
X. The parametrized homology of X, ParH∗(X), is the collection of Dgm\\j (X),

Dgm∨j (X), Dgm∧j (X), and Dgm//
j (X) over all j.

The four diagrams in the definition above demonstrate how homological features
perish (whether j-dimensional cycles are killed in homology by (j + 1)-dimensional
chains or whether they cease to exist):

• Dgm\\j (X) contains decorated points (p∗, q∗) corresponding to homology
j-cycles that cease to exist beyond p, and are killed at q;

• Dgm∨j (X) contains decorated points (p∗, q∗) corresponding to homology
j-cycles that cease to exist beyond both endpoints;

• Dgm∧j (X) contains decorated points (p∗, q∗) corresponding to homology
j-cycles that are killed at both endpoints;

• Dgm//
j (X) contains decorated points (p∗, q∗) corresponding to homology

j-cycles that are killed p and cease to exist beyond q.

Figure 4.1 shows examples of each type of homological feature discussed above.
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∨ \\

// ∧

q q

p q

p p

p p

Figure 4.1: The 1-dimensional cycle on the upper left ceases to exist beyond both
endpoints, whereas that on the upper right ceases to exist beyond p and and is killed
by a disc at q.

The Diagram at Infinity

Let X be a parametrized space. We assume that all slices and levelsets of X have
finite dimensional homology groups taken with coefficients in k. To access the full
persistence diagram, we must extend the four pre-measures defined on Rect(H ) to
functions on Rect(H ). For each of the three types of infinite rectangles (horizontal
strips, vertical strips and quadrants), we consider an appropriate diagram of spaces
and maps:

H = (−∞, b]× [c, d]

Xb
−∞ Xc

b Xd
c

∅ Xb Xc Xd,

V = [a, b]× [c,∞)

Xb
a Xc

b X∞c

Xa Xb Xc ∅,

Q = (−∞, b]× [c,∞)

Xb
∞ Xc

b X∞c

∅ Xb Xc ∅.

Applying homology with coefficients in k we get a quiver of type A7 for each infinite
rectangle. We can now proceed as in the case of finite rectangles.

Observe that (−∞,∞) is contained in Dgm∨j (X) for some j, (−∞, q∗) in Dgm∨j
or Dgm\\j , and (p∗,∞) either in Dgm∨j or Dgm//

j .
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Definition 4.2. A parametrized space X has a well-defined parametrized homology
in the extended plane H if the four pre-measures are finite r-measures on Rect(H ).
By the Equivalence Theorem in H each determines a decorated persistence diagram.
Let ∞Dgm∗j(X) be the diagram determined by jµ

∗
∞. The parametrized homology in

H of X, ∞ ParH∗(X), is the collection of ∞Dgm\\j (X), ∞Dgm∨j (X), ∞Dgm∧j (X), and
∞Dgm//

j (X) over all j.

4.1.2 Other Parametrized (Co)homology Theories
Let X be a parametrized space. In the previous section, we applied singular homol-
ogy to X{a,b,c,d} for each rectangle [a, b]× [c, d] in the half plane. We can apply the
same procedure to any other homology theory functor. We always take coefficients
in a field k.

As in the standard version of Alexander Duality, reduced homology groups also
appear in the parametrized version. We denote the four measures with respect to H̃j

by jµ̃
\\
X , jµ̃∨X, jµ̃∧X, and jµ̃

//

X . The corresponding diagrams are D̃gm\\j (X), D̃gm∨j (X),
D̃gm∧j (X), and D̃gm//

j (X). The reduced parametrized homology, ParH̃∗(X), is the
collection of these diagrams over all j.

We draw on two parametrized cohomology theories in order to formulate the
parametrized Alexander Duality Theorem. Firstly, singular cohomology yields
parametrized cohomology of X (ParH∗(X)). Secondly, Čech cohomology yields
parametrized Čech cohomology of X (ParȞ∗(X)).

We treat the points at infinity as in the case of parametrized singular homology.

4.2 Pre-measures into Measures
For the four pre-measures defined at the beginning of Section 4.1 to be r-measures,
they must be finite and additive with respect to horizontal and vertical splitting. In
this section, we discuss the necessary requirements for pre-measures on parametrized
spaces to be r-measures. For parametrized homology we summarize the proofs that
appear in Carlsson et al. [8]. Since one version of Alexander Duality requires a
parametrized version of Čech cohomology, we discuss additivity and finiteness of
pre-measures associated to Čech cohomology. To prove finiteness of pre-measures
for Čech cohomology we have to define a dual of well groups [3]. Uninspiringly, we
call them dual well groups.

4.2.1 Additivity
Parametrized Singular Homology

Let X = (X, pX) be a parametrized space and let Hj be a singular homology functor
with coefficients in k. The proof of additivity requires the Mayer-Vietoris Diamond
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Principle for diagrams of the form

Hj(Xr
p)

Hj(Xq
p) Hj(Xr

q )

Hj(Xq)

where p < q < r. Since this principle follows from the Mayer-Vietoris Theorem, we
have to make sure that it applies. For singular homology, the theorem assumes that
the triad (X,A,B) is excisive with respect to singular homology. This is not true
in our case, because Int(Xq

p) ∪ Int(Xr
q ) does not always include Xq.

This means that we must restrict X to those parametrized spaces whose level sets
are embedded in a certain way. For example, this holds when Xq is a neighborhood
deformation retract of Xr

q or of Xq
p . We can thicken slightly on that side of Xq to

satisfy the interior covering condition without changing the homotopy types in the
diagram. This is satisfied if X is a locally finite simplicial complex and pX a proper
piecewise-linear map. Similarly, we can apply the Mayer-Vietoris Theorem if X is
a manifold and pX is a proper Morse function.

Another option would be to use a homology theory that satisfies the ‘strong ex-
cision’ axiom, for which the Mayer-Vietoris Theorem holds without any restrictions
on how A and B cover X. Carlsson et al. explore this option in [8].

Theorem 4.3. Let (X, pX) be a parametrized space. If Xq is a neighborhood defor-
mation retract of Xr

q or of Xq
p for all p < q < r, then each of the four pre-measures

jµ
\\
X , jµ∨X, jµ∧X and jµ

//
X is additive.

Proof. First we prove that jµ
\\
X is additive with to respect to horizontal splitting.

Let
R = [a, b]× [c, d] R1 = [a, b]× [c, q] R2 = [a, b]× [q, d]

for a < b < c < q < d.
Consider the following diagram of spaces and maps:

Xb
a Xc

b Xq
c Xd

q

Xa Xb Xc Xq Xd

Xq
b Xd

c

We apply homology functor Hj to this diagram. The diagram that we get con-
tains the defining zigzags for all three terms. Moreover, both diamonds are exact.
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As a result, we can use the Mayer-Vietoris Diamond Principle.

jµ
\\
X(R) = 〈 〉

= 〈 〉+ 〈 〉

= 〈 〉+ 〈 〉

= 〈 〉+ 〈 〉

= 〈 〉+ 〈 〉
= jµ

\\
X(R1) + jµ

\\
X(R2).

In the first step we refine the 7-term zigzag in the first line to the 9-term zigzag in the
second line, by including nodes Hj(Xq

c ) and Hj(Xd
q ). Every interval decomposition

of the 9-term zigzag induces an interval decomposition of the 7-term zigzag. So
every interval in the 7-term zigzag arises from an interval in the 9-term zigzag that
restricts to it. This gives us the two terms in the second line. In the following steps,
we combine this restriction principle with the Mayer-Vietoris Diamond Principle to
finish the proof of additivity with respect to the horizontal splitting.

To show additivity with respect to vertical splitting, let

R = [a, b]× [c, d] R1 = [a, p]× [c, d] R2 = [p, b]× [c, d]

for a < b < c < q < d.
Consider the following diagram of spaces and maps:

Xp
a Xb

p Xc
b Xd

c

Xa Xp Xb Xc Xd

Xb
a

Xc
p

We apply the homology functor Hj to this diagram. We use the same procedure
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to calculate:

jµ
\\
X(R) = 〈 〉

= 〈 〉+ 〈 〉

= 〈 〉+ 〈 〉

= 〈 〉+ 〈 〉

= 〈 〉+ 〈 〉
= jµ

\\
X(R1) + jµ

\\
X(R2).

The proof for the other three pre-measure follows the same pattern.

Čech Cohomology

The cohomology theory we are interested in is Čech cohomology. Let (X, pX) be a
parametrized space. We assume throughout this section that X is Hausdorff and
paracompact. Since Čech cohomology satisfies the ‘strong excision’ axiom, Mayer-
Vietoris holds for closed pairs without any restrictions. The diamonds that come
into play in this setting are

Ȟj(Xr
p)

Ȟj(Xq
p) Ȟj(Xr

q )

Ȟj(Xq).

Theorem 4.4. Let (X, pX) be a parametrized space. Each of the four pre-measures
jµ̌
\\
X , jµ̌∨X, jµ̌∧X and jµ̌

//
X is additive.

Proof. See the proof of Theorem 4.3. All the diamonds are exact because Čech
cohomology has ‘strong excision’ property.

4.2.2 Finiteness
Parametrized Singular Homology

Let X = (X, pX) be a parametrized space. Recall that a measure µ is finite if
µ(R) <∞ for all rectangles in the half plane R = [a, b]× [c, d].

Bendich et al. [3] define well groups to capture the notion of a ‘stable topological
feature’.
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Definition 4.5. Let H∗ denote singular homology. The well group of (X, pX) is

WXm+ε
m−ε = ∩Y Im(Hj(Y )→ Hj(Xm+ε

m−ε ))

the intersection being taken over all possible Y = g−1(m), where g : X → R satisfies
||g − pX || ≤ ε.

Bendich et al. [3] also prove the following.

Theorem 4.6. Let X be a parametrized space. We assume that for each triple
p < q < r Xq is a neighborhood deformation retract of Xr

q or of Xq
p . Then

WXm+ε
m−ε = Im(Hj(Xm−ε)→ Hj(Xm+ε

m−ε )) ∩ Im(Hj(Xm+ε)→ Hj(Xm+ε
m−ε ))

for all m and ε.

In other words, the intersection in the definition of the well group is cut out by
the terms Xm−ε and Xm+ε.

Proof. The containment ⊆ follows by definition of the intersection. We must prove
⊇. It suffices to show that

Im(Hj(Y )→ Hj(Xm+ε
m−ε )) ⊇ Im(Hj(Xm−ε)→ Hj(Xm+ε

m−ε ))∩Im(Hj(Xm+ε)→ Hj(Xm+ε
m−ε ))

for Y = g−1(m) where ||g − pX || ≤ ε.
Now we fix a function g : X → R for which ||g − pX || ≤ ε. Let Y = g−1(m). We

write Xm+ε
m−ε = A ∪B where

A = {x ∈ X | g(x) ≤ m} ∩Xm+ε
m−ε and B = {x ∈ X | g(x) ≥ m} ∩Xm+ε

m−ε .

The intersection of A and B is Y . Since ||g− pX || ≤ ε, we also have Xm+ε ⊂ B and
Xm−ε ⊂ A.

Consider the following diagram of spaces and maps:

Hj(Xm+ε
m−ε )

Hj(A) Hj(B)

Hj(Y )

Hj(Xm−ε) Hj(Xm+ε)

Suppose cXm+ε
m−ε
∈ Hj(Xm+ε

m−ε ) is a homology cycle that belongs to

Im(Hj(Xm−ε)→ Hj(Xm+ε
m−ε )) ∩ Im(Hj(Xm+ε)→ Hj(Xm+ε

m−ε )).

By definition cXm−ε ∈ Hj(Xm−ε) and cXm+ε ∈ Hj(Xm+ε) exist that map to cXm+ε
m−ε

under corresponding maps induced by inclusions. We can push cXm−ε , cXm+ε to
cycles cA ∈ Hj(A) and cB ∈ Hj(B) that both map to cXm+ε

m−ε
. Since the diamond is

exact there exists a class cY that gets mapped both to cA and cB. Therefore cXm+ε
m−ε

being the image of cY belongs to Im(Hj(Y )→ Hj(Xm+ε
m−ε )).
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Proposition 4.7. Let X be as in Theorem 4.6. For R = [a, b]× [c, d] with a < b <
c < d and ∗ = \\,∧,∨, //, we have

jµ
∗
X(R) ≤ dimWXc

b .

Proof. By Theorem 4.6 WXc
b = Im(Hj(Xb) → Hj(Xc

b )) ∩ Im(Hj(Xc) → Hj(Xc
b ))

when we take m− ε = b and m+ ε = c.
The dimension of the well group is the number of summands of type of the

diagram
Hj(Xc

b )

Hj(Xb) Hj(Xc)

We denote it by Hj(X{b,c}). Each of the four types , , ,
restricts to when supported only over these three indices. Therefore

dimWXc
b = dim(Im(Hj(Xb)→ Hj(Xc

b )) ∩ Im(Hj(Xc)→ Hj(Xc
b )))

= 〈 ,Hj(X{b,c})〉
≥ jµ

∗
X(R).

Theorem 4.8. Let X = (X, pX) where X is a locally compact triangulable space
and pX a proper continuous map. Then jµ

∗
X is finite for ∗ = \\,∧,∨, //.

Proof. First we show that every WXm+ε
m−ε is finite dimensional. We fix a piecewise-

linear structure on X, and approximate pX : X → R with a piecewise-linear map
g : X → R for which ||g−pX || ≤ ε. Since g is also proper, Y = g−1(m) is triangulable
as a finite simplicial complex. By Theorem 4.6 it follows that

dimWXm+ε
m−ε ≤ dim Im(Hj(Y )→ Hj(Xm+ε

m−ε ))
≤ dim Hj(Y )
< ∞.

We can apply the theorem since Y is a neighbourhood retract (being a piecewise-
linear subspace of a piecewise linear space). The claim now follows by Proposition
4.7.

We can deduce the following from Theorem 4.3 and Theorem 4.8.

Theorem 4.9. A parametrized space X = (X, pX) has a well-defined parametrized
homology if:

• X is a compact manifold with a boundary and pX is Morse;

• X is a finite simplicial complex and pX is a piecewise-linear map.
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Remark 4.10. In the case when (X, pX) has a well-defined parametrized homology
and levelset zigzag persistence diagram, leaving out the decorations on the points in
the parametrized homology yields the levelset zigzag persistence diagram.

Remark 4.11. When X is a compact manifold and p is Morse, the four decorations
correspond exactly with how features perish at endpoints [8]:

∗µ
\\
X ∗µ

∧
X

∗µ
∨
X ∗µ

//
X

This is not always the case as we see in Example 5.24.

Čech Cohomology

To observe finiteness for parametrized Čech cohomology, we need a different ap-
proach. First we need a concept dual to well groups for singular homology.

Definition 4.12. Let Ȟ
j
be the Čech cohomology functor. The dual well group of

(X, pX) is
W ∗Xm+ε

m−ε =
∑
Y

Ker(Ȟ
j
(Xm+ε

m−ε )→ Ȟ
j
(Y )),

where the internal sum is taken over all Y = g−1(m), where g : X → R satisfies
||g − pX || ≤ ε.

The following equivalent of Theorem 4.6 holds.

Theorem 4.13. Let X be a parametrized space. Then

W ∗Xm+ε
m−ε = Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm−ε)) + Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm+ε))

for all m and ε.

Proof. The containment ⊇ follows by definition of the sum (take g = pX + ε and
g = pX − ε).

We fix a function g : X → R for which ||g− pX || ≤ ε. Let Y = g−1(m). To prove
⊆ it suffices to show that

Ker(Ȟ
j
(Xm+ε

m−ε )→ Ȟ
j
(Y )) ⊆ Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm−ε))+Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm+ε)).

We write Xm+ε
m−ε = A ∪B where

A = {x ∈ X | g(x) ≤ m} ∩Xm+ε
m−ε and B = {x ∈ X | g(x) ≥ m} ∩Xm+ε

m−ε .

The intersection of A and B is Y . Since ||g− pX || ≤ ε, we also have Xm+ε ⊂ B and
Xm−ε ⊂ A.
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Consider the following diagram of spaces and maps:

Ȟj(Y )

Ȟj(A) Ȟj(B)

Ȟj(Xm+ε
m−ε )

Ȟj(Xm−ε) Ȟj(Xm+ε)

Suppose cXm+ε
m−ε
∈ Ȟ

j
(Xm+ε

m−ε ) belongs to Ker(Ȟ
j
(Xm+ε

m−ε ) → Ȟ
j
(Y )). Under maps in-

duced by inclusions, cXm+ε
m−ε

gets mapped to cA ∈ Ȟ
j
(A) and cB ∈ Ȟ

j
(B). Both

cA and cB are mapped to 0 in Ȟ
j
(Y ) with corresponding maps induced by inclu-

sions. Čech cohomology has strong excision property, so the diamond is exact. By
exactness, cα ∈ Ȟ

j
(Xm+ε

m−ε ) and cβ ∈ Ȟ
j
(Xm+ε

m−ε ) exist such that

cα 7→ cA ⊕ 0 and cβ 7→ 0⊕ cB.

Next we observe that

cXm+ε
m−ε
−cβ ∈ Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm+ε)), cXm+ε

m−ε
−cα ∈ Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm−ε)),

and

cXm+ε
m−ε
− cβ − cα ∈ Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm−ε)) ∩Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm+ε)).

Since we can write

cXm+ε
m−ε

= (cXm+ε
m−ε
− cβ) + (cXm+ε

m−ε
− cα)− (cXm+ε

m−ε
− cβ − cα),

cXm+ε
m−ε

is contained in Ker(Ȟ
j
(Xm+ε

m−ε )→ Ȟ
j
(Xm−ε)) + Ker(Ȟ

j
(Xm+ε

m−ε )→ Ȟ
j
(Xm+ε)).

Proposition 4.14. Let X be a parametrized space. For R = [a, b] × [c, d] with
a < b < c < d and ∗ = \\,∧,∨, //, we have

jµ̌∗X(R) ≤ dim(Ȟ
j
(Xc

b )/W ∗Xc
b ).

Proof. By Theorem 4.13W ∗Xc
b = Ker(Ȟ

j
(Xc

b )→ Ȟ
j
(Xb))+Ker(Ȟ

j
(Xc

b )→ Ȟ
j
(Xc))

when we take m− ε = b and m+ ε = c.
The dimension of Ȟ

j
(Xc

b )/W ∗Xc
b is the number of summands of type of the

diagram
Ȟj(Xc

b )

Ȟj(Xb) Ȟj(Xc).
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We denote it by Ȟ
j
(X{b,c}). Each of the four types , , ,

restricts to when supported only over these three indices. Therefore

dim Ȟ
j
(Xc

b )/W ∗Xc
b = dim Ȟ

j
(Xc

b )/(Ker(Ȟ
j
(Xc

b )→ Ȟ
j
(Xb)) + Ker(Ȟ

j
(Xc

b )→ Ȟ
j
(Xc)))

= 〈 , Ȟ
j
(X{b,c})〉

≥ jµ̌∗X(R).

Theorem 4.15. Let X = (X, pX) where X is a locally compact triangulable space
and pX a proper continuous map. Then jµ̌∗X is finite for ∗ = \\,∧,∨, //.

Proof. First we show that every Ȟ
j
(Xm+ε

m−ε )/W ∗Xm+ε
m−ε is finite dimensional. We fix

a piecewise-linear structure on X, and approximate pX : X → R with a piecewise-
linear map g : X → R for which ||g − pX || ≤ ε. Since g is also proper, Y = g−1(m)
is triangulable as a finite simplicial complex. Being a piecewise-linear subspace of a
piecewise-linear space it is a neighborhood retract, so

dim Ȟ
j
(Xm+ε

m−ε )/W ∗Xm+ε
m−ε ≤ dim Ȟ

j
(Xm+ε

m−ε )/Ker(Ȟ
j
(Xm+ε

m−ε )→ Ȟ
j
(Y ))

= dim Im(Ȟ
j
(Xm+ε

m−ε )→ Ȟ
j
(Y ))

≤ dim Ȟ
j
(Y )

< ∞.

The claim now follows by Proposition 4.14.

We can deduce the following from Theorem 4.4 and Theorem 4.15.

Theorem 4.16. A parametrized space X = (X, pX) has a well-defined parametrized
Čech cohomology if X is a locally compact triangulable space and pX is a proper
continuous map.

4.3 Examples
First we revisit Example 2.10. This parametrized space of Morse-type has a well-
defined parametrized homology whose diagram lies in the half plane.

Example 4.17. Consider the surface X in Figure 4.2. Since the projection pX onto
the horizontal axis is Morse, X has a well-defined parametrized homology.

To determine the diagrams belonging to each of the four measures, we compute
the multiplicities of the decorated points. When p or q is a regular point, the mul-
tiplicity of (p∗, q∗) is 0 for the four measures defined above. The only situations we
have left to compute are when p and q are critical points. For example, we can now
calculate the multiplicities of (a−1 , a−2 ) with respect to the four measures. Pick ε > 0
such that a1 − ε < a1 < a2 − ε < a2. We have

H0(Xa1−ε,a1,a2−ε,a2) ∼= ⊕ .
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a1 a2 a3 a4 a5

Figure 4.2: Morse function on a 2-manifold with boundary.

The summand on the right is not registered by any of the measures, whereas the one
on the left is detected by 0µ

\\
X . Since these values are the same for all 0 < ε < a2−a1,

we have

m
0µ
\\
X

(a−1 , a−2 ) = lim
ε→0 0µ

\\
X([a1 − ε, a1]× [a2 − ε, a2]) = 1,

m0µ∨X
(a−1 , a−2 ) = lim

ε→0 0µ
∨
X([a1 − ε, a1]× [a2 − ε, a2]) = 0,

m0µ∧X
(a−1 , a−2 ) = lim

ε→0 0µ
∧
X([a1 − ε, a1]× [a2 − ε, a2]) = 0,

m
0µ
//

X
(a−1 , a−2 ) = lim

ε→0 0µ
//

X([a1 − ε, a1]× [a2 − ε, a2]) = 0.

This means that (a−1 , a−2 ) is a point in the decorated persistence diagram belonging
to 0µ

\\
X with a multiplicity of 1. The corresponding 0-homology cycle ceases to ex-

ist beyond a1, and is killed at a2. We repeat this procedure to compute the other
multiplicities. The parametrized homology of X is represented in Figure 4.3.

a5

a4

a3

a2

a1

a1 a2 a3 a4 a5

0

0

0

1

1
1

\\
∨

\\
∨

∨
∧

Figure 4.3: The parametrized homology of X. The color of the point indicates the
dimension, while the symbol designates to which of the diagrams it belongs.
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Now we give an example of a Morse-type parametrized space whose persistence
diagram lies not in the half plane as in the previous example, but in the extended
half plane.

Example 4.18. Consider the surface X in Figure 4.4. Since the projection pX onto
the horizontal axis is Morse, X has a well-defined parametrized homology.

a2 a3 a4a1

Figure 4.4: A parametrized space whose persistence is not captured in the half plane.

As before we determine the diagrams by computing the multiplicities of the deco-
rated points. We repeat the argument from the previous example for finite rectangles.
We now calculate the multiplicity of (−∞, a+

2 ) with respect to the four measures in
dimension 0. For 0 < ε < a3 − a2, b < a1 we compute the four measures on
Hε
b = (−∞, b]× [a2, a2 + ε]:

H0(X−∞,b,a2,a2+ε) ∼= ⊕ ⊕ .

It follows that m
0µ
\\
X

(−∞, a+
2 ) = m0µ∧X

(−∞, a+
2 ) = m

0µ
//
X

(−∞, a+
2 ) = 0. Recall that

mµ∨X
(−∞, a+

2 ) = min {µX∨((−∞, b]× [a2, d])}.

Therefore we have mµ∨X
(−∞, a+

2 ) ≤ 1. Since any horizontal strip of the form
(−∞, b]× [a2, d] contains Hε

b′ for some b′ and ε and by monotonicity of r-measures,
mµ∨X

(−∞, a+
2 ) = 1. This means that (−∞, a+

2 ) is a point in the decorated persistence
diagram in the extended plane belonging to 0µ

∨
X with a multiplicity of 1. We repeat

this procedure to compute the other multiplicities. The parametrized homology of X
is represented in Figure 4.5.

Lastly, we give an example of a parametrized space that is not of Morse-type,
but nevertheless has a well-defined persistence diagram.

Example 4.19. Consider the surface X in Figure 4.6. For every integer k, we have
an object appearing at 2k + 1 that persists until 2k + 2.

We determine the diagrams by computing the multiplicities of the decorated points
as before. The parametrized homology of X is represented in Figure 4.7.
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a4

a3

a2

a1

a1 a2 a3 a4

0

1

1

∨
∨

∧0
∨

0
∨

1∨

0 1
∨ ∨

0 1
∨ ∨

Figure 4.5: The parametrized homology of X.

1 2 3 4−1 0

Figure 4.6: This space has infinitely many critical points and is therefore not of
Morse-type.

1 2 3 5 6 74
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0
∨

1 ∧
0
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1 ∧
0∨

Figure 4.7: The parametrized homology of X.
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Chapter 5

Parametrized Alexander Duality

In Section 5.1 we state and prove the classical Alexander Duality. We assume that
the reader is familiar with basic constructions from cohomology theory (for example,
cup and cap products) as well as Poincaré Duality (see Hatcher [27] and Spanier
[30]). In Section 5.2 we prove that any two embeddings of a parametrized compact
space into parametrized Euclidean space are ‘stably equivalent.’ Consequently, the
complement does not depend on the embedding. This indicates that some kind of
Alexander duality theorem might exist in a parametrized space setting. In Section
5.3 we state and prove several parametrized Alexander Duality Theorems [28].

5.1 Classical Alexander Duality
There are many dualities in algebraic topology. There is the duality between ho-
mology and cohomology, a duality between cup products and cap products, as well
as between suspension and looping.

When J.W. Alexander was working on the Jordan-Brouwer separation theorem
in 1922, he gave a new proof and generalized the result to what we call Alexander
Duality. The original theorem claimed that dim H̃j(X;Z2) = dim H̃n−j−1(Sn\X;Z2)
when X is a subcomplex of Sn viewed as a polyhedron.

The theorem took its final form in the 1960s (see for example Spanier [30]). In its
more general form, it is a statement about the relationship between the cohomology
groups of a locally contractible, compact subset of Rn and the homology groups of
the complement.
Theorem 5.1 (Alexander Duality). If X is a locally contractible, compact subset
of Rn, then for all j = 0, . . . , n− 1,

H̃n−j−1(Rn \X) ∼= Hj(X).

Lemma 5.2. Let X be a locally contractible, compact subset of Rn. Then for all
j = 0, . . . , n− 1

colim Hj(U) ∼= Hj(X)
where the direct limit is taken with respect to open neighborhoods U of X.
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Proof. Hatcher’s Theorem A.7 [27] states that a locally contractible compact set
is a retract of some neighborhood U0 in Rn. In computing the direct limit we
can restrict our attention to the open sets U ⊂ U0, which all retract to X. Each
neighborhood U ⊂ U0 contains a neighborhood U ′ of X, for which the inclusion
U ′ ↪→ U is homotopic to the retraction U ′ → X ⊂ U . To show this, observe that
the linear homotopy H : U × [0, 1]→ Rn from the identity to the retraction U → X
takes X × [0, 1] to X. For each (x, t) ∈ X × [0, 1], pick open sets x ∈ U{x,t} ⊂ U and
t ∈ V{x,t} ⊂ [0, 1] such that

H(U{x,t} × V{x,t}) ⊂ U.

This is possible since H is continuous and U is open. Now for every t ∈ [0, 1], the
set X × {t} is compact, hence there is a finite integer Nt and points x{t,1}, x{t,2},
. . ., x{t,Nt} such that X × {t} is covered with the sets

U{x{t,j},t} × V{x{t,j},t}, j = 1, . . . , Nt. (5.1)

Define the open sets

Ut =
Ny⋃
j=1

U{x{t,j},t}, Vt =
Nt⋂
j=1

V{x{t,j},t}.

Then Ut × Vt ⊃ X × {t}, and Ut × Vt is contained in the union of all the sets in
(5.1), thus H(Ut × Vt) ⊂ U . The compact set K × [0, 1] is covered by the open sets
Ut × Vt, where t ∈ [0, 1]. By compactness, only finitely many such sets suffice, say
U{t1} × V{t1}, . . . , U{tN} × V{tN}. Set

U ′ =
N⋂
i=1

Uti , V ′ =
N⋃
i=1

Vti .

Then U ′ ⊃ X and V ′ = [0, 1] are open, and H(U ′ × [0, 1]) ⊂ ⋃N
i=1H(Uti × Vti) ⊂ U ,

as desired.
The restriction map colim Hj(U) → Hj(X) is surjective since we can pull back

each element of Hj(X) to the direct limit via the retractions U → X.
To show that colim Hj(U)→ Hj(X) is injective, take an element in colim Hj(U)

that gets mapped to 0. By definition, this element comes from Hj(U) for some U .
Given this U , we take U ′ as defined above. Since U ′ ↪→ U factors as U ′ ↪→ X ⊂ U ,
the restriction Hj(U)→ Hj(U ′) factors through Hj(X). Therefore, if an element in
Hj(U) restricts to zero in Hj(X), it also restricts to zero in Hj(U ′). It follows that
colim Hj(U)→ Hj(X) is injective.

Proof of Alexander Duality. The Alexander Duality isomorphism is a composition
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of the following isomorphisms:

Hn−j−1(Rn \X) ∼= Hj+1
c (Rn \X)

∼= colim Hj+1(Rn \X,Rn \ (UC
i ∩Bi))

= colim Hj+1(Rn \X,Ui \X ∪BC
i )

∼= colim Hj+1(Rn, Ui ∪BC
i )

∼= colim H̃j(Ui ∪BC
i )

∼= colim Hj(Ui)⊕ H̃j(BC
i )

∼= Hj(X)⊕ H̃j(Sn−1).

The direct limits are taken with respect to {UC
i ∩Bi}i. Here {Ui} is a nested sequence

of neighborhoods of X that retract to X, such that ∩iUi = X. {Bi} is an increasing
sequence of closed balls containing X centered at the origin, such that ∪iBi = Rn.
By Theorem A.7 of [27], such a sequence {Ui} exists since X is compact and locally
contractible. To compute Hj+1

c (Rn \X) it is sufficient to let the compact sets range
over {UC

i ∩Bi}i, since any compact set in Rn \X is contained in UC
i ∩Bi for some

i.
There are four isomorphisms that are important for our purposes. The first is

the Poincaré Duality isomorphism. The second is the definition of cohomology with
compact supports along with the observation in the previous paragraph. The third is
excision. The fourth comes from the long exact sequences of the pairs (Rn, Ui∪BC

i )
for reduced homology.

By Lemma 5.2 colim Hj(Ui) ∼= Hj(X). To compute colim H̃j(BC
i ) observe that

H̃j(BC
i ) ∼= H̃j(Sn−1) and that all H̃j(BC

i )→ H̃j(BC
i+1) are isomorphisms.

If j 6= n− 1, then colim H̃j(Sn−1) = 0. It follows that H̃n−j−1(Rn \X) ∼= Hj(X)
for j 6= n− 1.

If j = n − 1, then colim H̃j(Sn−1) = k. This chain of isomorphisms yields
H0(Rn \X) ∼= Hn−1(X)⊕ k. As a result, H̃0(Rn \X) ∼= Hn−1(X).

If the space is not locally contractible, it is necessary to use Čech cohomology
on the left side of this isomorphism. Consider the Warsaw circle X depicted in
Figure 5.1. The singular cohomology of X is isomorphic to that of a point. Since
X separates R2, Alexander Duality predicts H1(X) ∼= k. However, this prediction
fails in singular cohomology.

In general, we construct Čech cohomology groups as follows. To each open cover
U = {Uα}α∈A of a given space X we can associate a simplicial complex N (U) called
the nerve of U . Its vertex set is A and a family {α0, . . . , αk} spans a k-simplex if
and only if Uα0 ∩ . . .∩Uαk = ∅. Another cover V = {Vβ} is a refinement of U if each
Vβ is contained in some Uα. In this case these inclusions induce a simplicial map
N (V )→ N (U) that is well-defined up to homotopy. We define Čech cohomology
by the formula

Ȟ
j
(X) = colim Hj(N (U)),

where we take the limit with respect to ever more refined open covers U .
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K

Figure 5.1: Warsaw circle is not locally contractible.

If X is embedded in a manifold M , we can compute Čech cohomology as the
direct limit over neighborhoods inM containing X. We take this to be the definition
of Čech cohomology, since this is always the case in the situations we treat.

Definition 5.3. Let M be a manifold and X a closed subset of M . The Čech
cohomology group of the embedding X ⊂M is the colimit

Ȟ
j
(X) = colim Hj(U),

taken with respect to open neighborhoods U of X.

Theorem 5.4 (Alexander Duality for Čech cohomology). If X is a compact subset
of Rn, then for all j = 0, . . . , n− 1,

H̃n−j−1(Rn \X) ∼= Ȟ
j
(X).

Proof. We use the same argument as in the proof of Theorem 5.1. However, since
Ȟ
j
(X) = colim Hj(Ui) by cofinality, Lemma 5.2 is obsolete.

5.2 The prerequisite for parametrized Alexander
Duality

In order for Alexander Duality to exist, any two embeddings of a compact space
X must be ‘stably equivalent.’ As a result, the homology of the complement does
not depend on the embedding. We first show the statement for ordinary topological
spaces and then extend it to the setting of parametrized spaces.

Proposition 5.5. Let X be a compact set. Let f : X ↪→ Rn and g : X ↪→ Rm be
embeddings. Then

Hj−m(Rn − f(X)) ∼= Hj−n(Rm − g(X))

for max{n,m} ≤ j.
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We prove that any two embeddings of a compact space X are ‘stably equivalent’.
Lemma 5.6. Let X be a compact set. Let f : X ↪→ Rn and g : X ↪→ Rm be em-
beddings. Moreover, let in : Rn → Rn × Rm, u ↪→ (u, 0), and im : Rm → Rn × Rm,
v ↪→ (0, v), be inclusions. Then Im(in ◦f) is ambiently homeomorphic to Im(im ◦g).
Proof. Both in ◦ f and im ◦ g are embeddings of X into Rn × Rm. Now we define

G′(f(x)) = g(x) for x ∈ X

and
F ′(g(x)) = f(x) for x ∈ X.

Im(f) is closed in Rn. By Tietze’s extension theorem G : Rn → Rm exists such that
G|Im(f) = G′. Similarly, since Im(g) is closed in Rm, F : Rm → Rn exists such that
F |Im(g) = F ′.

Next we define

Φ: Rn × Rm → Rn × Rm by (u, v) 7→ (u, v +G(u)).

This Φ is a homeomorphism that maps Im(in ◦ f) to Im(f, g).
Similarly, we define

Ψ: Rn × Rm → Rn × Rm by (u, v) 7→ (u+ F (v), v).

This map takes Im(im ◦ g) to Im(f, g) homeomorphically.
We finish the proof by observing that the composition Ψ−1 ◦ Φ is a homeomor-

phism that maps Im(in ◦ f) to Im(im ◦ g).

The following two Lemmas will come in handy to prove the parametrized version
of Proposition 5.5.
Lemma 5.7. Let X ⊆ Rn be a compact set. Let in+1 be an embedding of Rn into
Rn+1 given by u 7→ (0, u). Then

Hj+1(Rn+1 \ in+1(X)) ∼= Hj(Rn \X)

for j = 0, . . . , n− 1.
Proof. Let

A = {(t, u) | t > 0} ∪ {(t, u) | − ε < t ≤ 0, (0, u) /∈ in+1(X)}

and
B = {(t, u) | t < 0} ∪ {(t, u) | 0 ≤ t < ε, (0, u) /∈ in+1(X)}.

Both A and B are contractible. Furthermore, A ∩ B = (−ε, ε) × in+1(Rn \X) and
A∪B = Rn+1 \ in+1(X). Using the Mayer-Vietoris Principle for the pair A∪B, we
get

Hj+1(Rn \X) 0⊕ 0 Hj+1(Rn+1 \ in+1(X)) Hj(Rn \X) 0⊕ 0
φ∗ ψ∗ ∂∗ φ∗

By exactness it follows that Hj+1(Rn+1\ in+1(X)) ∼= Hj(Rn\X) for j = 0, . . . , n− 1.
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By slightly modifying the argument we can prove Proposition 5.8.

Proposition 5.8. Let X ⊆ Rn × [a, b] be a compact set. Let in+2 be an embedding
of Rn+1 into Rn+2 given by u 7→ (0, u). Then

Hj(Rn × [a, b] \X) ∼= Hj+1(Rn+1 × [a, b] \ in+2(X))

for j = 0, . . . , n.

Proof of Proposition 5.5. By Lemma 5.6 Rn × Rm \ Im(in ◦ f) is homeomorphic to
Rn × Rm \ Im(im ◦ g). Consequently,

Hj(Rn × Rm \ Im(in ◦ f)) = Hj(Rn × Rm \ Im(im ◦ g)).

Repeatedly using Lemma 5.7 we get Hj−m(Rn − f(X)) ∼= Hj−n(Rm − g(X)).

In order to prove the equivalent of Proposition 5.5 for parametrized spaces, we
need a few additional theorems and lemmas.

Theorem 5.9. Let X and Y be isomorphic in the category of parametrized spaces. If
X has a well-defined parametrized homology, then Y has a well-defined parametrized
homology and ParH∗(X) = ParH∗(Y).

Proof. Since X and Y are isomorphic, f : X → Y and g : Y → X exist such that
pY ◦ f = pX , pX ◦ g = pY , g ◦ f = IdX and f ◦ g = IdY . These f and g induce
homeomorphisms between levelsets and slices.

By Corollary 3.5 it is sufficient to show that jµ∗X(R) = jµ
∗
Y(R) for anyR = [a, b]× [c, d]

with −∞ < a < b < c < d <∞, j = 1, . . . , n− 1 and ∗ = \\,∨,∧, //.
The parametrized homeomorphism f induces the following isomorphism of zigzag

modules:

Hj(Xa)

Hj(Xb
a)

Hj(Xb)

Hj(Xc
b )

Hj(Xc)

Hj(Xd
c )

Hj(Xd)

Hj(Ya).

Hj(Y b
a )

Hj(Yb)

Hj(Y c
b )

Hj(Yc)

Hj(Y d
c )

Hj(Yd)

(fa)∗

(f ba)∗

(fb)∗

(fc)∗

(fd)∗

(f cb )∗

(fdc )∗

It follows that Hj(X{a,b,c,d}) and Hj(Y{a,b,c,d}) have the same interval
decomposition. Consequently, jµ∗X(R) = jµ

∗
Y(R).
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To prove Theorem 5.10 we can use the same argument in combination with
Corollary 3.8.
Theorem 5.10. Let X and Y be isomorphic in the category of parametrized spaces.
If X has a well-defined parametrized homology in H , then Y has a well-defined
parametrized homology in H and ∞ ParH∗(X) = ∞ ParH∗(Y).

Next we show an equivalent of Lemma 5.7 for parametrized homology. In our
setting, a parametrized space X where every levelset and slice is a compact set is em-
bedded in a parametrized Euclidean space Rn+1. Whenever we write a parametrized
space Rn+1, this means a pair (Rn+1, pRn+1), where

pRn+1(x1, x2, . . . , xn+1) = xn+1.

Lemma 5.11. Let X be a parametrized space, where every levelset and slice is a com-
pact set and let f : X ↪→ Rn+1 be a parametrized embedding. We write f : X ↪→ Rn+1

as a pair (f, pX). We define in+1 : Rn+1 ↪→ Rn+2 by in+1(u) = (0, u). If Rn+1 \ Im((f, pX))
has a well-defined parametrized homology, then Rn+2 \ Im(in+1 ◦ (f, pX)) also has a
well-defined parametrized homology. As a result,

ParH∗(Rn+1 \ Im((f, pX))) = ParH∗+1(Rn+2 \ Im(in+1 ◦ (f, pX))).

Proof. By Corollary 3.5 it is sufficient to show that for all j and ∗ = \\,∨,∧, //,

jµ
∗
Rn+1 \ Im((f,pX))(R) = j+1µ

∗
Rn+2 \ Im(in+1◦(f,pX))(R) (5.2)

for all R = [a, b]× [c, d] with −∞ < a < b < c < d <∞.
Consider the diagram below:

Hj((Rn − f(X))a)

Hj((Rn − f(X))ba)

Hj((Rn − f(X))b)

Hj((Rn − f(X))cb)

Hj((Rn − f(X))c)

Hj((Rn − f(X))dc)

Hj((Rn − f(X))d)

Hj+1((Rn+1 − (0, f(X)))a)).

Hj+1((Rn+1 − (0, f(X)))ba)

Hj+1((Rn+1 − (0, f(X)))b)

Hj+1((Rn+1 − (0, f(X)))cb)

Hj+1((Rn+1 − (0, f(X)))c)

Hj+1((Rn+1 − (0, f(X)))dc)

Hj+1((Rn+1 − (0, f(X)))d)

By Lemma 5.7 and Proposition 5.11 the horizontal arrows are isomorphisms that
arise from the Mayer-Vietoris sequence for homology groups. By Theorem 15.4 [24]
all squares commute. Therefore, the two zigzag modules are isomorphic and have
the same interval decomposition. Equation 5.2 follows.



50 Parametrized Alexander Duality

We can prove the following lemma using the same argument in combination with
Corollary 3.8.

Lemma 5.12. Let X be a parametrized space, whose every levelset and slice is a
compact set and let f : X ↪→ Rn+1 be a parametrized embedding. We write f : X ↪→ Rn+1

as a pair (f, pX). We also define in+1 : Rn+1 ↪→ Rn+2 by in+1(u) = (0, u). If
Rn+1 \ Im((f, pX)) has a well-defined parametrized homology in H , then
Rn+2 \ Im(in+1 ◦ (f, pX)) also has a well-defined parametrized homology in H . As a
result,

∞ ParH∗(Rn+1 \ Im((f, pX))) = ∞ ParH∗+1(Rn+2 \ Im(in+1 ◦ (f, pX))).

The following theorem indicates that the parametrized homology of the comple-
ment of a parametrized space with compact levelesets and slices does not depend
on the parametrized embedding.

Theorem 5.13. Let X be a parametrized space, whose every levelset and slice is a
compact set. Let f : X ↪→ Rn+1 and g : X ↪→ Rm+1 be parametrized embeddings. We
write f as a pair (f, pX) and g as a pair (g, pX).

If X has a well-defined parametrized homology, then

ParH∗−m(Rn+1 \ Im((f, pX))) = ParH∗−n(Rm+1 \ Im((g, pX))).

If X has a well-defined parametrized homology in H , then

∞ ParH∗−m(Rn+1 \ Im((f, pX))) = ∞ ParH∗−n(Rm+1 \ Im((g, pX))).

Proof. Maps
in : Rn × R→ Rn × Rm × R, (u, a) 7→ (u, 0, a)

and
im : Rm × R→ Rn × Rm × R, (v, a) 7→ (0, v, a)

are parametrized embeddings and consequently in ◦ f and im ◦ g are parametrized
embeddings of X into Rn × Rm × R.

Now we define:

G′(f(x), pX(x)) = g(x) for x ∈ X

and
F ′(g(x), pX(x)) = f(x) for x ∈ X.

Im((f, pX)) is closed in Rn+1 and Im((g, pX)) is closed in Rm+1. By Tietze’s extension
theorem G : Rn × R → Rm and F : Rm × R→ Rn exist such that G|Im(f) = G′ and
F |Im(g) = F ′.

Now we define

Φ: Rn × Rm × R→ Rn × Rm × R by (u, v, a) 7→ (u, v +G(u, a), a).
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This is a parametrized homeomorphism. Furthermore,

Φ(f(x), 0, pX(x)) = (f(x), g(x), pX(x)),

so Φ maps Im(in ◦ (f, pX)) in Rn × Rm × R to Im((f, g, pX)).
Similarly, we define

Ψ: Rn × Rm × R→ Rn × Rm × R by (u, v, a) 7→ (u+ F (v, a), v, a).

This is a parametrized homeomorphism that maps Im(im ◦ (g, pX)) in Rn×Rm×R
to Im((f, g, pX)).

The composition Ψ−1 ◦ Φ: Rn × Rm × R → Rn × Rm × R is a parametrized
homeomorphism that maps Im(in ◦ (f, pX)) to Im(im ◦ (g, pX)). This implies that
Rn × Rm × R \ Im(in ◦ (f, pX)) and Rn × Rm × R \ Im(im ◦ (g, pX)) are isomorphic
in the category of parametrized spaces. By Theorem 5.9

ParH∗(Rn × Rm × R \ Im(in ◦ (f, pX))) = ParH∗(Rn × Rm × R \ Im(im ◦ (g, pX)))

if these spaces have a well-defined parametrized homology. Repeatedly using Lemma
5.11 finishes the proof.

We prove the statement for parametrized homology in H using Theorem 5.10
and Lemma 5.12 in a similar manner.

5.3 Parametrized Alexander Duality
This section extends the Alexander Duality theorems to parametrized spaces.

The following theorem is the parametrized equivalent of Theorem 5.1.

Theorem 5.14. Let X ⊂ Rn × R with n ≥ 2, let Y = (Rn × R) \X, and let p be
the projection onto the second factor. We assume that the levelsets Xa for a ∈ R,
and slices Xb

a for a < b are compact and locally contractible. If X = (X, p|X) has a
well-defined parametrized cohomology, then the pair Y = (Y, p|Y ) has a well-defined
reduced parametrized homology. Additionally, for all j = 0, . . . , n− 1:

D̃gm\\n−j−1(Y) = Dgmj//(X),
D̃gm∨n−j−1(Y) = Dgmj∧(X),
D̃gm∧n−j−1(Y) = Dgmj∨(X),
D̃gm//

n−j−1(Y) = Dgmj\\(X).

This is a statement about the diagram in the half plane H . If X is compact,
there are no points at infinity and there is no need to work in the extended half
plane H . In this case ParH∗ and ParH∗ capture all the information about homology
and cohomology.
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Remark 5.15. From the proof we can deduce the following duality: if a j-dimensional
cohomology cycle in X is killed (ceases to exist) at endpoint p, then there is a cor-
responding (n − j − 1)-dimensional homology cycle in Y, which ceases to exist (is
killed) beyond that same endpoint.

Remark 5.16. It follows from Theorem 4.9 that the conditions of the theorem are
satisfied for (X, p|X), where:

• X is a compact submanifold of Rn ×R (with or without boundary) and p|X is
Morse;

• X is a finite simplicial complex and p|X is a piecewise-linear map;

Example 5.17 presents a case where our theorem is applicable, but which is not
covered by Edelsbrunner and Kerber’s Land and Water Theorem [20]:

Example 5.17. Let S ⊂ R3 be the Alexander horned sphere (see [27, Example
2B.2]). Let X = S × [−1, 1] ⊂ R3 × R, let Y = R3 × R \ X, and let p be the
projection onto the second factor. The conditions of Theorem 5.21 are satisfied,
because S is locally contractible and compact.

The proof of Theorem 5.14 requires two lemmas.

Lemma 5.18. Let X, Y , and p be as in the theorem. Consider the following diagram
of vector spaces and maps:

H̃n−j−1(Y b
a )

H̃n−j−1(Ya) H̃n−j−1(Yb)

Hj(Xa) Hj(Xb)

Hj(Xb
a)

ia ib

ia ib

Da Db

Maps ia, ib, ia, and ib are induced by the inclusions Xa ↪→ Xb
a, Xb ↪→ Xb

a, Ya ↪→ Y b
a ,

and Yb ↪→ Y b
a . Isomorphisms Da and Db are Alexander Duality isomorphisms in

Rn × {a} and Rn × {b}. Then Im (Dai
a ⊕Dbi

b) = Ker (ia − ib).

Remark 5.19. This lemma holds even if we do not assume field coefficients.

Proof. We look at the long exact sequence for homology groups of the pair (Y b
a , Ya ∪ Yb):

→ Hn−j(Y b
a , Ya ∪ Yb)→ Hn−j−1(Ya ∪ Yb)→ Hn−j−1(Y b

a )→ Hn−j−1(Y b
a , Ya ∪ Yb)→

(5.3)
We claim that an isomorphism Hj(Xb

a) → Hn−j(Y b
a , Ya ∪ Yb) exists making the fol-

lowing diagram commute up to a sign
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Hj(Xb
a) Hj(Xa)⊕Hj(Xb)

Hn−j(Y b
a , Ya ∪ Yb) Hn−j−1(Ya)⊕Hn−j−1(Yb) Hn−j−1(Y b

a ).

ia ⊕ ib

ia − ib∼ = ∼ =

The case j 6= n − 1 follows immediately by virtue of the exactness of the bottom
line. We analyze the case when j = n− 1 separately.

Let H∗c denote cohomology with compact supports. According to Hatcher [27,
Chapter 3, Problem 35], the following diagram, where the horizontal lines are long
exact sequences of the corresponding pairs and the vertical arrows are Poincaré
Duality isomorphisms, commutes up to a sign.

· · · Hj+1
c (Y b

a ) Hj+1
c (Ya ∪ Yb) Hj+2

c (Y b
a , Ya ∪ Yb) · · ·

· · · Hn−j(Y b
a , Ya ∪ Yb) Hn−j−1(Ya ∪ Yb) Hn−j−1(Y b

a ) · · ·

∼ = ∼ = ∼ =

Let {Ui}i be a nested sequence of neighborhoods of Xb
a in Rn × [a, b], such that

U1 retracts onto Xb
a and ∩iUi = Xb

a. Such sequences exist since Xb
a is compact and

locally contractible by Theorem A.7 [27]. Further let {Bi} be an increasing sequence
of closed balls centered at the origin and containing Xb

a such that ∪iBi = Rn+1. We
may assume that U1 ⊂ IntB1 so that U i ∩ BC

i = ∅ for all i. Now U1 ∩ Rn × {a} is
open in Rn × {a} in the subspace topology and contains Xa. Since Xa is compact
and locally contractible, we can find a neighborhood Ua of Xa which retracts onto
Xa (again using Theorem A.7 [27]). Pick a nested sequence of neighborhoods Ua

i

of Xa such that Ua
i ⊂ Ua ∩ Ui for each i and ∩iUa

i = Xa. In a similar manner we
obtain a system of neighborhoods for Xb.

Let AC denote the complement of A (where the ambient set is clear from the
context). By cofinality, we have

Hj+1
c (Y b

a ) ∼= colim Hj+1(Y b
a , Y

b
a \Bi ∩ UC

i ),
Hj+1
c (Ya ∪ Yb) ∼= colim Hj+1(Ya, Ya \Bi ∩ (Ua

i )C)⊕ Hj+1(Yb, Yb \Bi ∩ (U b
i )C).

Moreover, the restriction Hj+1
c (Y b

a ) → Hj+1
c (Ya ∪ Yb) is the the colimit of the corre-

sponding morphisms.
Using the notation (BC

i )ba = BC
i ∩ Rn × [a, b], (BC

i )a = BC
i ∩ Rn × {a}, and

(BC
i )b = BC

i ∩ Rn × {b}, we rewrite the expressions

Hj+1(Y b
a , Y

b
a \Bi ∩ UC

i ) = Hj+1(Y b
a , (BC

i )ba ∪ (Ui \Xb
a)),

Hj+1(Ya, Ya \Bi ∩ (Ua
i )C) = Hj+1(Ya, (BC

i )a ∪ (Ua
i \Xa)),

Hj+1(Yb, Yb \Bi ∩ (U b
i )C) = Hj+1(Yb, (BC

i )b ∪ (U b
i \Xb)).
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We have
Hj+1(Y b

a , (BC
i )ba ∪ (Ui \Xb

a)) ∼= Hj+1(Rn × [a, b], (BC
i )ba ∪ Ui)

∼= H̃j((BC
i )ba ∪ Ui),

Hj+1(Ya, (BC
i )a ∪ (Ua

i \Xa)) ∼= Hj+1(Rn × {a}, (BC
i )a ∪ Ua

i )
∼= H̃j((BC

i )a ∪ Ua
i ),

Hj+1(Yb, (BC
i )b ∪ (Ua

i \Xb)) ∼= Hj+1(Rn × {b}, (BC
i )b ∪ U b

i )
∼= H̃j((BC

i )b ∪ U b
i ).

The left-hand isomorphisms follow from excision and the right-hand isomorphisms
from the long exact sequence of a pair.

By the naturality of the above isomorphisms and by the commutativity of the
Poincaré Duality ladder, the following diagram commutes up to a sign.

colim H̃j((BC
i )ba ∪ Ui) colim(H̃j((BC

i )a ∪ Uai )⊕ H̃j((BC
i )b ∪ U bi ))

Hn−j(Y b
a , Ya ∪ Yb) Hn−j−1(Ya ∪ Yb).

∼ = ∼ =
(5.4)

Arguing as Hatcher, in Theorem 3.44 [27], we infer

colim H̃j((BC
i )ba ∪ Ui) ∼= colim(H̃j(Sn−1))⊕ colim(Hj(Ui))

∼= H̃j(Sn−1)⊕ Hj(Xb
a).

(5.5)

Similarly
colim(H̃j((BC

i )a ∪ Ua
i )) ∼= H̃j(Sn−1)⊕ Hj(Xa), (5.6)

and
colim(H̃j((BC

i )b ∪ U b
i )) ∼= H̃j(Sn−1)⊕ Hj(Xb). (5.7)

If j 6= n − 1, we have H̃j(Sn−1) = 0. We insert (5.5), (5.6) and (5.7) into (5.4)
and get the desired commutative square

Hj(Xb
a) Hj(Xa)⊕Hj(Xb)

Hn−j(Y b
a , Ya ∪ Yb) Hn−j−1(Ya)⊕Hn−j−1(Yb).

∼ = ∼ =

This finishes the proof for j 6= n− 1.
Now let j = n− 1. In this case H̃j(Sn−1) ∼= k. Observe that

H0(Ya ∪ Yb) ∼= k⊕ H̃0(Ya)⊕ k⊕ H̃0(Yb) and H0(Y b
a ) ∼= k⊕ H̃0(Y b

a ).

Taking this into account, inserting (5.7), (5.6) and (5.5) into (5.4), and extending
the bottom line by an extra term from (5.3), we get the following commutative
diagram

k⊕Hn−1(Xb
a) k⊕Hn−1(Xa)⊕ k⊕Hn−1(Xb)

H1(Y b
a , Ya ∪ Yb) k⊕ H̃0(Ya)⊕ k⊕ H̃0(Yb) k⊕ H̃0(Y b

a ).

∼ = ∼ =
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Once again, the vertical maps are isomorphisms. Since the additional copies of k
get mapped to corresponding copies of k, exactness of the diamond diagram from
the statement of the lemma now follows for j = n− 1.

Now we can state and prove a version of the Alexander Duality theorem for
levelset zigzag persistence.

Theorem 5.20 (Alexander Duality for Levelset Zigzag Persistence). Let a
parametrized space X ⊂ Rn × R, n ≥ 2, have compact and locally contractible
levelsets and slices, let Y = (Rn×R)\X, and let p be the projection onto the second
factor. We fix a discretization

−∞ < s1 < s2 < . . . < sm <∞,

where m ≥ 2. Assume that the levelsets Xsk where k = 1, . . . ,m and slices Xsk+1
sk

where k = 1, . . . ,m− 1 are locally contractible. There is then a partial bijection
between the set of intervals that appear in the interval modules decomposition of
Hj(X{s1,s2,...,sm}) and those that appear in the interval modules decomposition of
H̃n−j−1(Y{s1,s2,...,sm}) for j = 0, 1, . . . , n− 1. For a fixed j the intervals are matched
according to the following rules:

• For k = 1, . . . ,m− 1 the intervals of type [2k, 2k] are unmatched;

• For i < k < m the intervals [2i, 2k] are matched with intervals [2i+ 1, 2k − 1]
and vice versa;

• For i < k < m the intervals [2i, 2k − 1] are matched with intervals [2i+ 1, 2k]
and vice versa;
For k < m the intervals [2k, 2m−1] are matched with intervals [2k+1, 2m−1]
and vice versa;

• For 1 < i < k < m the intervals [2i− 1, 2k − 1] are matched with intervals
[2i− 2, 2k] and vice versa;
For k < m the intervals [1, 2k − 1] are matched with intervals [1, 2k] and vice
versa;
For 1 < k the intervals [2k − 1, 2m− 1] are matched with intervals
[2k − 2, 2m− 1] and vice versa;
Intervals [1, 2m− 1] are matched with intervals [1, 2m− 1] and vice versa;

• For 1 < i < k < m the intervals [2i− 1, 2k] are matched with intervals
[2i− 2, 2k − 1] and vice versa;
For k < m the intervals [1, 2k] are matched with intervals [1, 2k − 1] and vice
versa.

Proof. By Lemma 5.18 all the diamonds in the following diagram are exact:
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Hj(Xs2
s1 ) Hj(Xs3

s2 ) . . . Hj(Xsm−1
sm−2 ) Hj(Xsm

sm−1)

Hj(Xs1) Hj(Xs2) Hj(Xs3) Hj(Xsm−2) Hj(Xsm−1) Hj(Xsm)

H̃n−j−1(Y s2
s1 ) H̃n−j−1(Y s3

s2 ) . . . H̃n−j−1(Y sm−1
sm−2 ) H̃n−j−1(Y sm

sm−1)

H̃n−j−1(Ys1) H̃n−j−1(Ys2) H̃n−j−1(Ys3) H̃n−j−1(Ysm−2) Hj(Xsm−1) H̃n−j−1(Ysm)

∼ = ∼ = ∼ = ∼ = ∼ = ∼ =

Now suppose that the interval [2, 2m − 2] appears in the interval decomposition
of Hj(X{s1,s2,...,sm}). By applying the Diamond Principle for each diamond, the
following change occurs:

The same argument works in other cases.

Proof of Theorem 5.14. (X, p|X) has a well-defined parametrized cohomology, so
jµ
\\
X , jµ

∨
X, jµ

∧
X, and jµ

//

X are finite r-measures for j = 0, . . . , n− 1.
Let R = [a, b]× [c, d] with −∞ < a < b < c < d < ∞. For this particular

discretization it follows by Theorem 5.20 that the four indecomposable summands
change as follows:

Hj(X{a,b,c,d}) H̃n−j−1(Y{a,b,c,d})

↔
↔
↔
↔

From here we conclude that

〈 | H̃n−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉,
〈 | H̃n−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉,
〈 | Hn−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉,
〈 | H̃n−j−1(Y{a,b,c,d})〉 = 〈 | Hj(X{a,b,c,d})〉.

Consequently,
n−j−1µ̃

\\
Y(R) = jµ

//
X(R),

n−j−1µ̃
∨
Y(R) = jµ∧X(R),

n−j−1µ̃
∧
Y(R) = jµ∨X(R),

n−j−1µ̃
//

Y(R) = jµ
\\
X(R).
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Since jµ∗X are finite r-measures for j = 1, . . . n − 1, ∗ = \\,∨,∧, //, it follows that
n−j−1µ̃

∗
Y are finite r-measures for j = 1, . . . , n− 1 and ∗ = \\,∨,∧, //. Therefore Y

has a well-defined parametrized homology. Since the measures are the same on all
the rectangles, the associated decorated diagrams are also the same by Corollary
3.5. This proves Theorem 5.14.

Parametrized homology matches levelset zigzag persistence in most real-world
situations. Since an algorithm exists to compute the latter, the following theorem
is useful.

Theorem 5.21. Let X ⊂ Rn × R with n ≥ 2, let Y = (Rn × R) \X, and let p be
the projection onto the second factor. We assume that the levelsets Xa for a ∈ R,
and slices Xb

a for a < b are compact and locally contractible. If (X, p|X) has a
well-defined parametrized homology, then the pair (Y, p|Y ) has a well-defined reduced
parametrized homology. Additionally, for j = 0, . . . , n− 1:

D̃gm\\n−j−1(Y) = Dgm//
j (X),

D̃gm∨n−j−1(Y) = Dgm∧j (X),
D̃gm∧n−j−1(Y) = Dgm∨j (X),
D̃gm//

n−j−1(Y) = Dgm\\j (X).

This statement follows from Theorem 5.14 and a parametrized version of the
Universal Coefficient Theorem.

Lemma 5.22. Let Z = X1 ↔ X2 ↔ . . . ↔ Xn be a sequence of topological spaces
and continuous maps between them. Let Hj(Z) and Hj(Z) be the zigzag modules we
get by applying the Hj and Hj functors, respectively. Then the barcodes for Hj(Z)
and Hj(Z) are equal as multisets of intervals.

Proof. Hj(Z) is decomposable by Gabriel’s Theorem, therefore bi, di exist for 1 ≤
i ≤ n such that

Hj(Z) ∼= ⊕1≤i≤nI(bi, di).

If the type of Hj(Z) is τ , then applying the contravariant functor Homτ -Mod(; k) gives
an isomorphism

Homτ -Mod(Hj(Z); k) ∼= ⊕1≤i≤nI(bi, di)

in the category τ op-Mod.
By the Universal Coefficient Theorem [27] we have Hτ -Mod(Hj(Z); k) ∼= Hj(Z). It

follows that the barcodes for Hj(Z) and Hj(Z) are equal as multisets of intervals.

Proposition 5.23. Let X be a parametrized space. It has a well-defined parametrized
homology ParH∗(X) if and only if X has a well-defined parametrized cohomology
ParH∗(X). In that case, ParH∗(X) = ParH∗(X).
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Proof. By Lemma 5.22 Hj(X{a,b,c,d}) and Hj(X{a,b,c,d}) have the same interval de-
composition for j = 1, . . . , n − 1. This implies that jµ

∗
X(R) = jµ∗X(R) for any

R = [a, b] × [c, d] with −∞ < a < b < c < d < ∞ and ∗ = \\,∨,∧, //. This
proves the first claim. If X has a well-defined parametrized homology then by the
Equivalence Theorem Dgm∗j(X) = Dgmj∗(X) for all j, proving the second claim.

Example 5.24. Revisiting Example 4.17, let cX denote the 0-dimensional homology
cycle in X that ceases to exist beyond a1 and is killed at a2 (see Figure 5.2).

cX

a1 a2 a3 a4 a5

Figure 5.2: A 0-homology cycle cX in X ceases to exist beyond a1 and is killed at
a2.

The parametrized homology of X and the reduced parametrized homology of Y
can be seen in Figure 5.3.

a5

a4

a3

a2

a1

a1 a2 a3 a4 a5

a5

a4

a3

a2

a1

a1 a2 a3 a4 a5

0

0

0

1

1
1

\\
∨

\\
∨

∨
∧

1

1

1

0

0
0

//
∧

//
∧

∧
∨

Figure 5.3: The parametrized homology of X is on the left and the one of Y on the
right.

The red point in the diagram representing the cycle cX indicates its dimension,
whereas the symbol \\ designates the way it perishes at endpoints. By Theorem 5.21
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we know that there is a corresponding 1-dimensional homology cycle cY in Y. Its
dimension is indicated in blue. In addition to the change of dimension, we observe
the following:

• Since cycle cY persists over [a1, a2) like cX , the decorations of the points rep-
resenting these two cycles are the same;

• In contrast to cX , the cycle cY is killed at a1 and ceases to exist beyond a2.
This is expressed by the symbol //.

Next we explore if there is a parametrized version of Alexander Duality for
diagrams in the extended half-plane H . To do this we need to account for the
points at infinity. The following two diamonds come into play.

H̃n−j−1(Y b
−∞)

0 H̃n−j−1(Yb)

0 Hj(Xb)

Hj(Xb
−∞)

0 ib

0
ib

0 Db

H̃n−j−1(Y∞a )

H̃n−j−1(Ya) 0

Hj(Xa) 0

Hj(X∞a )

ia 0

ia 0

Da 0

These two diamonds are not necessarily exact. Nor can we say much about the
relationship between Hj(X∞a ) and H̃n−j−1(Y ∞a ) or Hj(Xb

−∞) and H̃n−j−1(Y b
−∞). See

Figure 5.4.

a

Figure 5.4: If b < a, we have H̃0(Y b
−∞) ∼= H1(Xb

−∞) ∼= k. However, H̃0(Y a
−∞) ∼= k

and H1(Xa
−∞) ∼= 0.

In order for a theorem to exist, we need additional constraints on the parametrized
space X, more specifically, on its behavior at infinity. As in Chapter 2, we assume
that X and Y are cylindrical at infinity.
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Theorem 5.25. Let X ⊂ Rn × R with n ≥ 2, let Y = (Rn × R) \ X, and let
p be the projection onto the second factor. We assume that the levelsets Xa for
a ∈ R, and slices Xb

a for −∞ < a < b < ∞ are compact and locally contractible.
Additionally, we assume that X and Y are cylindrical at infinity. Let X = (X, p|X)
have a well-defined parametrized cohomology and Y = (Y, p|Y ) a well-defined reduced
parametrized homology. Then, for all j = 0, . . . , n− 1:

D̃gm\\n−j−1(Y) = Dgmj//(X),
D̃gm∨n−j−1(Y) = Dgmj∧(X),
D̃gm∧n−j−1(Y) = Dgmj∨(X),
D̃gm//

n−j−1(Y) = Dgmj\\(X).

Points at infinity are matched according to the following rules:

(−∞,∞) ∈ Dgmj∨(X) ⇔ (−∞,∞) ∈ D̃gm∨n−j−1(Y),
(−∞, q∗) ∈ Dgmj∨(X) ⇔ (−∞, q∗) ∈ D̃gm\\n−j−1(Y),
(−∞, q∗) ∈ Dgmj\\(X) ⇔ (−∞, q∗) ∈ D̃gm∨n−j−1(Y),
(p∗,∞) ∈ Dgmj//(X) ⇔ (p∗,∞) ∈ D̃gm∨n−j−1(Y),
(p∗,∞) ∈ Dgmj∨(X) ⇔ (p∗,∞) ∈ D̃gm//

n−j−1(Y).

Proof. We proved the first statement in Theorem 5.14. We now examine what
happens with quivers associated with infinite rectangles.

By assumption X and Y are cyllindrical at infinity. By definition an a > 0 exists
such that the following pairs are homeomorphic in the category of parametrized
spaces: X∞a

∼= Xa × [a,∞), Y ∞a ∼= Ya × [a,∞), X−a−∞ ∼= X−a × (−∞,−a], and
Y −a−∞

∼= Y−a × (−∞,−a]. If b > a, then

Hj(X∞b ) ∼= Hj(Xb) ∼= H̃n−j−1(Yb) ∼= H̃n−j−1(Y ∞b ).

If b < −a, then

Hj(Xb
−∞) ∼= Hj(Xb) ∼= H̃n−j−1(Yb) ∼= H̃n−j−1(Y b

−∞).

First we check how the four types of generators change on horizontal strips
H = (−∞, b]× [c, d] where b < −a. The associated quivers are

Hj(Xb
−∞)

Hj(Xc
b ) Hj(Xd

c )

0 Hj(Xb) Hj(Xc) Hj(Xd)

H̃n−j−1(Y b
−∞)

H̃n−j−1(Y c
b ) H̃n−j−1(Y d

c )

0 H̃n−j−1(Yb) H̃n−j−1(Yc) H̃n−j−1(Yd),

∼ =∼ = ∼ = ∼ = ∼ =
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where the diamonds on the right are exact. The indecomposable summands change
as follows:

Hj(X{−∞,b,c,d}) H̃n−j−1(Y{−∞,b,c,d})

↔
↔
↔
↔

From here we conclude that

n−j−1µ̃
∨
Y(H) = jµ

\\
X(H),

n−j−1µ̃
\\
Y(H) = jµ∨X(H),

n−j−1µ̃
//
Y(H) = jµ∧X(H),

n−j−1µ̃
∧
Y(H) = jµ

//
X(H).

Similarly we get

n−j−1µ̃
∨
Y(V ) = jµ

//
X(V ),

n−j−1µ̃
\\
Y(V ) = jµ∧X(V ),

n−j−1µ̃
//
Y(V ) = jµ∨X(V ),

n−j−1µ̃
∧
Y(V ) = jµ

\\
X(V ),

n−j−1µ̃
∨
Y(Q) = jµ∨X(Q),

n−j−1µ̃
\\
Y(Q) = jµ

\\
X(Q),

n−j−1µ̃
//
Y(Q) = jµ

//

X(Q),
n−j−1µ̃

∧
Y(Q) = jµ∧X(Q),

for vertical strips V = [p, b] × [c,∞) (c > a) and Q = (−∞, b] × [c,∞) (c > a and
b < −a).

We show the that (−∞, q+) ∈ Dgmj∨(X) ⇔ (−∞, q+) ∈ D̃gm\\n−j−1(Y). Let
(−∞, q+) ∈H . By definition

mjµ∨X
(−∞, q+) = min{jµ∨X((−∞, b]× [q, d])}.

We can assume that b < −a. On these horizontal strips n−j−1µ̃
\\
Y = jµ∨X. Therefore,

mjµ∨X
(−∞, q+) = m

n−j−1µ̃
\\
Y

(−∞, q+).

So (−∞, q+) appears in D̃gm\\n−j−1(Y) with the same multiplicity as (−∞, q+) in
Dgmj∨(X) and vice versa.

We prove other equivalences using a similar argument.

The parametrized homology from Example 4.18 contains points at infinity. We
analyze the parametrized homology of the complement using Theorem 5.30.

Example 5.26. Consider the surface X from Example 4.18 (see Figure 5.5). Both
X and Y have a well-defined parametrized homology and are cylindrical at infinity.
The parametrized homology of X and Y is represented in Figure 5.6.
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a2 a3 a4a1

Figure 5.5: The complement Y is well-behaved, so Theorem Theorem 5.30 applies.
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1 0
// //

1 0
// //

Figure 5.6: The parametrized homology of X on the left and that of Y on the right.

The last theorem in this chapter generalizes Alexander Duality for Čech coho-
mology to the parametrized setting.

Theorem 5.27. Let X ⊂ Rn × R with n ≥ 2 be parametrized space with compact
levelsets and slices, let Y = (Rn × R) \ X, and let p be the projection onto the
second factor. If (X, p|X) has a well-defined parametrized Čech cohomology, then
the pair (Y, p|Y ) has a well-defined reduced parametrized homology. Additionally,
for j = 0, . . . , n− 1:

D̃gm\\n−j−1(Y) = Ďgm
j //

(X),
D̃gm∨n−j−1(Y) = Ďgm

j ∧
(X),

D̃gm∧n−j−1(Y) = Ďgm
j ∨

(X),
D̃gm//

n−j−1(Y) = Ďgm
j \\

(X).

Remark 5.28. It follows from Theorem 4.16 that the conditions of the theorem are
satisfied for (X, p|X), where X is a locally compact triangulable space and p|X is a
proper continuous map.
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Lemma 5.29. Let X, Y , and p be as in the theorem. Consider the following diagram
of vector spaces and maps:

H̃n−j−1(Y b
a )

H̃n−j−1(Ya) H̃n−j−1(Yb)

Ȟj(Xa) Ȟj(Xb)

Ȟj(Xb
a)

ia ib

ia ib

Da Db

Maps ia, ib, ia, and ib are induced by the inclusions Xa ↪→ Xb
a, Xb ↪→ Xb

a, Ya ↪→ Y b
a ,

and Yb ↪→ Y b
a . Isomorphisms Da and Db are Alexander Duality isomorphisms in

Rn × {a} and Rn × {b}. Then Im (Dai
a ⊕Dbi

b) = Ker (ia − ib).

Proof. As seen in the proof of Theorem 5.21, it is sufficient to show that an isomor-
phism Ȟ

j
(Xb

a) → Hn−j(Y b
a , Ya ∪ Yb) exists making the following diagram commute

up to a sign

Hj(Xb
a) Hj(Xa)⊕Hj(Xb)

Hn−j(Y b
a , Ya ∪ Yb) Hn−j−1(Ya)⊕Hn−j−1(Yb) Hn−j−1(Y b

a ).

ia ⊕ ib

ia − ib∼ = ∼ =

(5.8)
The case j 6= n − 1 follows immediately. We analyze the case when j = n − 1
separately.

According to Hatcher [27, Chapter 3, Problem 35], the following diagram com-
mutes up to a sign.

· · · Hj+1
c (Y b

a ) Hj+1
c (Ya ∪ Yb) Hj+2

c (Y b
a , Ya ∪ Yb) · · ·

· · · Hn−j(Y b
a , Ya ∪ Yb) Hn−j−1(Ya ∪ Yb) Hn−j−1(Y b

a ) · · ·

∼ = ∼ = ∼ =

The horizontal lines are long exact sequences of the corresponding pairs and the
vertical arrows are Poincaré duality isomorphisms.

By cofinality we can pick a countable sequence {Ui}i such that
colim Hj(Ui) = Hj(X). Let {Bi}i be an increasing sequence of closed balls centered
at the origin, containing Xb

a such that ∪iBi = Rn+1.
Sets {(Ki)ba}i, where (Ki)ba = UC

i ∩ (Bi)ba exhaust Y b
a . We have an isomor-

phism of directed systems (Ui)ba ∪ (BC
i )ba 7→ (Ki)ba. Similarly, {(Ki)a}i, where

(Ki)a = UC
i ∩ (Bi)a exhaust Ya and we have an isomorphism of directed systems

(Ui)a ∪ (BC
i )a 7→ (Ki)a.
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First we look at the long exact sequence of pairs ((Rn+1)ba, (Ui)ba ∪ (BC
i )ba), and

((Rn+1)a, (Ui)a ∪ (BC
i )a) for reduced cohomology. For simplicity we write

Hj+1((Rn+1)ba, (Rn+1)ba \Kb
a) = Hj+1((Rn+1)ba |Kb

a)

and
Hj+1((Rn+1)a, (Rn+1)a \ (Ka)) = Hj+1((Rn+1)a |Ka).

We have a family of inclusions ((Rn+1)a, (Ui)a∪(BC
i )a) ↪→ ((Rn+1)ba, (Ui)ba∪(BC

i )ba)
and by naturality the following commuting diagram:

Hj((Rn+1)a) Hj((Ui)a ∪ (BC
i )a) Hj+1((Rn+1)a |Ka) Hj+1((Rn+1)a)

Hj((Rn+1)ba) Hj(Ui ∪ (BC
i )ba) Hj+1((Rn+1)ba |Kb

a) Hj+1((Rn+1)ba).

Since (Rn+1)a and (Rn+1)ba are contractible, their reduced cohomology groups are
trivial. Therefore, we have the following commutative diagram for all j = 0, . . . , n− 1:

Hj((Ui)a ∪ (BC
i )a) Hj+1((Rn+1)a |Ka) Hj+1((Y )a |Ka)

Hj(Ui ∪ (BC
i )ba) Hj+1((Rn+1)ba |Kb

a) Hj+1(Y b
a |Kb

a).

∼= exc

∼= exc

∼=

∼=

Now let j 6= n− 1. Taking the colimit of the diagram above, we get

Ȟj(Xa) Hj+1
c (Ya)

Ȟj(Xb
a) Hj+1

c (Y b
a ).

∼=

∼=
ia

We can repeat the argument for the levelset over b. Taking direct sums of Čech
cohomology groups at a and b yields the following commutative diagram:

Ȟj(Xa)⊕ Ȟj(Xb) Hj+1
c (Ya)⊕Hj+1

c (Yb)

Ȟj(Xb
a) Hj+1

c (Y b
a ).

∼=

∼=
ia ⊕ ib

Diagram 5.8 is the result of composing vertical isomorphisms with the appropriate
Poincaré isomorphism. This finishes the proof for the case of j 6= n− 1.

Now let j = n − 1. Since Hn−1((Ui)ba ∪ (BC
i )ba) ∼= Hn−1((Ui)ba) ⊕ Hn−1((BC

i )ba)
and Hn−1((Ui)a ∪ (BC

i )a) ∼= Hn−1((Ui)a) ⊕ Hn−1((BC
i )a), taking the colimit of the

diagram above, we get

Ȟn−1(Xa)⊕ k Hn
c (Ya)

Ȟn−1(Xb
a)⊕ k Hn

c (Y b
a ).

∼=

∼=
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Once again taking direct sums (as in the previous case), produces the following
commutative diagram:

Ȟn−1(Xa)⊕ k⊕ Ȟn−1(Xb)⊕ k Hn
c (Ya)

Ȟn−1(Xb
a)⊕ k Hn

c (Y b
a ).

∼=

∼=

Composing vertical arrows with appropriate Poincaré duality isomorphisms and
extending the bottom line we get

k⊕ Ȟn−1(Xb
a) k⊕ Ȟn−1(Xa)⊕ k⊕ Ȟn−1(Xb)

H1(Y b
a , Ya ∪ Yb) k⊕ H̃0(Ya)⊕ k⊕ H̃0(Yb) k⊕ H̃0(Y b

a ).

∼ = ∼ =
Additional copies of k get mapped to corresponding copies of k, so exactness also
follows for j = n− 1.

Proof of Theorem 7.16. We use the Diamond Principle and the Equivalence Theo-
rem as in the proof of Theorem 5.14.

An equivalent of Theorem 5.30 also holds for Čech cohomology.

Theorem 5.30. Let X ⊂ Rn × R with n ≥ 2, let Y = (Rn × R) \ X, and let
p be the projection onto the second factor. We assume that the levelsets Xa for
a ∈ R, and slices Xb

a for −∞ < a < b < ∞ are compact and locally contractible.
Additionally, we assume that X and Y are cylindrical at infinity. Let X = (X, p|X)
have a well-defined parametrized Čech cohomology and Y = (Y, p|Y ) a well-defined
reduced parametrized homology. Then, for all j = 0, . . . , n− 1:

Ďgm
j //

(X) = D̃gm\\n−j−1(Y),
Ďgm

j ∧
(X) = D̃gm∨n−j−1(Y),

Ďgm
j ∨

(X) = D̃gm∧n−j−1(Y),
Ďgm

j \\
(X) = D̃gm//

n−j−1(Y).

Points at infinity are matched according to the following rules:

(−∞,∞) ∈ Ďgm
j∨

(X) ⇔ (−∞,∞) ∈ D̃gm∨n−j−1(Y),
(−∞, q∗) ∈ Ďgm

j∨
(X) ⇔ (−∞, q∗) ∈ D̃gm\\n−j−1(Y),

(−∞, q∗) ∈ Ďgm
j\\

(X) ⇔ (−∞, q∗) ∈ D̃gm∨n−j−1(Y),
(p∗,∞) ∈ Ďgm

j//
(X) ⇔ (p∗,∞) ∈ D̃gm∨n−j−1(Y),

(p∗,∞) ∈ Ďgm
j∨

(X) ⇔ (p∗,∞) ∈ D̃gm//

n−j−1(Y).
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Chapter 6

The Evasion Problem

The evasion problem is one of the motivations for extending Alexander Duality
to parametrized spaces. In Section 6.1 we state a version of the evasion problem
building on de Silva and Ghrist [26]. In Section 6.2 we describe a partial answer to
the problem [26]. We conclude by discussing a levelset zigzag persistence criterion
[1] that requires parametrized Alexander Duality in Section 6.3.

6.1 Setting the stage
A sensor is a device that identifies certain inputs from the physical environment.
Most basically, sensors respond to the presence of a stimulus. For example, motion
sensors in home security systems detect the presence of movement. The output is
a signal that can be as simple as a binary flag, as with metal detectors, and as
complicated as a video recording, requiring sophisticated analysis. For simplicity,
our discussion deals exclusively with sensors of the former type.

Suppose D ⊂ Rn, n ≥ 2 is a domain homeomorphic to the unit ball. We have a
finite set of sensors X1, . . . , Xm that move continuously in this domain over the time
interval I = [0, 1]. At any given time a sensor is represented by a node in the domain
that covers the surrounding neighborhood. We assume that these neighborhoods are
unit balls about the nodes, even though most statements hold more generally. We
also assume that the boundary of the domain ∂D is covered.

We adopt the following notation. For j = 1, . . . ,m, Xj(t) denotes the position
of the sensor Xj and Kj(t) = {x ∈ D | ||x−Xj(t)|| ≤ 1} the region it covers at time
t. The covered region at time t is Kt = ∪mj=1Kj(t) ⊂ D×{t} and the region covered
by sensors in spacetime is K = ∪t∈IKt ⊂ D × I. Similarly, Ut = D × {t} − Kt

denotes the uncovered region at time t and U = D× I −K the uncovered region in
spacetime. Both K and U are parametrized spaces with respect to the projection
onto I (see Figure 6.1).

Definition 6.1. The pair X = (D × I, {(Xj(t), Kj(t))t∈[0,1]}mj=1) is called a sensor
network.
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K0

U0

D × I

0 1

Figure 6.1: A sensor network with domain D ⊂ R2 on the vertical and time I on
the horizontal axis. The uncovered region U in spacetime is drawn in yellow. The
leftmost slice shows the domain at time 0 with covered region K0 and uncovered
region U0.

The security and defense industries are faced with the problem of ‘wandering’
loss of coverage. For example, an intruder may be able to escape detection by
moving continuously within the domain of a sensor network. If this is possible, then
an evasion path exists in the network.

Definition 6.2. Let X be a sensor network and let pT : D × I → I be a projection
map. An evasion path in X is a continuous map e : I → U ⊂ D × I such that
pT ◦ e = IdI .

Remark 6.3. Omitting the condition pT ◦ e = IdI would allow time travel.

Example 6.4. In Figure 6.1 no evasion path exists.

Now we are ready to state a slightly different version of the evasion problem [26].
The Evasion Problem
Given the isomorphism class of the covered region K of a sensor network in the

category of parametrized spaces, can we determine the existence of an evasion path?

6.2 Homology criterion
De Silva and Ghrist give a partial answer to the evasion problem in Theorem 11.2
[26]. They rely on the idea that a ’sheet’ separating the uncovered areas from each
other can help in sensor detection. We reformulate and prove their theorem in a
different setting.

Theorem 6.5. Let X be a sensor network. If c ∈ Hn(K,K ∩ ∂D × I) exists such
that 0 6= ∂c ∈ Hn−1(∂D × I), then no evasion path exists in X.
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In this theorem, we think of c as a ‘sheet’ separating the uncovered areas. Fig-
ure 6.2 presents two examples of sensor networks and their uncovered regions. In the
first case, the turquoise ’sheet’ separates the uncovered regions. The theorem applies
and no evasion path exists. However, this criterion is not sharp. In the second case,
the theorem does not apply, since such an α does not exist. Additionally, no evasion
path exists, since staying within the uncovered region would require traveling back
in time.

Figure 6.2: The theorem can be successfully applied in the situation in the left. The
right side presents an example of a sensor network in which the criterion does not
apply.

Proof. By our assumption a c ∈ Hn(K, ∂D×I) exists such that 0 6= ∂c ∈ Hn−1(∂D × I).
By construction Hn(K, ∂D × I)→ Hn−1(∂D × I) is non-trivial.

Let us suppose that an evasion path e : I → U exists. Since e(t) /∈ K(t) for all t,
the map Hn(K, ∂D×I)→ Hn(D×I, ∂D×I) factors through Hn(D×I−e(I), ∂D×I).
Now let A = D × I − e(I) and let B be a neighborhood of e(I), such that A ∩ B
is an annular tube homotopic to Sn−1. Let A′ = G and B′ = ∅. Using the relative
version of Mayer-Vietoris for the pair (A ∪B,A′ ∪B′), we get

Hn(Sn−1) Hn(A, ∂D × I)⊕Hn(B) Hn(D × I, ∂D × I) Hn−1(Sn−1)
φ∗ ψ∗ ∂∗

Since Hn(D × I, ∂D × I) ∼= Hn(D, ∂D) ∼= k and that consequently ∂∗ is an isomor-
phism, we obtain

0 Hn(A, ∂D × I)⊕ 0 Hn(D × I, ∂D × I) k
∼=

By exactness it follows that Hn(D × I − e(I), ∂D × I) ∼= Hn(A, ∂D × I) = 0. This
implies that Hn(K, ∂D× I) = 0, which leads to a contradiction. So no evasion path
exists in X.
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6.3 Bringing parametrized homology into the dis-
cussion

At first it seemed that parametrized homology could be used to sharpen the criterion
in the previous section. The hypothesis was that an evasion path exists if and only
if there exists a cycle in Hn−1(K) that persists from time 0 to time 1. This does not
turn out to be the case as Henry Adams’ examples in Figure 6.3 show.

Figure 6.3: In the sensor networks in the picture, the covered regions are isomorphic
in the category of parametrized spaces. Below the pictures we see the barcodes in
dimension n−1 of the covered region. In both a cycle exists in Hn−1(K) that persists
over I. However, in the network in the left picture there is no evasion path, whereas
in the one on the right there is.

It turns out that an evasion path implies the existence of a persistent cycle. We
reformulate the claim that was posed by Henry Adams, Gunnar Carlsson and Vin de
Silva so that it fits into our setting. The proof of this statement requires Theorem
5.21.
Theorem 6.6. Let X be a sensor network with a covered region of Morse-type with
critical points a1 = 0 < a2 < . . . < ad < ad+1 = 1. We select a set of indices si
which satisfy

0 < s1 < a2 < . . . < sd < 1.
If an evasion path exists in X, then there is a full-length interval [1, 2d − 1] in the
barcode for Hn−1(K{s1,s2,...,sd}).

Proof. First we show that H̃0(Rn+1 \K{s1,...,sd}) and H0(U{s1,...,sd}) are isomorphic
zigzag modules. For all t ∈ I we have (Rn+1 \K)t = Utt (Rn+1 \D)t. This is indeed
a disjoint union since we assume that ∂D is covered for t ∈ I. The same holds for
slices. Applying the reduced homology functor in dimension 0 we get

H̃0((Rn+1 \K)t) = H̃0(Ut t (Rn+1 \D)t) ∼= H0(Ut)⊕ H̃0((Rn+1 \D)t) = H0(Ut)
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since Rn × {t} \ Dt is connected for every t. By naturality of reduced homology
functor it follows that

H0(U s2
s1 ) . . . H0(U sdsd−1)

H0(Us1) H0(Us2) H0(Usd−1) H0(Usd)

and

H̃0((Rn+1 \K)s2
s1) . . . H̃0((Rn+1 \K)sdsd−1)

H̃0((Rn+1 \K)s1) H̃0((Rn+1 \K)s2) H̃0((Rn+1 \K)sd−1) H̃0((Rn+1 \K)sd)

are isomorphic as zigzag modules and therefore have the same interval decomposi-
tion.

Zigzag modules Hn−1(K{s1,s2,...,sd}) and H̃0(Rn+1 \K{s1,...,sd}) have the same in-
terval decomposition by Theorem 5.20 and Lemma 5.22.

From these two observations it follows that H0(U{s1,...,sd}) and Hn−1(K{s1,s2,...,sd})
have the same barcodes. So it is sufficient to prove that there is a full length interval
in H0(U{s1,...,sd}).

Let e : I → U be an evasion path in X. We have the following commuting
diagram

I U I.
e p

IdI

Taking zigzag diagrams and applying H0 gives the following diagram.

k

k

k

k

k

k

k

H0(Us1)

H0(U s2
s1 )

H0(Us2)

. . .

H0(Usd−1)

H0(U sdsd−1)

H0(Usd)

k.

k

k

k

k

k

k

At every level the composition of two vertical maps is the identity map since
p ◦ e = IdI . This implies that there is a full-length interval [1, 2d− 1] in the barcode
for H0(U{s1,...,sd}).
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Chapter 7

Slovenski povzetek

Posledica bliskovitega razvoja informacijske tehnologije v zadnjih desetletjih je zbi-
ranje in shranjevanje ogromne količine podatkov, ki jih želimo analizirati. Podatkov
je tipično preveč za popolno obdelavo, poleg tega pa se vprašanja, ki nas zanima,
morda sploh ne tičejo vsi podatki (ne vemo pa vnaprej, kateri). V praksi velikokrat
potrebujemo zanesljivost pri odločitvi, da sta dva nabora podatkov ‘različna’. Na
primer, pri naboru podatkov, ki ustrezata dvema posnetkoma obrazov, ki jih pos-
name varnostna kamera (z različnih zornih kotov, pri različni oddaljenosti in os-
vetljenosti), želimo vedeti le, ali gre za isti obraz ali ne. Tedaj iščemo kvalitativne
lastnosti, ki dobro razlikujejo med različnimi možnostmi in, enako pomembno, jih
je mogoče hitro in zanesljivo implementirati algoritmično.

Med metode, ki na podlagi vzorca (ali vzorcev) iz podatkov sklepajo na kvalita-
tivne lastnosti, vse bolj prodirajo metode algebraične topologije. (Glej [31] in [19] za
širše področje računske topologije.) Topologija je pri interpretaciji podatkov nara-
vna, saj so morebitne koordinate, ki jih vpeljemo v procesu računališke predstavitve
podatkov (na primer nabor številk, prirejen molekuli DNK), morda vsiljene in niso
intrinzične za dani problem. Nasprotno pa moramo znati opredeliti vsaj ‘bližino’,
če želimo pojave razlikovati. Algebraična topologija kot prirejanje algebraičnih in-
variant (na primer homoloških grup) topološkemu prostoru je tudi naravna, saj je
neobčutljiva za majhne deformacije in v tem smislu stabilno predstavlja kvaliteto.
Edini resni problem se pojavi pri občutljivosti na šum: podatki v praksi odstopajo
od dejanskih vrednosti, tovrstna odstopanja pa prav lahko povzročijo spremembo
algebraičnih invariant. Edelsbrunner, Letscher in Zomorodian [22] so ta problem
učinkovito rešili z vpeljavo vztrajne homologije. Poglobitev in trdno teoretično pod-
lago predstavlja članek Zomorodiana in Carlssona [13].

Metode vztrajne homologije so zelo uporabne. Med pomembnejše uporabe sodi
izdelava algoritma, ki z vztrajno homologijo odloči o (ne)pokritosti danega sen-
zorskega omrežja [26]. Dalje je vztrajna homologija priljubljena kot osnova za vizual-
izacijske tehnike [18, 23]. Aplikacije v problemih analize oblike so porodile vpeljavo
črtnih kod [11, 12, 10] in kasneje vztrajnega diagrama [16]. Črtne kode in diagram
sta ne le ugodna načina za predstavitev oziroma vizualizacijo vztrajne homologije,
ampak je vpeljava vztrajnega diagrama pripomogla k dokazu stabilnosti vztrajne
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homologije [16] glede na primeren pojem perturbacije.
Vztrajna homologija je področje, ki se zelo živahno razvija. Med nedavnimi

pomembnejšimi posplošitvami je cikcak vztrajnost [7].

7.1 Cikcak vztrajnost
Delamo nad fiksnim obsegom k. Vsi vektorski prostori so končno dimenzionalni.

Definicija 7.1. Cikcak modul V je zaporedje vektorskih prostorov in linearnih pres-
likav dolžine n:

V1 V2 . . . Vn.
p1 p2 pn−1

Vsaka
pi

predstavlja bodisi
fi

ali
gi

.

Zaporedje simbolov f ali g je tip V . Na primer, diagram tipa τ = ffgg izgleda
takole:

V1 V2 V3 V4 V5.

Dolžina tipa τ je dolžina kateregakoli diagrama tipa τ . Diagram ffgg ima dolžino
5. Ponavadi bomo imeli v mislih cikcak module fiksnega tipa τ dolžine n. Tem
diagramom pravimo τ -moduli, razred τ -modulov označimo s τ -Mod. Cikcak moduli
tvorijo kategorijo na naraven način.

Primer 7.2. Vztrajni moduli so cikcak moduli, pri katerih vse puščice kažejo naprej;
z drugimi besedami, kjer τ = ff . . . f . Na vztrajne module lahko gledamo kot na
stopničene module nad kolobarjem polinomov k[t]. Ta opazka nam precej olajša
analizo vztrajnih modulov.

Cikcak module poskušamo razumeti tako, da jih razcepimo na enostavnejše dele.

Definicija 7.3. Direktna vsota τ -modulov V in W je τ -modul s prostori Vi ⊕Wi

in preslikavami fi ⊕ hi ali gi ⊕ ki, kjer so h puščice naprej, k pa puščice nazaj v
diagramu W .

τ -modul V je razcepen, če ga lahko zapišemo kot direktno vsoto podmodulov
in nerazcepen sicer. Vsak τ -modul V ima Remakovo dekompozicijo, z drugimi
besedami, zapišemo ga lahko kot V = W1 ⊕ . . . ⊕WN , pri čemer so sumandi Wj

nerazcepni. Te dekompozicije same po sebi niso enolične, ampak Krull-Schmidtov
princip iz komutativne algebre nam pove, da so sumandi v Remakovi dekompoziciji
enolični do preureditve natančno.

Izrek 7.4 (Krull-Remak-Schmidt). Recimo, da ima τ -modul V Remakovi dekom-
poziciji

V = a1V1 ⊕ . . .⊕ anVn in V = b1W1 ⊕ . . .⊕ bmWm.

Potem je n = m in obstaja permutacija π elementov {1, . . . n}, tako da Vi ∼= Wπ(i)
za vse 1 ≤ i ≤ n in ai = bπ(i) za vse i.
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S tem principom postane multimnožica {(Vi, ai)} izomorfnostna invarianta V .
Da lahko to uporabimo, moramo najprej identificirati množico nerazcepnih τ -modulov.
Poglejmo sedaj naraven primer nerazcepnih modulov - vsakemu podintervalu [b, d]
zaporedja števil {1, . . . n}, lahko priredimo τ -modul.

Definicija 7.5. Naj bo τ tip dolžine n in 1 ≤ b ≤ d ≤ n. Intervalni τ -modul, ki se
rodi ob času b in umre ob času d označimo z Iτ (b, d), je podan z vektorskimi prostori

(I(b, d))i =
{

k če b ≤ i ≤ d,
0 sicer;

in identičnimi preslikavami med sosednjimi kopijami k ter ničelnimi preslikavami
sicer.

Primer 7.6. Če je τ = ffgg, potem je I(2, 3) cikcak modul

0 k k 0 0.
0 01 0

Temelj teorije cikcak vztrajnosti je Gabrielov izrek [25].

Izrek 7.7 (Gabriel). Nerazcepni τ -moduli so natanko intervalni moduli I(b, d), kjer
1 ≤ b ≤ d ≤ n = dolžina(τ). Ekvivalentno, vsak τ -modul lahko zapišemo kot
direktno vsoto intervalov.

Posledično je vsak τ -modul do izomorfizma natanko določen z neurejenim sez-
namom intervalov [b, d], ki ustrezajo nerazcepnim sumandom. To je v skladu s
posebnim primerom vztrajne homologije, kjer je ta rezultat sorazmerno enostavno
dokazati - gre se samo za klasifikacijo končno generiranih stopničastih modulov nad
kolobarjem polinomov k[t].

Filozofija, ki se skriva za tem je, da je dekompozicijska teorija reprezentacij grafov
neodvisna od orientacije povezav - če sprejmemo ta princip, potem posplošitev od
običajne vztrajne homologije do cikcak vztrajne homologije ni presenetljiva.

Definicija 7.8. Naj bo V cikcak modul poljubnega tipa. Cikcak vztrajnost V je
multimnožica

Pers(V ) = {[bj, dj] ⊂ {1, . . . , n} | j = 1, . . . , n}
celoštevilskih intervalov, ki jih dobimo iz dekompozicije V ∼= I(b1, d1)⊕. . .⊕I(bn, dn).

2

1

1 2

3

3

4

4 1 2 3 4
Vztrajni diagram (levo) in črtna koda (desno) reprezentacije cikcak vztrajnosti

{[1, 2], [1, 3], [3, 3], [2, 4]} cikcak modula dolžine 4.
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Grafično lahko Pers(V ) predstavimo kot množico daljic (črtna koda) ali kot množico
točk v ravnini R2, ki leži na diagonali ali nad njo v pozitivnem kvadrantu (vztrajni
diagram).

Cikcak vztrajnost je najsplošnejša različica enorazsežne vztrajnosti v smislu, da
dopušča podoben klasifikacijski izrek kot vztrajna homologija [13]. V okviru fil-
tracije, ki je prirejena funkciji f : X → R, v cikcak razširitvi ne gledamo le inkluzij,
ampak gledamo ‘cikcak’ inkluzije f−1(r) ⊂ f−1[r, s] ⊃ f−1(s).

Eno izmed ključnih orodij pri dokazu parametriziranih različic Aleksandrove du-
alnosti je karo princip.

7.1.1 Karo princip
Oglejmo si naslednji diagram

V1 . . . Vk−2 Vk−1

Wk

Uk

Vk+1 Vk+2 . . . Vn.
p1 pk−3 pk−2

fk−1 gk

gk−1 fk

pk+1 pk+2 pn−1

Naj V + in V − označujeta cikcak modula, vsebovana v diagramu:

V + = V1 . . . Vk−1 Wk Vk+1 . . . Vn,
p1 pk−2 fk−1 gk pk+1 pn−1

V − = V1 . . . Vk−1 Uk Vk+1 . . . Vn.
p1 pk−2 gk−1 fk pk+1 pn−1

Radi bi primerjali Pers(V +) in Pers(V −), posebej pri indeksih {k − 1, k, k + 1}.
To zahteva nek pogoj na štiri preslikave v karu.

Pravimo, da je karo zgoraj eksakten, če Im(D1) = Ker(D2) v naslednjem za-
poredju

Uk Vk−1 ⊕ Vk+1 Wk,
D1 D2

kjer D1(u) = gk−1(u)⊕ fk(u) in D2(v ⊕ v′) = fk−1(v)− gk(v′).

Izrek 7.9 (Karo princip). Naj bosta V + in V − kot zgoraj in predpostavimo, da je
karo v sredini eksakten. Potem lahko intervale v Pers(V +) in Pers(V −) parimo po
naslednjih pravilih:

• Med intervali tipa [k, k] ni povezave;

• Intervali [b, k] ustrezajo intervalom [b, k − 1] in obratno za b ≤ k − 1;

• Intervali [k, d] ustrezajo intervalom [k + 1, d] in obratno za d ≥ k + 1;
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• Intervali [b, d] ustrezajo intervalom [b, d] v vseh ostalih primerih.

Carlsson in de Silva sta dokazala karo princip v [7]. Mi uberemo drugačen pristop
in dokažemo izrek z zrcalnim funktorjem Bernsteina, Gelfanda in Ponomareva (BGP
zrcalni princip) [4].

Karo princip lahko uporabimo na sledečem diagramu topoloških prostorov in
zveznih preslikav

X1 . . . Xk−2 A

A ∪B

A ∩B

B Xk+2 . . . Xn.
p1 pk−3 pk−2 pk+1 pk+2 pn−1

Z X+ in X− označimo zgornji in spodnji cikcak diagram. Če uporabimo funktor sin-
gularne homologije Hj s koeficienti k na X+, dobimo cikcak modul Hj(X+). Družino
Pers(Hj(X+)) po vseh j označimo s Pers(H∗(X+)). Podobne oznake uporabimo pri
X−.

Izrek 7.10 (Krepki karo princip). Za X+ in X− kot sta definirana zgoraj obstaja
bijekcija med Pers(H∗(X+)) in Pers(H∗(X−)). Intervale parimo po naslednjih pra-
vilih:

• [k, k] ∈ Pers(Hj+1(X+)) se ujema z [k, k] ∈ Pers(Hj(X−)).

Pri ostalih primerih se homološka dimenzija ohrani:

• Intervali [b, k] ustrezajo intervalom [b, k − 1] in obratno za b ≤ k − 1.

• Intervali [k, d] ustrezajo intervalom [k + 1, d] in obratno za d ≥ k + 1.

• Intervali [b, d] ustrezajo intervalom [b, d] v vseh ostalih primerih.

+1
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7.2 Parametrizirani prostori in cikcak vztrajnost
nivojnic

Parametrizirani prostor je par (X, pX), kjer je p|X : X → R zvezna funkcija na
topološkem prostoru X. Ta funkcija določa nivojnice Xa = f−1(a) in nivojske rezine
Xb
a = f−1([a, b]) za različne intervale [a, b] ⊂ R.
Za dano diskretizacijo

a = s0 ≤ . . . ≤ sn = b

intervala [a, b] ⊆ R zgradimo cikcak diagram, ki modelira nivojsko rezino Xb
a:

Xs1
s0 Xs2

s1
. . . X

sn−1
sn−2 Xsn

sn−1

Xs0 Xs1 Xs2 Xsn−2 Xsn−1 Xsn .

Na tem diagramu uporabimo funktor singularne homologije Hj:

Hj(Xs1
s0 ) Hj(Xs2

s1 ) . . . Hj(Xsn−1
sn−2 ) Hj(Xsn

sn−1)

Hj(Xs0) Hj(Xs1) Hj(Xs2) Hj(Xsn−2) Hj(Xsn−1) Hj(Xsn).

Ta diagram označimo z Hj(X{s0,s1,...,sn}).
Cilj tega podpoglavja je razumeti, kako se spreminja homologija nivojnic s parametrom.

Seveda tega ne bo mogoče določiti za splošne parametrizirane prostore.

Definicija 7.11. Parametriziran prostor X = (X, pX) je Morsovega tipa, če obstaja
končna množica homoloških kritičnih vrednosti a1 < a2 < . . . < an, za katere je nad
vsakim intervalom

I ∈ {(−∞, a1), (a1, a2), . . . , (an−1, an), (an,∞)}

nivojska rezina nad I homeomorfna produktu oblike Y × I s projekcijo pX na faktor
I. Dodatno predpostavimo, da ima vsaka nivojska rezina XI končno generirano
homologijo. Končno predpostavimo, da lahko vsak homeomorphizem Y × I → XI

razširimo do zvezne funkcije Y × I → XI , kjer I označjue zaprtje I v R.

Naj bo X Morsovega tipa. Izberemo množico indeksov si, ki zadoščajo

−∞ < s0 < a1 < s1 < a2 < . . . < sn−1 < an < sn <∞.

Ker imajo vse nivojske rezine XI končno generirano homologijo, je Hj(X{s0,s1,...,sn})
cikcak modul.

Cikcak vztrajnost nivojnic parametriziranega prostora X v dimenziji j je cikcak
vztrajnost Hj(X{s0,s1,...,sn}). Družina teh po vseh j je cikcak vztrajnost nivojnic X.
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7.3 Mere in vztrajnost
Standardno predstavimo cikcak vztrajnost kot črtno kodo ali kot vztrajni diagram.
Slednji ne razlikuje med različnimi tipi intervalov ([p, q], [p, q), (p, q] in (p, q)), zato
Chazal et al. [14] uvedejo okrašene točke. Vsako okrašeno točko lahko predstavimo
v polravnini nad diagonalo skupaj s črtico, ki nakazuje okras:

[p, q) pišemo kot (p−, q−) in narišemo kot
[p, q] pišemo kot (p−, q+) in narišemo kot
(p, q) pišemo kot (p+, q−) in narišemo kot
(p, q] pišemo kot (p+, q+) in narišemo kot .

Naj bo R = [a, b] × [c, d], kjer a < b < c < d, pravokotnik v ravnini in naj bo
(p∗, q∗) okrašena točka. Potem je (p∗, q∗) ∈ R, če [b, c] ⊂ (p∗, q∗) ⊂ (a, d). To se
zgodi natanko takrat, ko sta (p, q) in črtica vsebovani v R.

a b

c

d

Chazal et al. [14] so predstavili nov način za predstavitev vztrajnosti, ki je še
posebej primeren, ko imamo opravka s prostori parametrizirani z realnimi števili.
Osnovna ideja je, da če vemo, koliko točk diagrama je vsebovanih v vsakem pra-
vokotniku v zgornji polravnini, potem lahko določimo diagram.

Naj bo H = {(p, q) ∈ R2 | p < q} odprta polravnina, ki leži nad diagonalo.
Množica pravokotnikov v H

Rect(H ) = {[a, b]× [c, d] ⊂H | a < b < c < d}.

Pravokotna mera ali r-mera na H je funkcija

µ : Rect(H )→ {0, 1, 2, 3, . . .} ∪ {∞},

ki je aditivna glede na vodoravni in navpični razcep. Natančneje, ko velja
µ(R) = µ(R1) + µ(R2) za

R = R1 R2 ali R = R1
R2

.
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Sledi Izrek o ekvivalenci, ki utemelji bijektivno korespondenco med okrašenimi
diagrami in r-merami. Od sedaj naprej lahko tako okrašen vztrajni diagram podamo
z mero na pravokotnikih.

Izrek 7.12 (Izrek o ekvivalenci). Imamo bijektivno korespondenco med:

• Končnimi r-merami µ na H . Tukaj ‘končna’ pomeni, da µ(R) < ∞ za vsak
R ∈ RectH .

• Lokalno končnimi multimnožicami okrašenih točk v H . Tukaj ‘lokalno končna’
pomeni, da card(A|R) <∞ za vsak R ∈ RectH .

Za mero µ, ki ustreza multimnožici A, velja

µ(R) = card(A|R)

za vsak R ∈ Rect(H ).

7.4 Parametrizirana homologija
Carlsson, de Silva in Morozov v neobjavljenem delu kombinirajo pristop z merami
in vztrajno homologijo nivojnic [8], da definirajo parametrizirano homologijo.

Naj bo Hj funktor singularne homologije s koeficienti v obsegu k. Za dana števila
a < b < c < d nas zanimajo homološke značilnosti, ki vztrajajo na rezini Xc

b , pa ne
presegajo rezine Xd

a . Natančneje, v cikcak diagramu

Hj(Xb
a) Hj(Xc

b ) Hj(Xd
c )

Hj(Xa) Hj(Xb) Hj(Xc) Hj(Xd)

nas zanimajo tisti nerazcepni sumandi, ki vztrajajo na Hj(Xb)→ Hj(Xc
b )← Hj(Xc),

pa ne segajo niti do Hj(Xa) na levi niti do Hj(Xd) na desni strani. Ker obstajajo
štirje tipi takih nerazcepnih sumandov, lahko na podlagi tega definiramo štiri oz-
načene vztrajne mere za prostor X:

jµ
\\
X(R) = 〈 | Hj(X{a,b,c,d})〉,

jµ
∨
X(R) = 〈 | Hj(X{a,b,c,d})〉,

jµ
∧
X(R) = 〈 | Hj(X{a,b,c,d})〉,

jµ
//

X(R) = 〈 | Hj(X{a,b,c,d})〉.

Tukaj je 〈 | Hj(X{a,b,c,d})〉 število pojavitev sumanda v raz-
cepu na intervale cikcak modula Hj(X{a,b,c,d}).
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Definicija 7.13. Parametriziran prostor X ima dobro definirano parametrizirano
homologijo, če so vse štiri zgoraj definirane vrednosti r-mere. Po izreku o ekviva-
lenci vsaka določa okrašen vztrajni diagram. Naj bo Dgm∗j(X) diagram prirejen jµ

∗.
Parametrizirana homologija X, ParH∗(X), je družina Dgm\\j (X), Dgm∨j (X), Dgm∧j (X)
in Dgm//

j (X) po vseh j.

Ti štirje diagrami povedo, kako homološki cikli izginejo v robnih točkah intervala
(ali so j-dimenzionalni cikli ubiti v homologiji, ko nalepimo (j + 1)-dimenzionalne
verige ali preprosto nehajo obstajati).

• Dgm\\j (X) vsebuje okrašene točke (p∗, q∗), ki ustrezajo homološkim j-ciklom,
nehajo obstajati pri p in so ubiti v q;

• Dgm∨j (X) vsebuje okrašene točke (p∗, q∗), ki ustrezajo homološkim j-ciklom,
nehajo obstajati pri p in q;

• Dgm∧j (X) vsebuje okrašene točke (p∗, q∗), ki ustrezajo homološkim j-ciklom,
ki so ubiti v p in q;

• Dgm//
j (X) vsebuje okrašene točke (p∗, q∗), ki ustrezajo homološkim j-ciklom,

so ubiti v p in nehajo obstajati pri q.

∨ \\

// ∧

q q

p q

p p

p p

1-dimenzionalni cikel levo zgoraj neha obstajati pri obeh robnih točkah, medtem
ko ta zgoraj desno neha obstajati pri p in je ubit z diskom v q.

Parametriziran prostor X = (X, pX) ima dobro definirano parametrizirano ho-
mologijo, če je:

• X kompaktna mnogoterost in pX Morsova;

• X končen simplicialni kompleks in pX kosoma linearna preslikava.
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Primer 7.14. Naj bo X ploskev prikazana na sliki. Ker je projekcija na zadnjo
komponento Morsova funkcija, ima X dobro definirano parametrizirano homologijo.

a1 a2 a3 a4 a5

a5

a4

a3

a2

a1

a1 a2 a3 a4 a5

0

0

0
1

1
1

\\
∨

\\
∨

∨
∧

Podobno definiramo parametrizirane različice drugih homoloških teorij.

7.5 Parametrizirana Aleksandrova dualnost
Če je X podprostor kartezičnega produkta Rn×R in je pX : X → R projekcija na zad-
njo koordinato, lahko definiramo še parametrizirani prostor Y = Rn × R \X (skupaj
s projekcijo na zadnjo koordinato). Če so nivojnice Xt kompaktne in lokalno kon-
traktibilne, obstaja za vsak t in vsak obseg k izomorfizem H̃j(Yt; k) ∼= Hn−j−1(Xt; k)
(Aleksandrova dualnost), kjer je H∗ singularna kohomologija, H̃ pa reducirana sin-
gularna homologija.

Zanima nas, pri kakšnih pogojih in za katere pare kohomoloških oziroma ho-
moloških teorij je mogoče konstruirati dualnostni izomorfizem med homološkimi
cikcak vztrajnostmi ter kohomološkimi cikcak vztrajnostmi za vsak nabor števil
a < b < c < d ter posledično izomorfizem med homološkimi ter kohomološkimi
črtnimi kodami.

Izrek 7.15. Naj bo X ⊂ Rn×R, n ≥ 2, naj Y = (Rn×R)\X in naj bo p projekcija
na zadnjo komponento. Predpostavimo še, da so nivojnice Xa za a ∈ R in nivojske
rezine Xb

a za a < b kompaktne in lokalno kontraktibilne. Če ima X = (X, p|X) dobro
definirano parametrizirano homologijo, potem ima Y = (Y, p|Y ) dobro definirano
reducirano parametrizirano homologijo. Za vse j = 0, . . . , n− 1 velja:

D̃gm\\n−j−1(Y) = Dgm//
j (X),

D̃gm∨n−j−1(Y) = Dgm∧j (X),
D̃gm∧n−j−1(Y) = Dgm∨j (X),
D̃gm//

n−j−1(Y) = Dgm\\j (X).

Ta izrek velja za pare (X, p|X), kjer je:
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• X kompaktna mnogoterost in p|X Morsova;

• X končen simplicialni kompleks in p|X kosoma linearna preslikava.

Splošnejši izrek velja, če namesto singularne vzamemo Čechovo kohomologijo.

Izrek 7.16. Naj bo X ⊂ Rn × R, n ≥ 2, naj Y = (Rn × R) \ X in naj bo p
projekcija na zadnjo komponento. Predpostavimo še, da so nivojnice Xa za a ∈ R
in nivojske rezine Xb

a za a < b kompaktne. Če ima X = (X, p|X) dobro definirano
parametrizirano Čechovo kohomologijo, potem ima Y = (Y, p|Y ) dobro definirano
reducirano parametrizirano homologijo. Za vse j = 0, . . . , n− 1 velja:

D̃gm\\n−j−1(Y) = D̆gm
j //

(X),
D̃gm∨n−j−1(Y) = D̆gm

j ∧
(X),

D̃gm∧n−j−1(Y) = D̆gm
j ∨

(X),
D̃gm//

n−j−1(Y) = D̆gm
j \\

(X).

Ta izrek velja za pare (X, p|X), kjer je X lokalno kompakten triangulabilen in
p|X prava zvezna preslikava.

Primer 7.17. Spomnimo se Primera 7.14. Parametrizirana homologija X je prikazana
na levi, Y pa na desni.
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7.6 Problem vsiljivca
Poleg teoretičnega pomena so moje raziskave prispevale k razumevanju t.i. ‘prob-
lema vsiljivca’: v danem območju D, ki ga pokrivajo premični senzorji, se giblje
vsiljivec, ki bi rad od dane točke v nepokritem območju ob času 0 prišel do točke
v nepokritem območju ob času 1 in sicer tako, da bi se izognil senzorjem. V tem
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primeru imamo za vsak čas t ∈ [0, 1] območje pokritosti Kt in območje nepokri-
tosti Ut = D \Kt. Ta območja določajo parametriziran prostor D × [0, 1] skupaj s
podprostoroma K in U .

Sledeči kriterij uporablja različico parametrizirane Aleksandrove dualnosti.

Izrek 7.18. Naj bo X senzorsko omrežje, pri katerem je pokrit prostor parametriziran
prostor Morsovega tipa s kritičnimi točkami a1 = 0 < a2 < . . . < ad < ad+1 = 1.
Izberemo indekse si, ki zadoščajo

0 < s1 < a2 < . . . < sd < 1.

Če se vsiljivec lahko izmuzne nadzoru, potem interval [1, 2d−1] nastopa v črtni kodi
Hn−1(K{s1,s2,...,sd}).
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